Jump to content

List of numeral systems

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 208.98.202.34 (talk) at 09:21, 25 December 2020 (→‎Mixed radix: Fibonorial number system). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

This is a list of numeral systems, that is, writing systems for expressing numbers.

By culture / time period

Name Base Sample Approx. First Appearance
Prehistoric numerals 35,000 BCE
Babylonian numerals 60 3,100 BCE
Egyptian numerals 10
Z1V20V1M12D50I8I7C11
3,000 BCE
Chinese numerals
Japanese numerals
Korean numerals (Sino-Korean)
Vietnamese numerals (Sino-Vietnamese)
10

零一二三四五六七八九十百千萬億 (Default, Traditional Chinese)
〇一二三四五六七八九十百千万亿 (Default, Simplified Chinese)
零壹貳參肆伍陸柒捌玖拾佰仟萬億 (Financial, T. Chinese)
零壹贰叁肆伍陆柒捌玖拾佰仟萬億 (Financial, S. Chinese)

1,600 BCE
Aegean numerals 10 𐄇 𐄈 𐄉 𐄊 𐄋 𐄌 𐄍 𐄎 𐄏  ( 1 2 3 4 5 6 7 8 9 )
𐄐 𐄑 𐄒 𐄓 𐄔 𐄕 𐄖 𐄗 𐄘  ( 10 20 30 40 50 60 70 80 90 )
𐄙 𐄚 𐄛 𐄜 𐄝 𐄞 𐄟 𐄠 𐄡  ( 100 200 300 400 500 600 700 800 900 )
𐄢 𐄣 𐄤 𐄥 𐄦 𐄧 𐄨 𐄩 𐄪  ( 1000 2000 3000 4000 5000 6000 7000 8000 9000 )
𐄫 𐄬 𐄭 𐄮 𐄯 𐄰 𐄱 𐄲 𐄳  ( 10000 20000 30000 40000 50000 60000 70000 80000 90000 )
1,500 BCE
Bengali numerals 10 ০ ১ ২ ৩ ৪ ৫ ৬ ৭ ৮ ৯ 1,400 BCE
Roman numerals I V X L C D M 1,000 BCE
Hebrew numerals 10 א ב ג ד ה ו ז ח ט
י כ ל מ נ ס ע פ צ
ק ר ש ת ך ם ן ף ץ
800 BCE
Indian numerals 10 Tamil ௧ ௨ ௩ ௪ ௫ ௬ ௭ ௮ ௯ ௰

Devanagari ० १ २ ३ ४ ५ ६ ७ ८ ९
Tibetan ༠ ༡ ༢ ༣ ༤ ༥ ༦ ༧ ༨ ༩

750 – 690 BCE
Greek numerals 10 ō α β γ δ ε ϝ ζ η θ ι
ο Αʹ Βʹ Γʹ Δʹ Εʹ Ϛʹ Ζʹ Ηʹ Θʹ
<400 BCE
Phoenician numerals 10 𐤙 𐤘 𐤗 𐤛𐤛𐤛 𐤛𐤛𐤚 𐤛𐤛𐤖 𐤛𐤛 𐤛𐤚 𐤛𐤖 𐤛 𐤚 𐤖 [1] <250 BCE[2]
Chinese rod numerals 10 𝍠 𝍡 𝍢 𝍣 𝍤 𝍥 𝍦 𝍧 𝍨 𝍩 1st Century
Ge'ez numerals 10 ፩ ፪ ፫ ፬ ፭ ፮ ፯ ፰ ፱
፲ ፳ ፴ ፵ ፶ ፷ ፸ ፹ ፺ ፻
3rd – 4th Century
15th Century (Modern Style)[3]
Armenian numerals 10 Ա Բ Գ Դ Ե Զ Է Ը Թ Ժ Early 5th Century
Khmer numerals 10 ០ ១ ២ ៣ ៤ ៥ ៦ ៧ ៨ ៩ Early 7th Century
Thai numerals 10 ๐ ๑ ๒ ๓ ๔ ๕ ๖ ๗ ๘ ๙ 7th Century[4]
Abjad numerals 10 غ ظ ض ذ خ ث ت ش ر ق ص ف ع س ن م ل ك ي ط ح ز و هـ د ج ب ا <8th Century
Eastern Arabic numerals 10 ٩ ٨ ٧ ٦ ٥ ٤ ٣ ٢ ١ ٠ 8th Century
Vietnamese numerals (Chữ Nôm) 10 𠬠 𠄩 𠀧 𦊚 𠄼 𦒹 𦉱 𠔭 𠃩 <9th Century
Western Arabic numerals 10 0 1 2 3 4 5 6 7 8 9 9th Century
Glagolitic numerals 10 Ⰰ Ⰱ Ⰲ Ⰳ Ⰴ Ⰵ Ⰶ Ⰷ Ⰸ ... 9th Century
Cyrillic numerals 10 а в г д е ѕ з и ѳ і ... 10th Century
Burmese numerals 10 ၀ ၁ ၂ ၃ ၄ ၅ ၆ ၇ ၈ ၉ 11th Century[5]
Tangut numerals 10 𘈩 𗍫 𘕕 𗥃 𗏁 𗤁 𗒹 𘉋 𗢭 𗰗 11th Century (1036)
Cistercian numerals 10 13th Century
Maya numerals 20 <15th Century
Muisca numerals 20 <15th Century
Korean numerals (Hangul) 10 하나 둘 셋 넷 다섯 여섯 일곱 여덟 아홉 열 15th Century (1443)
Aztec numerals 20 16th Century
Sinhala numerals 10 ෦ ෧ ෨ ෩ ෪ ෫ ෬ ෭ ෮ ෯ 𑇡 𑇢 𑇣
𑇤 𑇥 𑇦 𑇧 𑇨 𑇩 𑇪 𑇫 𑇬 𑇭 𑇮 𑇯 𑇰 𑇱 𑇲 𑇳 𑇴
<18th Century
Pentimal runes 10 19th Century
Kaktovik Inupiaq numerals 20 20th Century (1994)

By type of notation

Numeral systems are classified here as to whether they use positional notation (also known as place-value notation), and further categorized by radix or base.

Standard positional numeral systems

A binary clock might use LEDs to express binary values. In this clock, each column of LEDs shows a binary-coded decimal numeral of the traditional sexagesimal time.

The common names are derived somewhat arbitrarily from a mix of Latin and Greek, in some cases including roots from both languages within a single name.[6] There have been some proposals for standardisation.[7]

Base Name Usage
2 Binary Digital computing, imperial and customary volume (bushel-kenning-peck-gallon-pottle-quart-pint-cup-gill-jack-fluid ounce-tablespoon)
3 Ternary Cantor set (all points in [0,1] that can be represented in ternary with no 1s); counting Tasbih in Islam; hand-foot-yard and teaspoon-tablespoon-shot measurement systems; most economical integer base
4 Quaternary Data transmission, DNA bases and Hilbert curves; Chumashan languages, and Kharosthi numerals
5 Quinary Gumatj, Ateso, Nunggubuyu, Kuurn Kopan Noot, and Saraveca languages; common count grouping e.g. tally marks
6 Senary Diceware, Ndom, Kanum, and Proto-Uralic language (suspected)
7 Septenary Weeks timekeeping, Western music letter notation
8 Octal Charles XII of Sweden, Unix-like permissions, Squawk codes, DEC PDP-11, compact notation for binary numbers, Xiantian (I Ching, China)
9 Nonary Base9 encoding; compact notation for ternary
10 Decimal / Denary Most widely used by modern civilizations[8][9][10]
11 Undecimal Jokingly proposed during the French Revolution to settle a dispute between those proposing a shift to duodecimal and those who were content with decimal; check digit in ISBN. A base-11 number system was attributed to the Māori (New Zealand) in the 19th century and the Pangwa (Tanzania) in the 20th century.[11][12]
12 Duodecimal Languages in the Nigerian Middle Belt Janji, Gbiri-Niragu, Piti, and the Nimbia dialect of Gwandara; Chepang language of Nepal, and the Mahl dialect of Maldivian; dozen-gross-great gross counting; 12-hour clock and months timekeeping; years of Chinese zodiac; foot and inch; Roman fractions; penny and shilling
13 Tridecimal Base13 encoding; Conway base 13 function
14 Tetradecimal Programming for the HP 9100A/B calculator[13] and image processing applications;[14] pound and stone
15 Pentadecimal Telephony routing over IP, and the Huli language
16 Hexadecimal Base16 encoding; compact notation for binary data; tonal system; ounce and pound
17 Heptadecimal Base17 encoding
18 Octodecimal Base18 encoding
19 Enneadecimal Base19 encoding
20 Vigesimal Basque, Celtic, Maya, Muisca, Inuit, Yoruba, Tlingit, and Dzongkha numerals; Santali, and Ainu languages; shilling and pound
21 Unvigesimal Base21 encoding
22 Duovigesimal Base22 encoding
23 Trivigesimal Kalam language, Kobon language[citation needed]
24 Tetravigesimal 24-hour clock timekeeping; Kaugel language
25 Pentavigesimal Base25 encoding
26 Hexavigesimal Base26 encoding; sometimes used for encryption or ciphering,[15] using all letters
27 Heptavigesimal Septemvigesimal Telefol and Oksapmin languages. Mapping the nonzero digits to the alphabet and zero to the space is occasionally used to provide checksums for alphabetic data such as personal names,[16] to provide a concise encoding of alphabetic strings,[17] or as the basis for a form of gematria.[18] Compact notation for ternary.
28 Octovigesimal Base28 encoding; months timekeeping
29 Enneavigesimal Base29
30 Trigesimal The Natural Area Code, this is the smallest base such that all of 1/2 to 1/6 terminate, a number n is a regular number if and only if 1/n terminates in base 30
31 Untrigesimal Base31
32 Duotrigesimal Base32 encoding and the Ngiti language
33 Tritrigesimal Use of letters (except I, O, Q) with digits in vehicle registration plates of Hong Kong
34 Tetratrigesimal Using all numbers and all letters except I and O
35 Pentatrigesimal Using all numbers and all letters except O
36 Hexatrigesimal Base36 encoding; use of letters with digits
37 Heptatrigesimal Base37; using all numbers and all letters of the Spanish alphabet
38 Octotrigesimal Base38 encoding; use all duodecimal digits and all letters
40 Quadragesimal DEC RADIX 50/MOD40 encoding used to compactly represent file names and other symbols on Digital Equipment Corporation computers. The character set is a subset of ASCII consisting of space, upper case letters, the punctuation marks "$", ".", and "%", and the numerals.
42 Duoquadragesimal Base42 encoding
45 Pentaquadragesimal Base45 encoding
48 Octoquadragesimal Base48 encoding
49 Enneaquadragesimal Compact notation for septenary
50 Quinquagesimal Base50 encoding; SQUOZE encoding used to compactly represent file names and other symbols on some IBM computers. Encoding using all Gurmukhi characters plus the Gurmukhi digits.
52 Duoquinquagesimal Base52 encoding, a variant of Base62 without vowels[19] or a variant of Base26 using all lower and upper case letters.
54 Tetraquinquagesimal Base54 encoding
56 Hexaquinquagesimal Base56 encoding, a variant of Base58[20]
57 Heptaquinquagesimal Base57 encoding, a variant of Base62 excluding I, O, l, U, and u[21] or I, 1, l, 0, and O [22]
58 Octoquinquagesimal Base58 encoding, a variant of Base62 excluding 0 (zero), I (capital i), O (capital o) and l (lower case L).[23]
60 Sexagesimal Babylonian numerals; NewBase60 encoding, similar to Base62, excluding I, O, and l, but including _(underscore);[24] degrees-minutes-seconds and hours-minutes-seconds measurement systems; Ekari and Sumerian languages
62 Duosexagesimal Base62 encoding, using 0–9, A–Z, and a–z
64 Tetrasexagesimal Base64 encoding; I Ching in China.
This system is conveniently coded into ASCII by using the 26 letters of the Latin alphabet in both upper and lower case (52 total) plus 10 numerals (62 total) and then adding two special characters (for example, YouTube video codes use the hyphen and underscore characters, - and _ to total 64).[citation needed]
72 Duoseptuagesimal Base72 encoding
80 Octogesimal Base80 encoding
81 Unoctogesimal Base81 encoding, using as 81=34 is related to ternary
85 Pentoctogesimal Ascii85 encoding. This is the minimum number of characters needed to encode a 32 bit number into 5 printable characters in a process similar to MIME-64 encoding, since 855 is only slightly bigger than 232. Such method is 6.7% more efficient than MIME-64 which encodes a 24 bit number into 4 printable characters.
90 Nonagesimal Related to Goormaghtigh conjecture for the generalized repunit numbers.
91 Unnonagesimal Base91 encoding, using all ASCII except "-" (0x2D), "\" (0x5C), and "'" (0x27); one variant uses "\" (0x5C) in place of """ (0x22).
92 Duononagesimal Base92 encoding, using all of ASCII except for "`" (0x60) and """ (0x22) due to confusability.[25]
93 Trinonagesimal Base93 encoding, using all of ASCII printable characters except for "," (0x27) and "-" (0x3D) as well as the Space character. "," is reserved for delimiter and "-" is reserved for negation.[26]
94 Tetranonagesimal Base94 encoding, using all of ASCII printable characters.[27]
95 Pentanonagesimal Base95 encoding, a variant of Base94 with the addition of the Space character.[28]
96 Hexanonagesimal Base96 encoding, using all of ASCII printable characters as well as the two extra duodecimal digits
100 Centesimal As 100=102, these are two decimal digits
120 Centevigesimal Base120 encoding
121 Centeunvigesimal Related to base 11
125 Centepentavigesimal Related to base 5
128 Centeoctovigesimal Using as 128=27
144 Centetetraquadragesimal Two duodecimal digits
256 Duocentehexaquinquagesimal Base256 encoding, as 256=28
360 Trecentosexagesimal Degrees for angle
Base Name Usage
1 Unary (Bijective base-1) Tally marks
2 Bijective base-2
3 Bijective base-3
4 Bijective base-4
5 Bijective base-5
6 Bijective base-6
8 Bijective base-8
10 Bijective base-10
12 Bijective base-12
16 Bijective base-16
26 Bijective base-26 Spreadsheet column numeration. Also used by John Nash as part of his obsession with numerology and the uncovering of "hidden" messages.[29]
Base Name Usage
2 Balanced binary (Non-adjacent form)
3 Balanced ternary Ternary computers
4 Balanced quaternary
5 Balanced quinary
6 Balanced senary
7 Balanced septenary
8 Balanced octal
9 Balanced nonary
10 Balanced decimal John Colson
Augustin Cauchy
11 Balanced undecimal
12 Balanced duodecimal

The common names of the negative base numeral systems are formed using the prefix nega-, giving names such as:

Base Name Usage
−2 Negabinary
−3 Negaternary
−4 Negaquaternary
−5 Negaquinary
−6 Negasenary
−8 Negaoctal
−10 Negadecimal
−12 Negaduodecimal
−16 Negahexadecimal
Base Name Usage
2i Quater-imaginary base related to base −4 and base 16
Base related to base −2 and base 4
Base related to base 2
Base related to base 8
Base related to base 2
−1 ± i Twindragon base Twindragon fractal shape, related to base −4 and base 16
1 ± i Nega-Twindragon base related to base −4 and base 16
Base Name Usage
Base a rational non-integer base
Base related to duodecimal
Base related to decimal
Base related to base 2
Base related to base 3
Base
Base
Base using in music scale
Base
Base a negative rational non-integer base
Base a negative non-integer base, related to base 2
Base related to decimal
Base related to duodecimal
φ Golden ratio base Early Beta encoder[30]
ρ Plastic number base
ψ Supergolden ratio base
Silver ratio base
e Base Lowest radix economy
π Base
eπ Base
Base
Base Name Usage
2 Dyadic number
3 Triadic number
4 Tetradic number the same as dyadic number
5 Pentadic number
6 Hexadic number not a field
7 Heptadic number
8 Octadic number the same as dyadic number
9 Enneadic number the same as triadic number
10 Decadic number not a field
11 Hendecadic number
12 Dodecadic number not a field
  • Factorial number system {1, 2, 3, 4, 5, 6, ...}
  • Even double factorial number system {2, 4, 6, 8, 10, 12, ...}
  • Odd double factorial number system {1, 3, 5, 7, 9, 11, ...}
  • Primorial number system {2, 3, 5, 7, 11, 13, ...}
  • Fibonorial number system {1, 2, 3, 5, 8, 13, ...}
  • {60, 60, 24, 7} in timekeeping
  • {60, 60, 24, 30 (or 31 or 28 or 29), 12} in timekeeping
  • (12, 20) traditional English monetary system (£sd)
  • (20, 18, 13) Maya timekeeping

Other

Non-positional notation

All known numeral systems developed before the Babylonian numerals are non-positional,[31] as are many developed later, such as the Roman numerals. The French Cistercian monks created their own numeral system.

See also

References

  1. ^ Everson, Michael (2007-07-25). "Proposal to add two numbers for the Phoenician script" (PDF). UTC Document Register. L2/07-206 (WG2 N3284): Unicode Consortium.{{cite web}}: CS1 maint: location (link)
  2. ^ Cajori, Florian (Sep 1928). A History Of Mathematical Notations Vol I. The Open Court Company. p. 18. Retrieved 5 June 2017.
  3. ^ Chrisomalis, Stephen (2010-01-18). Numerical Notation: A Comparative History. ISBN 9781139485333.
  4. ^ Chrisomalis, Stephen (2010). Numerical Notation: A Comparative History. Cambridge University Press. p. 200. ISBN 9780521878180.
  5. ^ "Burmese/Myanmar script and pronunciation". Omniglot. Retrieved 5 June 2017.
  6. ^ For the mixed roots of the word "hexadecimal", see Epp, Susanna (2010), Discrete Mathematics with Applications (4th ed.), Cengage Learning, p. 91, ISBN 9781133168669.
  7. ^ http://www.numberbases.com/terms/BaseNames.pdf
  8. ^ The History of Arithmetic, Louis Charles Karpinski, 200pp, Rand McNally & Company, 1925.
  9. ^ Histoire universelle des chiffres, Georges Ifrah, Robert Laffont, 1994.
  10. ^ The Universal History of Numbers: From prehistory to the invention of the computer, Georges Ifrah, ISBN 0-471-39340-1, John Wiley and Sons Inc., New York, 2000. Translated from the French by David Bellos, E.F. Harding, Sophie Wood and Ian Monk
  11. ^ Overmann, Karenleigh A (2020). "The curious idea that Māori once counted by elevens, and the insights it still holds for cross-cultural numerical research". Journal of the Polynesian Society. 129 (1): 59–84. doi:10.15286/jps.129.1.59-84. Retrieved 24 July 2020.
  12. ^ Thomas, N.W (1920). "Duodecimal base of numeration". Man. 20 (1): 56–60. doi:10.2307/2840036. JSTOR 2840036. Retrieved 25 July 2020.
  13. ^ HP 9100A/B programming, HP Museum
  14. ^ Free Patents Online
  15. ^ http://www.dcode.fr/base-26-cipher
  16. ^ Grannis, Shaun J.; Overhage, J. Marc; McDonald, Clement J. (2002), "Analysis of identifier performance using a deterministic linkage algorithm", Proceedings. AMIA Symposium: 305–309, PMC 2244404, PMID 12463836.
  17. ^ Stephens, Kenneth Rod (1996), Visual Basic Algorithms: A Developer's Sourcebook of Ready-to-run Code, Wiley, p. 215, ISBN 9780471134183.
  18. ^ Sallows, Lee (1993), "Base 27: the key to a new gematria", Word Ways, 26 (2): 67–77.
  19. ^ "Base52". Retrieved 2016-01-03.
  20. ^ "Base56". Retrieved 2016-01-03.
  21. ^ "Base57". Retrieved 2016-01-03.
  22. ^ "Base57". Retrieved 2019-01-22.
  23. ^ "The Base58 Encoding Scheme". Internet Engineering Task Force. November 27, 2019. Archived from the original on August 12, 2020. Retrieved August 12, 2020. Thanks to Satoshi Nakamoto for inventing the Base58 encoding format
  24. ^ "NewBase60". Retrieved 2016-01-03.
  25. ^ "Base92". Retrieved 2016-01-03.
  26. ^ "Base93". Retrieved 2017-02-13.
  27. ^ "Base94". Retrieved 2016-01-03.
  28. ^ "base95 Numeric System". Retrieved 2016-01-03.
  29. ^ Nasar, Sylvia (2001). A Beautiful Mind. Simon and Schuster. pp. 333–6. ISBN 0-7432-2457-4.
  30. ^ Ward, Rachel (2008), "On Robustness Properties of Beta Encoders and Golden Ratio Encoders", IEEE Transactions on Information Theory, 54 (9): 4324–4334, arXiv:0806.1083, Bibcode:2008arXiv0806.1083W, doi:10.1109/TIT.2008.928235, S2CID 12926540
  31. ^ Chrisomalis calls the Babylonian system "the first positional system ever" in Chrisomalis, Stephen (2010), Numerical Notation: A Comparative History, Cambridge University Press, p. 254, ISBN 9781139485333.