Calendar for any leap year starting on Thursday, presented as common in many English-speaking areas
January
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
February
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
March
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
April
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
May
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
June
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
July
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
August
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
September
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
October
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
November
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
December
Su
Mo
Tu
We
Th
Fr
Sa
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
ISO 8601-conformant calendar with week numbers for any leap year starting on Thursday (dominical letter DC)
January
Wk
Mo
Tu
We
Th
Fr
Sa
Su
01
01
02
03
04
02
05
06
07
08
09
10
11
03
12
13
14
15
16
17
18
04
19
20
21
22
23
24
25
05
26
27
28
29
30
31
February
Wk
Mo
Tu
We
Th
Fr
Sa
Su
05
01
06
02
03
04
05
06
07
08
07
09
10
11
12
13
14
15
08
16
17
18
19
20
21
22
09
23
24
25
26
27
28
29
March
Wk
Mo
Tu
We
Th
Fr
Sa
Su
10
01
02
03
04
05
06
07
11
08
09
10
11
12
13
14
12
15
16
17
18
19
20
21
13
22
23
24
25
26
27
28
14
29
30
31
April
Wk
Mo
Tu
We
Th
Fr
Sa
Su
14
01
02
03
04
15
05
06
07
08
09
10
11
16
12
13
14
15
16
17
18
17
19
20
21
22
23
24
25
18
26
27
28
29
30
May
Wk
Mo
Tu
We
Th
Fr
Sa
Su
18
01
02
19
03
04
05
06
07
08
09
20
10
11
12
13
14
15
16
21
17
18
19
20
21
22
23
22
24
25
26
27
28
29
30
23
31
June
Wk
Mo
Tu
We
Th
Fr
Sa
Su
23
01
02
03
04
05
06
24
07
08
09
10
11
12
13
25
14
15
16
17
18
19
20
26
21
22
23
24
25
26
27
27
28
29
30
July
Wk
Mo
Tu
We
Th
Fr
Sa
Su
27
01
02
03
04
28
05
06
07
08
09
10
11
29
12
13
14
15
16
17
18
30
19
20
21
22
23
24
25
31
26
27
28
29
30
31
August
Wk
Mo
Tu
We
Th
Fr
Sa
Su
31
01
32
02
03
04
05
06
07
08
33
09
10
11
12
13
14
15
34
16
17
18
19
20
21
22
35
23
24
25
26
27
28
29
36
30
31
September
Wk
Mo
Tu
We
Th
Fr
Sa
Su
36
01
02
03
04
05
37
06
07
08
09
10
11
12
38
13
14
15
16
17
18
19
39
20
21
22
23
24
25
26
40
27
28
29
30
October
Wk
Mo
Tu
We
Th
Fr
Sa
Su
40
01
02
03
41
04
05
06
07
08
09
10
42
11
12
13
14
15
16
17
43
18
19
20
21
22
23
24
44
25
26
27
28
29
30
31
November
Wk
Mo
Tu
We
Th
Fr
Sa
Su
45
01
02
03
04
05
06
07
46
08
09
10
11
12
13
14
47
15
16
17
18
19
20
21
48
22
23
24
25
26
27
28
49
29
30
December
Wk
Mo
Tu
We
Th
Fr
Sa
Su
49
01
02
03
04
05
50
06
07
08
09
10
11
12
51
13
14
15
16
17
18
19
52
20
21
22
23
24
25
26
53
27
28
29
30
31
Applicable years
Gregorian Calendar
Leap years that begin on Thursday, along with those that start on Monday or Saturday, occur least frequently: 13 out of 97 (≈ 13.402%) total leap years in a 400-year cycle of the Gregorian calendar. Their overall occurrence is 3.25% (13 out of 400).
For this kind of year, the corresponding ISO year has 53 weeks, and the ISO week 10 (which begins March 1) and all subsequent ISO weeks occur earlier than in all other years, and exactly one week earlier than common years starting on Friday, for example, June 20 falls on week 24 in common years starting on Friday, but on week 25 in leap years starting on Thursday, despite falling on Sunday in both types of year. That means that moveable holidays may occur one calendar week later than otherwise possible, e.g. Gregorian Easter Sunday in week 17 in years when it falls on April 25 and which are also leap years, falling on week 16 in common years.[2]
Like all leap year types, the one starting with 1 January on a Thursday occurs exactly once in a 28-year cycle in the Julian calendar, i.e. in 3.57% of years. As the Julian calendar repeats after 28 years that means it will also repeat after 700 years, i.e. 25 cycles. The year's position in the cycle is given by the formula ((year + 8) mod 28) + 1).