Orders of magnitude (energy)

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Ionmars10 (talk | contribs) at 18:25, 21 June 2020 (Reverted 1 edit by 2409:4055:285:B85E:BC07:9028:A613:CBBA (talk) (TW)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

This list compares various energies in joules (J), organized by order of magnitude.

Below 1 J

List of orders of magnitude for energy
Factor (joules) SI prefix Value Item
10−34   6.626×10−34 J Photon energy of a photon with a frequency of 1 hertz.[1]
10−33   2×10−33 J Average kinetic energy of translational motion of a molecule at the lowest temperature reached, 100 picokelvins as of 1999[2]
10−28   6.6×10−28 J Energy of a typical AM radio photon (1 MHz) (4×10−9 eV)[3]
10−24 Yocto- (yJ) 1.6×10−24 J Energy of a typical microwave oven photon (2.45 GHz) (1×10−5 eV)[4][5]
10−23   2×10−23 J Average kinetic energy of translational motion of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin[6][7]
10−22   2–3000×10−22 J Energy of infrared light photons[8]
10−21 Zepto- (zJ) 1.7×10−21 J 1 kJ/mol, converted to energy per molecule[9]
2.1×10−21 J Thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV)[10]
2.856×10−21 J By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information
3–7×10−21 J Energy of a van der Waals interaction between atoms (0.02–0.04 eV)[11][12]
4.1×10−21 J The "kT" constant at 25 °C, a common rough approximation for the total thermal energy of each molecule in a system (0.03 eV)[13]
7–22×10−21 J Energy of a hydrogen bond (0.04 to 0.13 eV)[11][14]
10−20   4.5×10−20 J Upper bound of the mass-energy of a neutrino in particle physics (0.28 eV)[15][16]
10−19   1.6×10−19 J ≈1 electronvolt (eV)[17]
3–5×10−19 J Energy range of photons in visible light[18][19]
3–14×10−19 J Energy of a covalent bond (2–9 eV)[11][20]
5–200×10−19 J Energy of ultraviolet light photons[8]
10−18 Atto- (aJ)    
10−17   2–2000×10−17 J Energy range of X-ray photons[8]
10−16      
10−15 Femto- (fJ) 3 × 10−15 J Average kinetic energy of one human red blood cell.[21][22][23]
10−14   1×10−14 J Sound energy (vibration) transmitted to the eardrums by listening to a whisper for one second.[24][25][26]
> 2×10−14 J Energy of gamma ray photons[8]
2.7×10−14 J Upper bound of the mass-energy of a muon neutrino[27][28]
8.2×10−14 J Rest mass-energy of an electron[29]
10−13   1.6×10−13 J 1 megaelectronvolt (MeV)[30]
10−12 Pico- (pJ) 2.3×10−12 J Kinetic energy of neutrons produced by D-T fusion, used to trigger fission (14.1 MeV)[31][32]
10−11   3.4×10−11 J Average total energy released in the nuclear fission of one uranium-235 atom (215 MeV)[33][34]
10−10   1.5030×10−10 J Rest mass-energy of a proton[35]
1.505×10−10 J Rest mass-energy of a neutron[36]
1.6×10−10 J 1 gigaelectronvolt (GeV)[37]
3×10−10 J Rest mass-energy of a deuteron[38]
6×10−10 J Rest mass-energy of an alpha particle[39]
7×10−10 J Energy required to raise a grain of sand by 0.1mm (the thickness of a piece of paper).[40]
10−9 Nano- (nJ) 1.6×10−9 J 10 GeV[41]
8×10−9 J Initial operating energy per beam of the CERN Large Electron Positron Collider in 1989 (50 GeV)[42][43]
10−8   1.3×10−8 J Mass-energy of a W boson (80.4 GeV)[44][45]
1.5×10−8 J Mass-energy of a Z boson (91.2 GeV)[46][47]
1.6×10−8 J 100 GeV[48]
2×10−8 J Mass-energy of the Higgs Boson (125.1 GeV)[49]
6.4×10−8 J Operating energy per proton of the CERN Super Proton Synchrotron accelerator in 1976[50][51]
10−7   1×10−7 J ≡ 1 erg[52]
1.6×10−7 J 1 TeV (teraelectronvolt),[53] about the kinetic energy of a flying mosquito[54]
10−6 Micro- (µJ) 1.04×10−6 J Energy per proton in the CERN Large Hadron Collider in 2015 (6.5 TeV)[55][56]
10−5      
10−4      
10−3 Milli- (mJ)    
10−2 Centi- (cJ)    
10−1 Deci- (dJ) 1.1×10−1 J Energy of an American half-dollar falling 1 metre[57][58]

1 to 105 J

100 J 1 J ≡ 1 N·m (newtonmetre)
1 J ≡ 1 W·s (watt-second)
1 J Kinetic energy produced as an extra small apple (~100 grams[59]) falls 1 meter against Earth's gravity[60]
1 J Energy required to heat 1 gram of dry, cool air by 1 degree Celsius[61]
1.4 J ≈ 1 ft·lbf (foot-pound force)[52]
4.184 J ≡ 1 thermochemical calorie (small calorie)[52]
4.1868 J ≡ 1 International (Steam) Table calorie[62]
8 J Greisen-Zatsepin-Kuzmin theoretical upper limit for the energy of a cosmic ray coming from a distant source[63][64]
101 Deca- (daJ) 1×101 J Flash energy of a typical pocket camera electronic flash capacitor (100–400 µF @ 330 V)[65][66]
5×101 J The most energetic cosmic ray ever detected[67] was most likely a single proton traveling only slightly slower than the speed of light.[68]
102 Hecto- (hJ) 3×102 J Energy of a lethal dose of X-rays[69]
3×102 J Kinetic energy of an average person jumping as high as they can[70][71][72]
3.3×102 J Energy to melt 1 g of ice[73]
> 3.6×102 J Kinetic energy of 800 gram[74] standard men's javelin thrown at > 30 m/s[75] by elite javelin throwers[76]
5–20×102 J Energy output of a typical photography studio strobe light in a single flash[77]
6×102 J Kinetic energy of 2 kg[78] standard men's discus thrown at 24.4 m/s[citation needed] by the world record holder Jürgen Schult[79]
6×102 J Use of a 10-watt flashlight for 1 minute
7.5×102 J A power of 1 horsepower applied for 1 second[52]
7.8×102 J Kinetic energy of 7.26 kg[80] standard men's shot thrown at 14.7 m/s[citation needed] by the world record holder Randy Barnes[81]
8.01×102 J Amount of work needed to lift a man with an average weight (81.7 kg) one meter above Earth (or any planet with Earth gravity)
103 Kilo- (kJ) 1.1×103 J ≈ 1 British thermal unit (BTU), depending on the temperature[52]
1.4×103 J Total solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit per second (solar constant)[82]
1.8×103 J Kinetic energy of M16 rifle bullet (5.56×45mm NATO M855, 4.1 g fired at 930 m/s)[83]
2.3×103 J Energy to vaporize 1 g of water into steam[84]
3×103 J Lorentz force can crusher pinch[85]
3.4×103 J Kinetic energy of world-record men's hammer throw (7.26 kg[86] thrown at 30.7 m/s[87] in 1986)[88]
3.6×103 J ≡ 1 W·h (watt-hour)[52]
4.2×103 J Energy released by explosion of 1 gram of TNT[52][89]
4.2×103 J ≈ 1 food Calorie (large calorie)
~7×103 J Muzzle energy of an elephant gun, e.g. firing a .458 Winchester Magnum[90]
9×103 J Energy in an alkaline AA battery[91]
104   1.7×104 J Energy released by the metabolism of 1 gram of carbohydrates[92] or protein[93]
3.8×104 J Energy released by the metabolism of 1 gram of fat[94]
4–5×104 J Energy released by the combustion of 1 gram of gasoline[95]
5×104 J Kinetic energy of 1 gram of matter moving at 10 km/s[96]
105   3×105 – 15×105 J Kinetic energy of an automobile at highway speeds (1 to 5 tons[97] at 89 km/h or 55 mph)[98]
5×105 J Kinetic energy of 1 gram of a meteor hitting Earth[99]

106 to 1011 J

106 Mega- (MJ) 1×106 J Kinetic energy of a 2 tonne[97] vehicle at 32 metres per second (115 km/h or 72 mph)[100]
1.2×106 J Approximate food energy of a snack such as a Snickers bar (280 food calories)[101]
3.6×106 J = 1 kWh (kilowatt-hour) (used for electricity)[52]
4.2×106 J Energy released by explosion of 1 kilogram of TNT[52][89]
8.4×106 J Recommended food energy intake per day for a moderately active woman (2000 food calories)[102][103]
107   1×107 J Kinetic energy of the armor-piercing round fired by the assault guns of the ISU-152 tank[104][citation needed]
1.1×107 J Recommended food energy intake per day for a moderately active man (2600 food calories)[102][105]
3.7×107 J $1 of electricity at a cost of $0.10/kWh (the US average retail cost in 2009)[106][107][108]
4×107 J Energy from the combustion of 1 cubic meter of natural gas[109]
4.2×107 J Caloric energy consumed by Olympian Michael Phelps on a daily basis during Olympic training[110]
6.3×107 J Theoretical minimum energy required to accelerate 1 kg of matter to escape velocity from Earth's surface (ignoring atmosphere)[111]
108   1×108 J Kinetic energy of a 55 tonne aircraft at typical landing speed (59 m/s or 115 knots)[citation needed]
1.1×108 J ≈ 1 therm, depending on the temperature[52]
1.1×108 J ≈ 1 Tour de France, or ~90 hours[112] ridden at 5 W/kg[113] by a 65 kg rider[114]
7.3×108 J ≈ Energy from burning 16 kilograms of oil (using 135 kg per barrel of light crude)[citation needed]
109 Giga- (GJ) 1–10×109 J Energy in an average lightning bolt[115] (thunder)
1.1×109 J Magnetic stored energy in the world's largest toroidal superconducting magnet for the ATLAS experiment at CERN, Geneva[116]
1.2×109 J Inflight 100-ton Boeing 757-200 at 300 knots (154 m/s)
1.4×109 J Theoretical minimum amount of energy required to melt a tonne of steel (380 kWh)[117][118]
2×109 J Energy of an ordinary 61 liter gasoline tank of a car.[95][119][120]
2×109 J The unit of energy in Planck units[121]
3×109 J Inflight 125-ton Boeing 767-200 flying at 373 knots (192 m/s)
3.3×109 J Approximate average amount of energy expended by a human heart muscle over an 80-year lifetime[122][123]
4.2×109 J Energy released by explosion of 1 ton of TNT.
4.5×109 J Average annual energy usage of a standard refrigerator[124][125]
6.1×109 J ≈ 1 bboe (barrel of oil equivalent)[126]
1010   1.9×1010 J Kinetic energy of an Airbus A380 at cruising speed (560 tonnes at 511 knots or 263 m/s)
4.2×1010 J ≈ 1 toe (ton of oil equivalent)[126]
4.6×1010 J Yield energy of a Massive Ordnance Air Blast bomb, the second most powerful non-nuclear weapon ever designed[127][128]
7.3×1010 J Energy consumed by the average U.S. automobile in the year 2000[129][130][131]
8.6×1010 J ≈ 1 MW·d (megawatt-day), used in the context of power plants[132]
8.8×1010 J Total energy released in the nuclear fission of one gram of uranium-235[33][34][133]
1011   2.4×1011 J Approximate food energy consumed by an average human in an 80-year lifetime.[134]

1012 to 1017 J

1012 Tera- (TJ) 3.4×1012 J Maximum fuel energy of an Airbus A330-300 (97,530 liters[135] of Jet A-1[136])[137]
3.6×1012 J 1 GW·h (gigawatt-hour)[138]
4×1012 J Electricity generated by one 20-kg CANDU fuel bundle assuming ~29%[139] thermal efficiency of reactor[140][141]
4.2×1012 J Energy released by explosion of 1 kiloton of TNT[52][142]
6.4×1012 J Energy contained in jet fuel in a Boeing 747-100B aircraft at max fuel capacity (183,380 liters[143] of Jet A-1[136])[144]
1013   1.1×1013 J Energy of the maximum fuel an Airbus A380 can carry (320,000 liters[145] of Jet A-1[136])[146]
1.2×1013 J Orbital kinetic energy of the International Space Station (417 tonnes[147] at 7.7 km/s[148])[149]
6.3×1013 J Yield of the Little Boy atomic bomb dropped on Hiroshima in World War II (15 kilotons)[150][151]
9×1013 J Theoretical total mass-energy of 1 gram of matter[152]
1014   1.8×1014 J Energy released by annihilation of 1 gram of antimatter and matter
3.75×1014 J Total energy released by the Chelyabinsk meteor.[153]
6×1014 J Energy released by an average hurricane in 1 second[154]
1015 Peta- (PJ) > 1015 J Energy released by a severe thunderstorm[155]
1×1015 J Yearly electricity consumption in Greenland as of 2008[156][157]
4.2×1015 J Energy released by explosion of 1 megaton of TNT[52][158]
1016   1×1016 J Estimated impact energy released in forming Meteor Crater[citation needed]
1.1×1016 J Yearly electricity consumption in Mongolia as of 2010[156][159]
9×1016 J Mass-energy in 1 kilogram of antimatter (or matter)[160]
1017   1×1017 J Energy released on the Earth's surface by the magnitude 9.1–9.3 2004 Indian Ocean earthquake[161]
1.7×1017 J Total energy from the Sun that strikes the face of the Earth each second[162]
2.1×1017 J Yield of the Tsar Bomba, the largest nuclear weapon ever tested (50 megatons)[163][164]
4.2×1017 J Yearly electricity consumption of Norway as of 2008[156][165]
4.5×1017 J Approximate energy needed to accelerate one ton to one-tenth of the speed of light
8×1017 J Estimated energy released by the eruption of the Indonesian volcano, Krakatoa, in 1883[166][167]

1018 to 1023 J

1018 Exa- (EJ) 1.4×1018 J Yearly electricity consumption of South Korea as of 2009[156][168]
1019   1.4×1019 J Yearly electricity consumption in the U.S. as of 2009[156][169]
1.4×1019J Yearly electricity production in the U.S. as of 2009[170][171]
5×1019 J Energy released in 1 day by an average hurricane in producing rain (400 times greater than the wind energy)[154]
6.4×1019 J Yearly electricity consumption of the world as of 2008[172][173]
6.8×1019 J Yearly electricity generation of the world as of 2008[172][174]
1020   5×1020 J Total world annual energy consumption in 2010[175][176]
8×1020 J Estimated global uranium resources for generating electricity 2005[177][178][179][180]
1021 Zetta- (ZJ) 6.9×1021 J Estimated energy contained in the world's natural gas reserves as of 2010[175][181]
7.9×1021 J Estimated energy contained in the world's petroleum reserves as of 2010[175][182]
1022   1.5×1022J Total energy from the Sun that strikes the face of the Earth each day[162][183]
2.4×1022 J Estimated energy contained in the world's coal reserves as of 2010[175][184]
2.9×1022 J Identified global uranium-238 resources using fast reactor technology[177]
3.9×1022 J Estimated energy contained in the world's fossil fuel reserves as of 2010[175][185]
4×1022 J Estimated total energy released by the magnitude 9.1–9.3 2004 Indian Ocean earthquake[186]
1023  
2.2×1023 J Total global uranium-238 resources using fast reactor technology[177]
5×1023 J Approximate energy released in the formation of the Chicxulub Crater in the Yucatán Peninsula[187]

Over 1023 J

1024 Yotta- (YJ) 5.5×1024 J Total energy from the Sun that strikes the face of the Earth each year[162][188]
1025   6×1025 J Upper limit of energy released by a solar flare[189]
1026  
3.8×1026 J Total energy output of the Sun each second[190]
1027   1×1027 J Estimate of the energy released by the impact that created the Caloris basin on Mercury[191]
1028   3.8×1028 J Kinetic energy of the Moon in its orbit around the Earth (counting only its velocity relative to the Earth)[192][193]
1029   2.1×1029 J Rotational energy of the Earth[194][195][196]
1030   1.8×1030 J Gravitational binding energy of Mercury
1031   3.3×1031 J Total energy output of the Sun each day[190][197]
1032   2×1032 J Gravitational binding energy of the Earth[198]
1033   2.7×1033 J Earth's kinetic energy in its orbit[199]
1034   1.2×1034 J Total energy output of the Sun each year[190][200]
1039   6.6×1039 J Theoretical total mass-energy of the Moon
1041   2.276×1041 J Gravitational binding energy of the Sun[201]
5.4×1041 J Theoretical total mass-energy of the Earth[202][203]
1043   5×1043 J Total energy of all gamma rays in a typical gamma-ray burst[204][205]
1044   1–2×1044 J Estimated energy released in a supernova,[206] sometimes referred to as a foe
1.2×1044 J Approximate lifetime energy output of the Sun.
1045   (1.1±0.2)×1045 J Brightest observed hypernova ASASSN-15lh[207]
few times×1045 J Beaming-corrected 'True' total energy (Energy in gamma rays+relativistic kinetic energy) of hyper-energetic gamma-ray burst[208][209][210][211][212]
1046   1×1046 J Estimated energy released in a hypernova[213]
1047   1.8×1047 J Theoretical total mass-energy of the Sun[214][215]
5.4×1047 J Mass-energy emitted as gravitational waves during the merger of two black holes, originally about 30 Solar masses each, as observed by LIGO (GW150914)[216]
8.6×1047 J Mass-energy emitted as gravitational waves during the largest black hole merger yet observed (GW170729), originally about 42 solar masses each.
8.8×1047 J GRB 080916C – the most powerful Gamma-Ray Burst (GRB) ever recorded – total 'apparent'/isotropic (not corrected for beaming) energy output estimated at 8.8 × 1047 joules (8.8 × 1054 erg), or 4.9 times the sun's mass turned to energy.[217]
1053   6×1053 J Total mechanical energy or enthalpy in the powerful AGN outburst in the RBS 797[218]
1054   3×1054 J Total mechanical energy or enthalpy in the powerful AGN outburst in the Hercules A (3C 348)[219]
1055   1055 J Total mechanical energy or enthalpy in the powerful AGN outburst in the MS 0735.6+7421
1058   4×1058 J Visible mass-energy in our galaxy, the Milky Way[220][221]
1059   1×1059 J Total mass-energy of our galaxy, the Milky Way, including dark matter and dark energy[222][223]
1062   1–2×1062 J Total mass-energy of the Virgo Supercluster including dark matter, the Supercluster which contains the Milky Way[224]
1069 4×1069 J Estimated total mass-energy of the observable universe[225]

SI multiples

SI multiples of joule (J)
Submultiples Multiples
Value SI symbol Name Value SI symbol Name
10−1 J dJ decijoule 101 J daJ decajoule
10−2 J cJ centijoule 102 J hJ hectojoule
10−3 J mJ millijoule 103 J kJ kilojoule
10−6 J μJ microjoule 106 J MJ megajoule
10−9 J nJ nanojoule 109 J GJ gigajoule
10−12 J pJ picojoule 1012 J TJ terajoule
10−15 J fJ femtojoule 1015 J PJ petajoule
10−18 J aJ attojoule 1018 J EJ exajoule
10−21 J zJ zeptojoule 1021 J ZJ zettajoule
10−24 J yJ yoctojoule 1024 J YJ yottajoule
10−27 J rJ rontojoule 1027 J RJ ronnajoule
10−30 J qJ quectojoule 1030 J QJ quettajoule

The joule is named after James Prescott Joule. As with every SI unit named for a person, its symbol starts with an upper case letter (J), but when written in full, it follows the rules for capitalisation of a common noun; i.e., joule becomes capitalised at the beginning of a sentence and in titles but is otherwise in lower case.

See also

Notes

  1. ^ "Planck's constant | physics | Britannica.com". britannica.com. Retrieved 26 December 2016.
  2. ^ Calculated: KEavg ≈ (3/2) × T × 1.38×10−23 = (3/2) × 1×10−10 × 1.38×10−23 ≈ 2.07×10−33 J
  3. ^ Calculated: Ephoton = hν = 6.626×10−34 J-s × 1×106 Hz = 6.6×10−28 J. In eV: 6.6×10−28 J / 1.6×10−19 J/eV = 4.1×10−9 eV.
  4. ^ "Frequency of a Microwave Oven". The Physics Factbook. Retrieved 15 November 2011.
  5. ^ Calculated: Ephoton = hν = 6.626×10−34 J-s × 2.45×108 Hz = 1.62×10−24 J. In eV: 1.62×10−24 J / 1.6×10−19 J/eV = 1.0×10−5 eV.
  6. ^ "Boomerang Nebula boasts the coolest spot in the Universe". JPL. Retrieved 13 November 2011.
  7. ^ Calculated: KEavg ≈ (3/2) × T × 1.38×10−23 = (3/2) × 1 × 1.38×10−23 ≈ 2.07×10−23 J
  8. ^ a b c d "Wavelength, Frequency, and Energy". Imagine the Universe. NASA. Retrieved 15 November 2011.
  9. ^ Calculated: 1×103 J / 6.022×1023 entities per mole = 1.7×10−21 J per entity
  10. ^ Calculated: 1.381×10−23 J/K × 298.15 K / 2 = 2.1×10−21 J
  11. ^ a b c "Bond Lengths and Energies". Chem 125 notes. UCLA. Archived from the original on 23 August 2011. Retrieved 13 November 2011.
  12. ^ Calculated: 2 to 4 kJ/mol = 2×103 J / 6.022×1023 molecules/mol = 3.3×10−21 J. In eV: 3.3×10−21 J / 1.6×10−19 J/eV = 0.02 eV. 4×103 J / 6.022×1023 molecules/mol = 6.7×10−21 J. In eV: 6.7×10−21 J / 1.6×10−19 J/eV = 0.04 eV.
  13. ^ Ansari, Anjum. "Basic Physical Scales Relevant to Cells and Molecules". Physics 450. Retrieved 13 November 2011.
  14. ^ Calculated: 4 to 13 kJ/mol. 4 kJ/mol = 4×103 J / 6.022×1023 molecules/mol = 6.7×10−21 J. In eV: 6.7×10−21 J / 1.6×10−19 eV/J = 0.042 eV. 13 kJ/mol = 13×103 J / 6.022×1023 molecules/mol = 2.2×10−20 J. In eV: 13×103 J / 6.022×1023 molecules/mol / 1.6×10−19 eV/J = 0.13 eV.
  15. ^ Thomas, S.; Abdalla, F.; Lahav, O. (2010). "Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey". Physical Review Letters. 105 (3): 031301. arXiv:0911.5291. Bibcode:2010PhRvL.105c1301T. doi:10.1103/PhysRevLett.105.031301. PMID 20867754.
  16. ^ Calculated: 0.28 eV × 1.6×10−19 J/eV = 4.5×10−20 J
  17. ^ "CODATA Value: electron volt". NIST. Retrieved 4 November 2011.
  18. ^ "BASIC LAB KNOWLEDGE AND SKILLS". Archived from the original on 15 May 2013. Retrieved 5 November 2011. Visible wavelengths are roughly from 390 nm to 780 nm
  19. ^ Calculated: E = hc/λ. E780 nm = 6.6×10−34 kg-m2/s × 3×108 m/s / (780×10−9 m) = 2.5×10−19 J. E_390 _nm = 6.6×10−34 kg-m2/s × 3×108 m/s / (390×10−9 m) = 5.1×10−19 J
  20. ^ Calculated: 50 kcal/mol × 4.184 J/calorie / 6.0×1022e23 molecules/mol = 3.47×10−19 J. (3.47×10−19 J / 1.60×10−19 eV/J = 2.2 eV.) and 200 kcal/mol × 4.184 J/calorie / 6.0×1022e23 molecules/mol = 1.389×10−18 J. (7.64×10−19 J / 1.60×10−19 eV/J = 8.68 eV.)
  21. ^ Phillips, Kevin; Jacques, Steven; McCarty, Owen (2012). "How much does a cell weigh?". Physical Review Letters. 109 (11): 118105. Bibcode:2012PhRvL.109k8105P. doi:10.1103/PhysRevLett.109.118105. PMC 3621783. PMID 23005682. Roughly 27 picograms
  22. ^ Bob Berman. "Our Bodies' Velocities, By the Numbers". Retrieved 19 August 2016. The [...] blood [...] flow[s] at an average speed of 3 to 4 mph
  23. ^ Calculated: 1/2 × 27×10−12 g × (3.5 miles per hour)2 = 3×10−15 J
  24. ^ "Physics of the Body" (PDF). Notre Dame. Retrieved 19 August 2016.. "The eardrum is a [...] membran[e] with an area of 65 mm2."
  25. ^ "Intensity and the Decibel Scale". Physics Classroom. Retrieved 19 August 2016.
  26. ^ Calculated: two eardrums ≈ 1 cm2. 1×10−6 W/m2 × 1×10−4 m2 × 1 s = 1×10−14 J
  27. ^ Thomas J Bowles (2000). P. Langacker (ed.). Neutrinos in physics and astrophysics: from 10–33 to 1028 cm: TASI 98 : Boulder, Colorado, USA, 1–26 June 1998. World Scientific. p. 354. ISBN 978-981-02-3887-2. Retrieved 11 November 2011. an upper limit ov m_v_u < 170 keV
  28. ^ Calculated: 170×103 eV × 1.6×10−19 J/eV = 2.7×10−14 J
  29. ^ "electron mass energy equivalent". NIST. Retrieved 4 November 2011.
  30. ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  31. ^ Muller, Richard A. (2002). "The Sun, Hydrogen Bombs, and the physics of fusion". Archived from the original on 2 April 2012. Retrieved 5 November 2011. The neutron comes out with high energy of 14.1 MeV
  32. ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  33. ^ a b "Energy From Uranium Fission". HyperPhysics. Retrieved 8 November 2011.
  34. ^ a b "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  35. ^ "proton mass energy equivalent". NIST. Retrieved 4 November 2011.
  36. ^ "neutron mass energy equivalent". NIST. Retrieved 4 November 2011.
  37. ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  38. ^ "deuteron mass energy equivalent". NIST. Retrieved 4 November 2011.
  39. ^ "alpha particle mass energy equivalent". NIST. Retrieved 4 November 2011.
  40. ^ Calculated: 7×10−4 g × 9.8 m/s2 × 1×10−4 m
  41. ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  42. ^ Myers, Stephen. "The LEP Collider". CERN. Retrieved 14 November 2011. the LEP machine energy is about 50 GeV per beam
  43. ^ Calculated: 50×109 eV × 1.6×10−19 J/eV = 8×10−9 J
  44. ^ "W". PDG Live. Particle Data Group. Archived from the original on 17 July 2012. Retrieved 4 November 2011.
  45. ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  46. ^ Amsler, C.; Doser, M.; Antonelli, M.; Asner, D.; Babu, K.; Baer, H.; Band, H.; Barnett, R.; Bergren, E.; Beringer, J.; Bernardi, G.; Bertl, W.; Bichsel, H.; Biebel, O.; Bloch, P.; Blucher, E.; Blusk, S.; Cahn, R. N.; Carena, M.; Caso, C.; Ceccucci, A.; Chakraborty, D.; Chen, M. -C.; Chivukula, R. S.; Cowan, G.; Dahl, O.; d'Ambrosio, G.; Damour, T.; De Gouvêa, A.; et al. (2008). "Review of Particle Physics⁎". Physics Letters B. 667 (1): 1–6. Bibcode:2008PhLB..667....1A. doi:10.1016/j.physletb.2008.07.018. Archived from the original on 12 July 2012.
  47. ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  48. ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  49. ^ ATLAS; CMS (26 March 2015). "Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments". Physical Review Letters. 114 (19): 191803. arXiv:1503.07589. Bibcode:2015PhRvL.114s1803A. doi:10.1103/PhysRevLett.114.191803. PMID 26024162.
  50. ^ Adams, John. "400 GeV Proton Synchrotron". Excertp from the CERN Annual Report 1976. CERN. Retrieved 14 November 2011. A circulating proton beam of 400 GeV energy was first achieved in the SPS on 17 June 1976
  51. ^ Calculated: 400×109 eV × 1.6×10−19 J/eV = 6.4×10−8 J
  52. ^ a b c d e f g h i j k l "Appendix B8—Factors for Units Listed Alphabetically". NIST Guide for the Use of the International System of Units (SI). NIST. 2 July 2009. 1.355818
  53. ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  54. ^ "Chocolate bar yardstick". Archived from the original on 26 February 2014. Retrieved 24 January 2014. A TeV is actually a very tiny amount of energy. A popular analogy is to a flying mosquito.
  55. ^ "First successful beam at record energy of 6.5 TeV". Retrieved 28 April 2015.
  56. ^ Calculated: 6.5×1012 eV per beam × 1.6×10−19 J/eV = 1.04×10−6 J
  57. ^ "Coin specifications". United States Mint. Retrieved 2 November 2011. 11.340 g
  58. ^ Calculated: m×g×h = 11.34×10−3 kg × 9.8 m/s2 × 1 m = 1.1×10−1 J
  59. ^ "Apples, raw, with skin (NDB No. 09003)". USDA Nutrient Database. USDA. Archived from the original on 3 March 2015. Retrieved 8 December 2011.
  60. ^ Calculated: m×g×h = 1×10−1 kg × 9.8 m/s2 × 1 m = 1 J
  61. ^ "Specific Heat of Dry Air". Engineering Toolbox. Retrieved 2 November 2011.
  62. ^ "Footnotes". NIST Guide to the SI. NIST. 2 July 2009.
  63. ^ "Physical Motivations". ULTRA Home Page (EUSO project). Dipartimento di Fisica di Torino. Retrieved 12 November 2011.
  64. ^ Calculated: 5×1019 eV × 1.6×10−19 J/ev = 8 J
  65. ^ "Notes on the Troubleshooting and Repair of Electronic Flash Units and Strobe Lights and Design Guidelines, Useful Circuits, and Schematics". Retrieved 8 December 2011. The energy storage capacitor for pocket cameras is typically 100 to 400 uF at 330 V (charged to 300 V) with a typical flash energy of 10 W-s.
  66. ^ "Teardown: Digital Camera Canon PowerShot |". electroelvis.com. 2 September 2012. Archived from the original on 1 August 2013. Retrieved 6 June 2013.
  67. ^ "The Fly's Eye (1981–1993)". HiRes. Retrieved 14 November 2011.
  68. ^ Bird, D. J. (March 1995). "Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation". Astrophysical Journal, Part 1. 441 (1): 144–150. arXiv:astro-ph/9410067. Bibcode:1995ApJ...441..144B. doi:10.1086/175344.
  69. ^ "Ionizing Radiation". General Chemistry Topic Review: Nuclear Chemistry. Bodner Research Web. Retrieved 5 November 2011.
  70. ^ "Vertical Jump Test". Topend Sports. Retrieved 12 December 2011. 41–50 cm (males) 31–40 cm (females)
  71. ^ "Mass of an Adult". The Physics Factbook. Retrieved 13 December 2011. 70 kg
  72. ^ Kinetic energy at start of jump = potential energy at high point of jump. Using a mass of 70 kg and a high point of 40 cm => energy = m×g×h = 70 kg × 9.8 m/s2 × 40×10−2 m = 274 J
  73. ^ "Latent Heat of Melting of some common Materials". Engineering Toolbox. Retrieved 10 June 2013. 334 kJ/kg
  74. ^ "Javelin Throw – Introduction". IAAF. Retrieved 12 December 2011.
  75. ^ Young, Michael. "Developing Event Specific Strength for the Javelin Throw" (PDF). Archived from the original (PDF) on 13 August 2011. Retrieved 13 December 2011. For elite athletes, the velocity of a javelin release has been measured in excess of 30m/s
  76. ^ Calculated: 1/2 × 0.8 kg × (30 m/s)2 = 360 J
  77. ^ Greenspun, Philip. "Studio Photography". Archived from the original on 29 September 2007. Retrieved 13 December 2011. Most serious studio photographers start with about 2000 watts-seconds
  78. ^ "Discus Throw – Introduction". IAAF. Retrieved 12 December 2011.
  79. ^ Calculated: 1/2 × 2 kg × (24.4 m/s)2 = 595.4 J
  80. ^ "Shot Put – Introduction". IAAF. Retrieved 12 December 2011.
  81. ^ Calculated: 1/2 × 7.26 kg × (14.7 m/s)2 = 784 J
  82. ^ Kopp, G.; Lean, J. L. (2011). "A new, lower value of total solar irradiance: Evidence and climate significance". Geophysical Research Letters. 38 (1): n/a. Bibcode:2011GeoRL..38.1706K. doi:10.1029/2010GL045777.
  83. ^ "Intermediate power ammunition for automatic assault rifles". Modern Firearms. World Guns. Archived from the original on 10 August 2013. Retrieved 12 December 2011.
  84. ^ "Fluids – Latent Heat of Evaporation". Engineering Toolbox. Retrieved 10 June 2013. 2257 kJ/kg
  85. ^ powerlabs.org – The PowerLabs Solid State Can Crusher!, 2002
  86. ^ "Hammer Throw – Introduction". IAAF. Retrieved 12 December 2011.
  87. ^ Otto, Ralf M. "HAMMER THROW WR PHOTOSEQUENCE – YURIY SEDYKH" (PDF). Retrieved 4 November 2011. The total release velocity is 30.7 m/sec
  88. ^ Calculated: 1/2 × 7.26 kg × (30.7 m/s)2 = 3420 J
  89. ^ a b 4.2×109 J/ton of TNT-equivalent × (1 ton/1×106 grams) = 4.2×103 J/gram of TNT-equivalent
  90. ^ ".458 Winchester Magnum" (PDF). Accurate Powder. Western Powders Inc. Archived from the original (PDF) on 28 September 2007. Retrieved 7 September 2010.
  91. ^ "Battery energy storage in various battery sizes". AllAboutBatteries.com. Archived from the original on 4 December 2011. Retrieved 15 December 2011.
  92. ^ "Energy Density of Carbohydrates". The Physics Factbook. Retrieved 5 November 2011.
  93. ^ "Energy Density of Protein". The Physics Factbook. Retrieved 5 November 2011.
  94. ^ "Energy Density of Fats". The Physics Factbook. Retrieved 5 November 2011.
  95. ^ a b "Energy Density of Gasoline". The Physics Factbook. Retrieved 5 November 2011.
  96. ^ Calculated: E = 1/2 m×v2 = 1/2 × (1×10−3 kg) × (1×104 m/s)2 = 5×104 J.
  97. ^ a b "List of Car Weights". LoveToKnow. Retrieved 13 December 2011. 3000 to 12000 pounds
  98. ^ Calculated: Using car weights of 1 ton to 5 tons. E = 1/2 m×v2 = 1/2 × (1×103 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 3.0×105 J. E = 1/2 × (5×103 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 15×105 J.
  99. ^ Muller, Richard A. "Kinetic Energy in a meteor". Old Physics 10 notes. Archived from the original on 2 April 2012. Retrieved 13 November 2011.
  100. ^ Calculated: KE = 1/2 × 2×103 kg × (32 m/s)2 = 1.0×106 J
  101. ^ "Candies, MARS SNACKFOOD US, SNICKERS Bar (NDB No. 19155)". USDA Nutrient Database. USDA. Archived from the original on 3 March 2015. Retrieved 14 November 2011.
  102. ^ a b "How to Balance the Food You Eat and Your Physical Activity and Prevent Obesity". Healthy Weight Basics. National Heart Lung and Blood Institutde. Retrieved 14 November 2011.
  103. ^ Calculated: 2000 food calories = 2.0×106 cal × 4.184 J/cal = 8.4×106 J
  104. ^ Calculated: 1/2 × m × v2 = 1/2 × 48.78 kg × (655 m/s)2 = 1.0×107 J.
  105. ^ Calculated: 2600 food calories = 2.6×106 cal × 4.184 J/cal = 1.1×107 J
  106. ^ "Table 3.3 Consumer Price Estimates for Energy by Source, 1970–2009". Annual Energy Review. US Energy Information Administration. 19 October 2011. Retrieved 17 December 2011. $28.90 per million BTU
  107. ^ Calculated J per dollar: 1 million BTU/$28.90 = 1×106 BTU / 28.90 dollars × 1.055×103 J/BTU = 3.65×107 J/dollar
  108. ^ Calculated cost per kWh: 1 kWh × 3.60×106 J/kWh / 3.65×107 J/dollar = 0.0986 dollar/kWh
  109. ^ "Energy in a Cubic Meter of Natural Gas". The Physics Factbook. Retrieved 15 December 2011.
  110. ^ "The Olympic Diet of Michael Phelps". WebMD. Retrieved 28 December 2011.
  111. ^ Cline, James E. D. "Energy to Space". Retrieved 13 November 2011. 6.27×107 Joules / Kg
  112. ^ "Tour de France Winners, Podium, Times". Bike Race Info. Retrieved 10 December 2011.
  113. ^ "Watts/kg". Flamme Rouge. Archived from the original on 2 January 2012. Retrieved 4 November 2011.
  114. ^ Calculated: 90 hr × 3600 seconds/hr × 5 W/kg × 65 kg = 1.1×108 J
  115. ^ Smith, Chris. "How do Thunderstorms Work?". The Naked Scientists. Retrieved 15 November 2011. It discharges about 1–10 billion joules of energy
  116. ^ "Powering up ATLAS's mega magnet". Spotlight on... CERN. Archived from the original on 30 November 2011. Retrieved 10 December 2011. magnetic energy of 1.1 Gigajoules
  117. ^ "ITP Metal Casting: Melting Efficiency Improvement" (PDF). ITP Metal Casting. U.S. Department of Energy. Retrieved 14 November 2011. 377 kWh/mt
  118. ^ Calculated: 380 kW-h × 3.6×106 J/kW-h = 1.37×109 J
  119. ^ Bell Fuels. "Lead-Free Gasoline Material Safety Data Sheet". NOAA. Archived from the original on 20 August 2002. Retrieved 6 July 2008.
  120. ^ thepartsbin.com – Volvo Fuel Tank: Compare at The Parts Bin[permanent dead link], 6 May 2012
  121. ^
  122. ^ "Power of a Human Heart". The Physics Factbook. Retrieved 10 December 2011. The mechanical power of the human heart is ~1.3 watts
  123. ^ Calculated: 1.3 J/s × 80 years × 3.16×107 s/year = 3.3×109 J
  124. ^ "U.S. Household Electricity Uses: A/C, Heating, Appliances". U.S. HOUSEHOLD ELECTRICITY REPORT. EIA. Retrieved 13 December 2011. For refrigerators in 2001, the average UEC was 1,239 kWh
  125. ^ Calculated: 1239 kWh × 3.6×106 J/kWh = 4.5×109 J
  126. ^ a b Energy Units, by Arthur Smith, 21 January 2005
  127. ^ "Top 10 Biggest Explosions". Listverse. 28 November 2011. Retrieved 10 December 2011. a yield of 11 tons of TNT
  128. ^ Calculated: 11 tons of TNT-equivalent × 4.184×109 J/ton of TNT-equivalent = 4.6×1010 J
  129. ^ "Emission Facts: Average Annual Emissions and Fuel Consumption for Passenger Cars and Light Trucks". EPA. Retrieved 12 December 2011. 581 gallons of gasoline
  130. ^ "200 Mile-Per-Gallon Cars?". Archived from the original on 19 December 2011. Retrieved 12 December 2011. a gallon of gas ... 125 million joules of energy
  131. ^ Calculated: 581 gallons × 125×106 J/gal = 7.26×1010 J
  132. ^ Calculated: 1×106 watts × 86400 seconds/day = 8.6×1010 J
  133. ^ Calculated: 3.44×10−10 J/U-235-fission × 1×10−3 kg / (235 amu per U-235-fission × 1.66×10−27 amu/kg) = 8.82×10−10 J
  134. ^ Calculated: 2000 kcal/day × 365 days/year × 80 years = 2.4×1011 J
  135. ^ "A330-300 Dimensions & key data". Airbus. Retrieved 12 December 2011. 97530 litres
  136. ^ a b c "Archived copy" (PDF). Archived from the original (PDF) on 8 June 2011. Retrieved 19 August 2011.{{cite web}}: CS1 maint: archived copy as title (link)
  137. ^ Calculated: 97530 liters × 0.804 kg/L × 43.15 MJ/kg = 3.38×1012 J
  138. ^ Calculated: 1×109 watts × 3600 seconds/hour
  139. ^ Weston, Kenneth. "Chapter 10. Nuclear Power Plants" (PDF). Energy Conversion. Retrieved 13 December 2011. The thermal efficiency of a CANDU plant is only about 29%
  140. ^ "CANDU and Heavy Water Moderated Reactors". Retrieved 12 December 2011. fuel burnup in a CANDU is only 6500 to 7500 MWd per metric ton uranium
  141. ^ Calculated: 7500×106 watt-days/tonne × (0.020 tonnes per bundle) × 86400 seconds/day = 1.3×1013 J of burnup energy. Electricity = burnup × ~29% efficiency = 3.8×1012 J
  142. ^ Calculated: 4.2×109 J/ton of TNT-equivalent × 1×103 tons/megaton = 4.2×1012 J/megaton of TNT-equivalent
  143. ^ "747 Classics Technical Specs". Boeing. Archived from the original on 10 December 2007. Retrieved 12 December 2011. 183,380 L
  144. ^ Calculated: 183380 liters × 0.804 kg/L × 43.15 MJ/kg = 6.36×1012 J
  145. ^ "A380-800 Dimensions & key data". Airbus. Retrieved 12 December 2011. 320,000 L
  146. ^ Calculated: 320,000 l × 0.804 kg/L × 43.15  MJ/kg = 11.1×1012 J
  147. ^ "International Space Station: The ISS to Date". NASA. Retrieved 23 August 2011.
  148. ^ "The wizards of orbits". European Space Agency. Retrieved 10 December 2011. The International Space Station, for example, flies at 7.7 km/s in one of the lowest practicable orbits
  149. ^ Calculated: E = 1/2 m.v2 = 1/2 × 417000 kg × (7700m/s)2 = 1.2×1013 J
  150. ^ "What was the yield of the Hiroshima bomb?". Warbird's Forum. Retrieved 4 November 2011. 21 kt
  151. ^ Calculated: 15 kt = 15×109 grams of TNT-equivalent × 4.2×103 J/gram TNT-equivalent = 6.3×1013 J
  152. ^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
  153. ^ "JPL – Fireballs and bolides". Jet Propulsion Laboratory. NASA. Retrieved 13 April 2017.
  154. ^ a b "How much energy does a hurricane release?". FAQ : HURRICANES, TYPHOONS, AND TROPICAL CYCLONES. NOAA. Retrieved 12 November 2011.
  155. ^ "The Gathering Storms". COSMOS. Archived from the original on 4 April 2012. Retrieved 10 December 2011.
  156. ^ a b c d e "Country Comparison :: Electricity – consumption". The World Factbook. CIA. Archived from the original on 28 January 2012. Retrieved 11 December 2011.
  157. ^ Calculated: 288.6×106 kWh × 3.60×106 J/kWh = 1.04×1015 J
  158. ^ Calculated: 4.2×109 J/ton of TNT-equivalent × 1×106 tons/megaton = 4.2×1015 J/megaton of TNT-equivalent
  159. ^ Calculated: 3.02×109 kWh × 3.60×106 J/kWh = 1.09×1016 J
  160. ^ Calculated: E = mc2 = 1 kg × (2.998×108 m/s)2 = 8.99×1016 J
  161. ^ "USGS Energy and Broadband Solution". National Earthquake Information Center, US Geological Survey. Archived from the original on 4 April 2010. Retrieved 9 December 2011.
  162. ^ a b c The Earth has a cross section of 1.274×1014 square meters and the solar constant is 1361 watts per square meter.
  163. ^ "The Soviet Weapons Program – The Tsar Bomba". The Nuclear Weapon Archive. Retrieved 4 November 2011.
  164. ^ Calculated: 50×106 tons TNT-equivalent × 4.2×109 J/ton TNT-equivalent = 2.1×1017 J
  165. ^ Calculated: 115.6×109 kWh × 3.60×106 J/kWh = 4.16×1017 J
  166. ^ Alexander, R. McNeill (1989). Dynamics of Dinosaurs and Other Extinct Giants. Columbia University Press. p. 144. ISBN 978-0-231-06667-9. the explosion of the island volcano Krakatoa in 1883, had about 200 megatonnes energy.
  167. ^ Calculated: 200×106 tons of TNT equivalent × 4.2×109 J/ton of TNT equivalent = 8.4×1017 J
  168. ^ Calculated: 402×109 kWh × 3.60×106 J/kWh = 1.45×1017 J
  169. ^ Calculated: 3.741×1012 kWh × 3.600×106 J/kWh = 1.347×1019 J
  170. ^ "United States". The World Factbook. USA. Retrieved 11 December 2011.
  171. ^ Calculated: 3.953×1012 kWh × 3.600×106 J/kWh = 1.423×1019 J
  172. ^ a b "World". The World Factbook. CIA. Retrieved 11 December 2011.
  173. ^ Calculated: 17.8×1012 kWh × 3.60×106 J/kWh = 6.41×1019 J
  174. ^ Calculated: 18.95×1012 kWh × 3.60×106 J/kWh = 6.82×1019 J
  175. ^ a b c d e "Statistical Review of World Energy 2011" (PDF). BP. Archived from the original (PDF) on 2 September 2011. Retrieved 9 December 2011.
  176. ^ Calculated: 12002.4×106 tonnes of oil equivalent × 42×109 J/tonne of oil equivalent = 5.0×1020 J
  177. ^ a b c "Global Uranium Resources to Meet Projected Demand | International Atomic Energy Agency". iaea.org. June 2006. Retrieved 26 December 2016.
  178. ^ "U.S. Energy Information Administration, International Energy Generation".
  179. ^ "U.S. EIA International Energy Outlook 2007". eia.doe.gov. Retrieved 26 December 2016.
  180. ^ Final number is computed. Energy Outlook 2007 shows 15.9% of world energy is nuclear. IAEA estimates conventional uranium stock, at today's prices is sufficient for 85 years. Convert billion kilowatt-hours to joules then: 6.25×1019×0.159×85 = 8.01×1020.
  181. ^ Calculated: "6608.9 trillion cubic feet" => 6608.9×103 billion cubic feet × 0.025 million tonnes of oil equivalent/billion cubic feet × 1×106 tonnes of oil equivalent/million tonnes of oil equivalent × 42×109 J/tonne of oil equivalent = 6.9×1021 J
  182. ^ Calculated: "188.8 thousand million tonnes" => 188.8×109 tonnes of oil × 42×109 J/tonne of oil = 7.9×1021 J
  183. ^ Calculated: 1.27×1014 m2 × 1370 W/m2 × 86400 s/day = 1.5×1022 J
  184. ^ Calculated: 860938 million tonnes of coal => 860938×106 tonnes of coal × (1/1.5 tonne of oil equivalent / tonne of coal) × 42×109 J/tonne of oil equivalent = 2.4×1022 J
  185. ^ Calculated: natural gas + petroleum + coal = 6.9×1021 J + 7.9×1021 J + 2.4×1022 J = 3.9×1022 J
  186. ^ "USGS, Harvard Moment Tensor Solution". National Earthquake Information Center. 26 December 2004. Archived from the original on 17 January 2010. Retrieved 9 December 2011.
  187. ^ Bralower, Timothy J.; Charles K. Paull; R. Mark Leckie (April 1998). "The Cretaceous–Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows" (PDF). Geology. 26 (4): 331–334. Bibcode:1998Geo....26..331B. doi:10.1130/0091-7613(1998)026<0331:tctbcc>2.3.co;2. Archived from the original (PDF) on 28 November 2007. Retrieved 6 June 2013. The kinetic energy derived by the impact is estimated at ~5 × 1030 ergs
  188. ^ Calculated: 1.27×1014 m2 × 1370 W/m2 × 86400 s/day = 5.5×1024 J
  189. ^ Carroll, Bradley; Ostlie, Dale (2017). An Introduction to Modern Astrophysics (2 ed.). ISBN 978-1-108-42216-1.
  190. ^ a b c "Ask Us: Sun: Amount of Energy the Earth Gets from the Sun". Cosmicopia. NASA. Retrieved 4 November 2011.
  191. ^ Lii, Jiangning. "Seismic effects of the Caloris basin impact, Mercury" (PDF). MIT.
  192. ^ "Moon Fact Sheet". NASA. Retrieved 16 December 2011.
  193. ^ Calculated: KE = 1/2 × m × v2. v = 1.023×103 m/s. m = 7.349×1022 kg. KE = 1/2 × (7.349×1022 kg) × (1.023×103 m/s)2 = 3.845×1028 J.
  194. ^ "Moment of Inertia—Earth". Eric Weisstein's World of Physics. Retrieved 5 November 2011.
  195. ^ Allain, Rhett. "Rotational energy of the Earth as an energy source". .dotphysics. Science Blogs. Archived from the original on 17 November 2011. Retrieved 5 November 2011. the Earth takes 23.9345 hours to rotate
  196. ^ Calculated: E_rotational = 1/2 × I × w2 = 1/2 × (8.0×1037 kg m2) × (2×pi/(23.9345 hour period × 3600 seconds/hour))2 = 2.1×1029 J
  197. ^ Calculated: 3.8×1026 J/s × 86400 s/day = 3.3×1031 J
  198. ^ "Earth's Gravitational Binding Energy". Retrieved 19 March 2012. Variable Density Method: the Earth's gravitational binding energy is −1.711×1032 J
  199. ^ "DutchS/pseudosc/flipaxis". uwgb.edu. Archived from the original on 22 August 2017. Retrieved 26 December 2016.
  200. ^ Calculated: 3.8×1026 J/s × 86400 s/day × 365.25 days/year = 1.2×1034 J
  201. ^
    Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition)
    Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272
  202. ^ "Earth: Facts & Figures". Solar System Exploration. NASA. Retrieved 29 September 2011.
  203. ^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
  204. ^ Frail, D. A.; Kulkarni, S. R.; Sari, R.; Djorgovski, S. G.; Bloom, J. S.; Galama, T. J.; Reichart, D. E.; Berger, E.; Harrison, F. A.; Price, P. A.; Yost, S. A.; Diercks, A.; Goodrich, R. W.; Chaffee, F. (2001). "Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir". The Astrophysical Journal. 562 (1): L55. arXiv:astro-ph/0102282. Bibcode:2001ApJ...562L..55F. doi:10.1086/338119. "the gamma-ray energy release, corrected for geometry, is narrowly clustered around 5 × 1050 erg"
  205. ^ Calculated: 5×1050 erg × 1×10−7 J/erg = 5×1043 J
  206. ^ Khokhlov, A.; Mueller, E.; Hoeflich, P.; Mueller; Hoeflich (1993). "Light curves of Type IA supernova models with different explosion mechanisms". Astronomy and Astrophysics. 270 (1–2): 223–248. Bibcode:1993A&A...270..223K.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  207. ^ Dong, S.; Shappee, B. J.; Prieto, J. L.; Jha, S. W.; Stanek, K. Z.; Holoien, T. W.- S.; Kochanek, C. S.; Thompson, T. A.; Morrell, N.; Thompson, I. B.; et al. (15 January 2016). "ASASSN-15lh: A highly super-luminous supernova". Science. 351 (6270): 257–260. arXiv:1507.03010. Bibcode:2016Sci...351..257D. doi:10.1126/science.aac9613. PMID 26816375.
  208. ^ McBreen, S; Krühler, T; Rau, A; Greiner, J; Kann, D. A; Savaglio, S; Afonso, P; Clemens, C; Filgas, R; Klose, S; Küpüc Yoldas, A; Olivares E, F; Rossi, A; Szokoly, G. P; Updike, A; Yoldas, A (2010). "Optical and near-infrared follow-up observations of four Fermi/LAT GRBs: Redshifts, afterglows, energetics and host galaxies". Astronomy and Astrophysics. 516 (71): A71. arXiv:1003.3885. Bibcode:2010A&A...516A..71M. doi:10.1051/0004-6361/200913734.
  209. ^ Cenko, S. B; Frail, D. A; Harrison, F. A; Haislip, J. B; Reichart, D. E; Butler, N. R; Cobb, B. E; Cucchiara, A; Berger, E; Bloom, J. S; Chandra, P; Fox, D. B; Perley, D. A; Prochaska, J. X; Filippenko, A. V; Glazebrook, K; Ivarsen, K. M; Kasliwal, M. M; Kulkarni, S. R; LaCluyze, A. P; Lopez, S; Morgan, A. N; Pettini, M; Rana, V. R (2010). "Afterglow Observations of Fermi-LAT Gamma-Ray Bursts and the Emerging Class of Hyper-Energetic Events". The Astrophysical Journal. 732 (1): 29. arXiv:1004.2900. Bibcode:2011ApJ...732...29C. doi:10.1088/0004-637X/732/1/29.
  210. ^ Cenko, S. B; Frail, D. A; Harrison, F. A; Kulkarni, S. R; Nakar, E; Chandra, P; Butler, N. R; Fox, D. B; Gal-Yam, A; Kasliwal, M. M; Kelemen, J; Moon, D. -S; Price, P. A; Rau, A; Soderberg, A. M; Teplitz, H. I; Werner, M. W; Bock, D. C. -J; Bloom, J. S; Starr, D. A; Filippenko, A. V; Chevalier, R. A; Gehrels, N; Nousek, J. N; Piran, T; Piran, T (2010). "The Collimation and Energetics of the Brightest Swift Gamma-Ray Bursts". The Astrophysical Journal. 711 (2): 641–654. arXiv:0905.0690. Bibcode:2010ApJ...711..641C. doi:10.1088/0004-637X/711/2/641.
  211. ^ url= http://tsvi.phys.huji.ac.il/presentations/Frail_AstroExtreme.pdf Archived 1 August 2014 at the Wayback Machine
  212. ^ url= http://fermi.gsfc.nasa.gov/science/mtgs/grb2010/tue/Dale_Frail.ppt
  213. ^ "A Hypernova: The Super-charged Supernova and its link to Gamma-Ray Bursts". Imagine the Universe!. NASA. Retrieved 9 December 2011. With a power about 100 times that of the already astonishingly powerful "typical" supernova
  214. ^ "Sun Fact Sheet". NASA. Retrieved 15 October 2011.
  215. ^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
  216. ^ Abbott, B.; et al. (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102. arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID 26918975.
  217. ^ "Fermi's record breaking gamma-ray burst".
  218. ^ Cavagnolo, K. W; McNamara, B. R; Wise, M. W; Nulsen, P. E. J; Brüggen, M; Gitti, M; Rafferty, D. A (2011). "A Powerful AGN Outburst in RBS 797". The Astrophysical Journal. 732 (2): 71. arXiv:1103.0630. Bibcode:2011ApJ...732...71C. doi:10.1088/0004-637X/732/2/71.
  219. ^ url= http://iopscience.iop.org/1538-4357/625/1/L9/fulltext/19121.text.html
  220. ^ Jim Brau. "The Milky Way Galaxy". Retrieved 4 November 2011.
  221. ^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
  222. ^ Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics. 49 (1): 3–18. Bibcode:2006Ap.....49....3K. doi:10.1007/s10511-006-0002-6.
  223. ^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
  224. ^ Einasto, M.; et al. (December 2007). "The richest superclusters. I. Morphology". Astronomy and Astrophysics. 476 (2): 697–711. arXiv:0706.1122. Bibcode:2007A&A...476..697E. doi:10.1051/0004-6361:20078037.
  225. ^ "Big Bang Energy". Archived from the original on 19 August 2014. Retrieved 26 December 2016.{{cite web}}: CS1 maint: bot: original URL status unknown (link)