Lithium cobalt oxide

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Lithium cobalt oxide[1]
IUPAC name
lithium cobalt(III) oxide
Other names
lithium cobaltite
12190-79-3 YesY
PubChem 23670860
Molar mass 97.87 g mol−1
Main hazards harmful
R-phrases R42/43
S-phrases S36
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Lithium cobalt oxide (LiCoO2) is a chemical compound commonly used in the positive electrodes of lithium-ion batteries. The structure of LiCoO2 is known theoretically and has been confirmed with techniques like x-ray diffraction, electron microscopy, neutron powder diffraction, and EXAFS:[2] it consists of layers of lithium that lie between slabs of octahedra formed by cobalt and oxygen atoms.[3] The space group is R\bar 3m[4] in Hermann-Mauguin notation, signifying a rhombus-like unit cell with threefold improper rotational symmetry and a mirror plane. More simply, however, both lithium and cobalt are octahedrally coordinated by oxygen. These octahedrons are edge-sharing, and tilted relative to the layered structure. The threefold rotational axis (which is normal to the layers) is termed improper because the triangles of oxygen (being on opposite sides of each octahedron) are anti-aligned.

Batteries produced with LiCoO2 cathodes, while providing higher capacity, are more reactive and have poorer thermal stability than chemistries such as the newer lithium-nickel-cobalt-aluminum-oxide types. This makes LiCoO2 batteries susceptible to thermal runaway in cases of abuse such as high temperature operation (>130 °C) or overcharging. At elevated temperatures, LiCoO2 decomposition generates oxygen, which then reacts with the organic electrolyte of the cell. This is a safety concern due to the magnitude of this highly exothermic reaction, which can spread to adjacent cells or ignite nearby combustible material.[5]

The compound's usefulness as an intercalation electrode was discovered in 1980[6] by John B. Goodenough's research group at Oxford.


  1. ^ 442704 - Lithium cobalt(III) oxide (2012-09-14). "Sigma-Aldrich product page". Retrieved 2013-01-21. 
  2. ^ I. Nakai, K. Takahashi, Y. Shiraishi, T. Nakagome, F. Izumi, Y. Ishii, F. Nishikawa, T. Konishi (1997). "X-ray absorption fine structure and neutron diffraction analyses of de-intercalation behavior in the LiCoO2 and LiNiO2 systems". Journal of Power Sources 68 (2): 536–539. doi:10.1016/S0378-7753(97)02598-6. 
  3. ^ Yang Shao-Horn, Laurence Croguennec, Claude Delmas, E. Chris Nelson and Michael A. O'Keefe (July 2003). "Atomic resolution of lithium ions in LiCoO2". Nature Materials 2 (7): 464–467. doi:10.1038/nmat922. PMID 12806387. 
  4. ^ H. J. Orman and P. J. Wiseman (January 1984). "Cobalt(III) lithium oxide, CoLiO2: structure refinement by powder neutron diffraction". Acta Crystallographica Section C 40 (1): 12–14. doi:10.1107/S0108270184002833. 
  5. ^ Doughty, Daniel; Pesaran, Ahmad. "Vehicle Battery Safety Roadmap Guidance" (PDF). National Renewable Energy Laboratory. Retrieved 19 January 2013. 
  6. ^ K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough (1980). "LixCoO2 (0<x<l): A NEW CATHODE MATERIAL FOR BATTERIES OF HIGH ENERGY DENSITY". Materials Research Bulletin 15: 783–789. doi:10.1016/0025-5408(80)90012-4. 

External links[edit]