Planck length

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Planck length
Unit systemPlanck units
Unit oflength
1 P in ...... is equal to ...
   SI units   1.616255(18)×10−35 m
   natural units   11.706 S
3.0542×10−25 a0
   imperial/US units   6.3631×10−34 in

In physics, the Planck length, denoted P, is a unit of length in the system of Planck units that was originally proposed by physicist Max Planck, equal to 1.616255(18)×10−35 m.[1][note 1] The Planck length can be defined from three fundamental physical constants: the speed of light, the Planck constant, and the gravitational constant. It is also the reduced Compton wavelength of a particle with Planck mass. Regardless of whether it represents some fundamental limit to the universe, it is a useful unit in theoretical physics.


The Planck length P is defined as:

where is the speed of light, G is the gravitational constant, and ħ is the reduced Planck constant.[2][3]

The two digits enclosed by parentheses are the standard uncertainty of the reported numerical value.

The Planck length is about 10−20 times the diameter of a proton.[4] It can be defined as the reduced Compton wavelength of a black hole for which this equals its Schwarzschild radius.


In 1899, Max Planck suggested that there existed some fundamental natural units for length, mass, time and energy.[5][6] He derived these using dimensional analysis, using only the Newton gravitational constant, the speed of light and the Planck constant (though it was not yet called this). The modern convention is to use the reduced Planck constant in place of the Planck constant in the definition of the resulting units. The derived natural units became known as the "Planck length", the "Planck mass", the "Planck time" and the "Planck energy".


The size of the Planck length can be visualized as follows: if a particle or dot about 0.1  mm in size (the diameter of human hair, which is at or near the smallest the unaided human eye can see) were magnified in size to be as large as the observable universe, then inside that universe-sized "dot", the Planck length would be roughly the size of an 0.1 mm dot. There are approximately 62 orders of magnitude between the Planck length (1.616×10−35 m) and the diameter of the observable universe (1027 m). At the geometric mean of these extremes, 31 orders of magnitude (ten million trillion trillion) from either end, is the human hair (diameter ~100 μm, or 10−4 m).

Theoretical significance[edit]

The Planck length is approximately the size of a black hole where quantum and gravitational effects are at the same scale: where its Compton wavelength and Schwarzschild radius are approximately the same.[2]

The main role in quantum gravity will be played by the uncertainty principle , where is the gravitational radius, is the radial coordinate, is the Planck length. This uncertainty principle is another form of Heisenberg's uncertainty principle between momentum and coordinate as applied to the Planck scale. Indeed, this ratio can be written as follows: , where is the gravitational constant, is body mass, is the speed of light, is the reduced Planck constant. Reducing identical constants from two sides, we get Heisenberg's uncertainty principle . The uncertainty principle predicts the appearance of virtual black holes and wormholes (quantum foam) on the Planck scale.[7][8]

Proof: The equation for the invariant interval in the Schwarzschild solution has the form

Substitute according to the uncertainty relations . We obtain

It is seen that at the Planck scale spacetime metric in special and general relativity is bounded below by the Planck length (division by zero appears), and on this scale, there should be real and virtual black holes.

The spacetime metric fluctuates and generates a quantum foam. These fluctuations in the macroworld and in the world of atoms are very small in comparison with and become noticeable only on the Planck scale. Lorentz-invariance is violated at the Planck scale. The formula for the fluctuations of the gravitational potential agrees with the Bohr-Rosenfeld uncertainty relation .[9] Due to the smallness of the value , the formula for the invariant interval in special relativity is always written in the Galilean metric , which actually does not correspond to reality. The correct formula must take into account the fluctuations in the spacetime metric and the presence of virtual black holes and wormholes (quantum foam) at Planck scale distances. Ignoring this circumstance leads to ultraviolet divergences in quantum field theory. Quantum fluctuations in geometry are superimposed on the large-scale slowly changing curvature predicted by the classical deterministic general relativity. Classical curvature and quantum fluctuations coexist with each other.[7]

Any attempt to investigate the possible existence of shorter distances, by performing higher-energy collisions, would inevitably result in black hole production. Higher-energy collisions, rather than splitting matter into finer pieces, would simply produce bigger black holes.[10] A decrease in will result in an increase in and vice versa. A subsequent increase of the energy will end up with larger black holes that have a worse resolution, not better. Therefore, the Planck length is the minimum distance that can be explored.[11]


The Planck length refers to the internal architecture of particles and objects. Many other quantities that have units of length may be much shorter than the Planck length. For example, the photon's wavelength may be arbitrarily short: any photon may be boosted, as special relativity guarantees, so that its wavelength gets even shorter.[12][better source needed] The Planck length does however provide practical limits on current physics. To measure a Planck length distance would require another particle with the Planck energy, approximately four quadrillion times greater than the Large Hadron Collider is capable of.[13]

The strings of String Theory are modeled to be on the order of the Planck length.[14] In theories of large extra dimensions, the Planck length has no fundamental, physical significance, and quantum gravitational effects appear at other scales.[citation needed]

Planck length and Euclidean geometry[edit]

The Planck length is the length at which quantum zero oscillations of the gravitational field completely distort Euclidean geometry. The gravitational field performs zero-point oscillations, and the geometry associated with it also oscillates. The ratio of the circumference to the radius varies near the Euclidean value. The smaller the scale, the greater the deviations from the Euclidean geometry. Let us estimate the order of the wavelength of zero gravitational oscillations, at which the geometry becomes completely unlike the Euclidean geometry. The degree of deviation of geometry from Euclidean geometry in the gravitational field is determined by the ratio of the gravitational potential and the square of the speed of light : . When , the geometry is close to Euclidean geometry; for , all similarities disappear. The energy of the oscillation of scale is equal to (where is the order of the oscillation frequency). The gravitational potential created by the mass , at this length is , where is the constant of universal gravitation. Instead of , we must substitute a mass, which, according to Einstein's formula, corresponds to the energy (where ). We get . Dividing this expression by , we obtain the value of the deviation . Equating , we find the length at which the Euclidean geometry is completely distorted. It is equal to Planck length .[15]

As noted in Regge (1958) "for the space-time region with dimensions the uncertainty of the Christoffel symbols be of the order of , and the uncertainty of the metric tensor is of the order of . If is a macroscopic length, the quantum constraints are fantastically small and can be neglected even on atomic scales. If the value is comparable to , then the maintenance of the former (usual) concept of space becomes more and more difficult and the influence of micro curvature becomes obvious".[16] Conjecturally, this could imply that space-time becomes a quantum foam at the Planck scale.[17]

Relative size[edit]

The Planck length is extremely miniature compared to other measurement units. For example, if everything in the universe grew until the Planck length was the size of a tennis ball, then the size of a single penny would be 384,000 times bigger than the observable universe.[18]

See also[edit]


  1. ^ The two digits enclosed by parentheses are the estimated standard uncertainty.



  1. ^ "2018 CODATA Value: Planck length". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
  2. ^ a b John Baez, The Planck Length
  3. ^ "Planck length". NIST. Archived from the original on 22 November 2018. Retrieved 7 January 2019.
  4. ^ "The Planck Length". Retrieved 2018-12-16.
  5. ^ M. Planck. Naturlische Masseinheiten. Der Koniglich Preussischen Akademie Der Wissenschaften, p. 479, 1899
  6. ^ Gorelik, Gennady (1992). "First Steps of Quantum Gravity and the Planck Values". Boston University. Retrieved 7 January 2019.
  7. ^ a b Charles W. Misner, Kip S. Thorne, John Archibald Wheeler "Gravitation", Publisher W. H. Freeman, Princeton University Press, (pp. 1190–1194,1198–1201)
  8. ^ Klimets AP, Philosophy Documentation Center, Western University-Canada, 2017, pp.25-28
  9. ^ Borzeszkowski, Horst-Heino; Treder, H. J. (6 December 2012). The Meaning of Quantum Gravity. Springer Science & Business Media. ISBN 9789400938939.
  10. ^ Bernard J. Carr and Steven B. Giddings "Quantum Black Holes", Scientific American, Vol. 292, No. 5, MAY 2005, (pp. 48-55)
  11. ^ Gia Dvalia and Cesar Gomez "Self-Completeness of Einstein Gravity", 2010
  12. ^ "black holes - How to get Planck length". Physics Stack Exchange. Retrieved 2021-05-02.
  13. ^ Siegel, Ethan. "What Is The Smallest Possible Distance In The Universe?". Forbes. Retrieved 2021-05-02.
  14. ^ Cliff Burgess; Fernando Quevedo (November 2007). "The Great Cosmic Roller-Coaster Ride". Scientific American (print). Scientific American, Inc. p. 55.
  15. ^ Migdal A.B., The quantum physics, Nauka, pp. 116-117, (1989)
  16. ^ T. Regge. "Gravitational fields and quantum mechanics". Nuovo Cim. 7, 215 (1958). doi:10.1007/BF02744199.
  17. ^ Wheeler, J. A. (January 1955). "Geons". Physical Review. 97 (2): 511–536. Bibcode:1955PhRv...97..511W. doi:10.1103/PhysRev.97.511.
  18. ^ "Planck length YouTube video".


External links[edit]