Rogers Commission Report
The Rogers Commission Report was created by a Presidential Commission charged to investigate the Space Shuttle Challenger disaster on its 10th mission, STS-51-L. The comprehensive 225-page report, published on 9 June 1986, documented the technical and managerial factors that contributed to the accident.
Commission members
- William P. Rogers
- Neil Armstrong, the first man to walk on the moon
- David C. Acheson
- Eugene E. Covert
- Richard P. Feynman, winner of the 1965 Nobel Prize in Physics
- Robert B. Hotz
- Donald J. Kutyna, Air Force General with experience in ICBMs
- Sally K. Ride, the first American woman in space
- Robert W. Rummel
- Joseph F. Sutter
- Arthur B. C. Walker, Jr
- Albert D. Wheelon
- Chuck Yeager, retired Air Force General, the first person to break the sound barrier in level flight
- Alton G. Keel, Jr.
O-ring failure
The commission found that the Challenger accident was caused by a failure in the O-rings sealing the aft field joint on the right solid rocket booster, which allowed pressurized hot gases and eventually flame to "blow by" the O-ring and make contact with the adjacent external tank, causing structural failure. The failure of the O-rings was attributed to a design flaw, as their performance could be too easily compromised by factors including the low temperature on the day of launch.[1]
"An accident rooted in history"
More broadly, the report also considered the contributing causes of the accident. Most salient was the failure of both NASA and its contractor, Morton Thiokol, to respond adequately to the design flaw. The Commission found that as early as 1977, NASA managers had not only known about the flawed O-ring, but that it had the potential for catastrophe. This led the Rogers Commission to conclude that the Challenger disaster was "an accident rooted in history."[2]
Flawed launch decision
The report also strongly criticized the decision making process that led to the launch of Challenger, saying that it was seriously flawed. The report cited evidence that NASA managers did not know of Thiokol's initial concerns about the effects of the cold on the O-rings, and did not understand that Rockwell viewed the large amount of ice present on the pad as a constraint to launch.[3] It concluded that:
...failures in communication... resulted in a decision to launch 51-L based on incomplete and sometimes misleading information, a conflict between engineering data and management judgments, and a NASA management structure that permitted internal flight safety problems to bypass key Shuttle managers.
— Report of the Presidential Commission on the Space Shuttle Challenger Accident[3]
Role of Richard Feynman
I took this stuff that I got out of your seal and I put it in ice water, and I discovered that when you put some pressure on it for a while and then undo it, it does not stretch back. It stays the same dimension. In other words, for a few seconds at least and more seconds than that, there is no resilience in this particular material when it is at a temperature of 32 degrees.
— Richard Feynman, [4]
One of the commission's best-known members was theoretical physicist Richard Feynman. His style of investigating with his own direct methods rather than following the commission schedule put him at odds with Rogers, who once commented, "Feynman is becoming a real pain." During a televised hearing, Feynman famously demonstrated how the O-rings became less resilient and subject to seal failures at ice-cold temperatures by immersing a sample of the material in a glass of ice water.[5] Feynman's own investigation reveals a disconnect between NASA's engineers and executives that was far more striking than he expected. His interviews of NASA's high-ranking managers revealed startling misunderstandings of elementary concepts. One such concept was the determination of a safety factor.
In one example, early tests resulted in some of the booster rocket's O-rings burning a third of the way through. These O-rings provided the gas-tight seal needed between the vertically stacked cylindrical sections that made up the solid fuel booster. NASA managers recorded this result as demonstrating that the O-rings had a "safety factor" of 3. Feynman incredulously explains the magnitude of this error: a "safety factor" refers to the practice of building an object to be capable of withstanding more force than it will conceivably be subjected to. To paraphrase Feynman's example, if engineers built a bridge that could bear 3,000 pounds without any damage, even though it was never expected to bear more than 1,000 pounds in practice, the safety factor would be 3. If, however, a 1,000 pound truck drove across the bridge and it cracked at all, the safety factor is now zero: the bridge is defective.
Feynman was clearly disturbed by the fact that NASA management not only misunderstood this concept, but in fact inverted it by using a term denoting an extra level of safety to describe a part that was actually defective and unsafe. Feynman continued to investigate the lack of communication between NASA's management and its engineers, and was struck by management's claim that the risk of catastrophic malfunction on the shuttle was 1 in 105; i.e., 1 in 100,000. Feynman immediately realized that this claim was risible on its face; as he described, this assessment of risk would entail that NASA could expect to launch a shuttle every day for the next 274 years without an accident. Investigating the claim further, Feynman discovered that the 1 in 105 figure was stating what they claimed that the failure rate ought to be, given that it was a manned vehicle, and working backwards to generate the failure rate of components.
Feynman was disturbed by two aspects of this practice. First, NASA management assigned a probability of failure to each individual bolt, sometimes claiming a probability of 1 in 108; that is, one in one hundred million. Feynman pointed out that it is impossible to calculate such a remote possibility with any scientific rigor. Secondly, Feynman was bothered not just by this sloppy science but by the fact that NASA claimed that the risk of catastrophic failure was "necessarily" 1 in 105. As the figure itself was beyond belief, Feynman questioned exactly what "necessarily" meant in this context—did it mean that the figure followed logically from other calculations, or did it reflect NASA management's desire to make the numbers fit?
Feynman suspected that the 1/100,000 figure was wildly fantastical, and made a rough estimate that the true likelihood of shuttle disaster was closer to 1 in 100. He then decided to poll the engineers themselves, asking them to write down an anonymous estimate of the odds of shuttle explosion. Feynman found that the bulk of the engineers' estimates fell between 1 in 50 and 1 in 100. Not only did this confirm that NASA management had clearly failed to communicate with their own engineers, but the disparity engaged Feynman's emotions. When describing these wildly differing estimates, Feynman briefly lapses from his damaging but dispassionate detailing of NASA's flaws to recognize the moral failing that resulted from a scientific failing: he was clearly upset that NASA presented its clearly fantastical figures as fact to convince a member of the public, schoolteacher Christa McAuliffe, to join the crew. Feynman was not uncomfortable with the concept of a 1/100 risk factor, but felt strongly that the recruitment of laypeople required an honest portrayal of the true risk involved.
Feynman's investigation eventually suggested to him that the cause of the Challenger explosion was the very part to which NASA management so mistakenly assigned a safety factor. The O-rings were rubber rings designed to form a seal in the shuttle's solid rocket boosters, preventing the rockets' super-heated gas from escaping and damaging other parts of the vehicle. Feynman suspected that despite NASA's claims, the O-rings were unsuitable at low temperatures and lost their resilience when cold, thus failing to expand and maintain a tight seal when rocket pressure distorted the structure of the solid fuel booster. Feynman's suspicions were corroborated by General Kutyna, also on the commission, who cunningly provided Feynman with a broad hint by asking about the effect of cold on O-ring seals after mentioning that the temperature on the day of the launch was far lower than had been the case with previous launches: below freezing at 28 or 29 Fahrenheit (−2.2 to −1.6 °C); previously, the coldest launch had been at 53 °F (12 °C).
Feynman's investigations also revealed that there had been many serious doubts raised about the O-ring seals by engineers at Morton Thiokol, which made the solid fuel boosters, but communication failures had led to their concerns being ignored by NASA management. He found similar failures in procedure in many other areas at NASA, but singled out its software development for praise due to its rigorous and highly effective quality control procedures - then under threat from NASA management, which wished to reduce testing to save money given that the tests had always been passed.
Based on his experiences with NASA's management and engineers, Feynman concluded that the serious deficiencies in NASA management's scientific understanding, the lack of communication between the two camps, and the gross misrepresentation of the shuttle's dangers, required that NASA take a hiatus from shuttle launches until it could resolve its internal inconsistencies and present an honest picture of the shuttle's reliability. However, Feynman soon found that, while he respected the intellects of his fellow Commission members, they universally finished their criticisms of NASA with clear affirmations that the Challenger disaster should be addressed by NASA internally, but that there was no need for NASA to suspend its operations or to receive less funding. Feynman felt that the Commission's conclusions misrepresented its findings, and he could not in good conscience recommend that such a deeply flawed organization as NASA should continue without a suspension of operations and a major overhaul. His fellow commission members were alarmed by Feynman's dissent, and it was only after much petitioning that Feynman's minority report was included at all. In fact, Feynman was so critical of flaws in NASA's "safety culture" that he threatened to remove his name from the report unless it included his personal observations on the reliability of the shuttle, which appeared as Appendix F.[6][7] In the appendix, he stated:
It appears that there are enormous differences of opinion as to the
probability of a failure with loss of vehicle and of human life. The estimates range from roughly 1 in 100 to 1 in 100,000. The higher figures come from the working engineers, and the very low figures from management. What are the causes and consequences of this lack of agreement? Since 1 part in 100,000 would imply that one could put a Shuttle up each day for 300 years expecting to lose only one, we could properly ask "What is the cause of management's fantastic faith in the machinery? .. It would appear that, for whatever purpose, be it for internal or external consumption, the management of NASA exaggerates the
reliability of its product, to the point of fantasy." [8]
"For a successful technology," Feynman concluded, "reality must take precedence over public relations, for nature cannot be fooled."[9]
Feynman later wrote about the investigation in his 1988 book What Do You Care What Other People Think?.[10]The second half of the book covers the investigation and the issues between science and politics.
Feynman later reported that, although he had believed he was making discoveries about the problems at NASA on his own, he eventually realized that NASA or contractor personnel, in an apparent effort to anonymously focus attention on these problem areas, had carefully led him to the evidence which would support the conclusions on which he would later report.[10][11]
Result
The investigation and corrective actions following the Challenger accident caused a 32-month hiatus in shuttle launches: the next mission was STS-26 on September 29, 1988 with Discovery. Reforms to NASA procedures were enacted which attempted to preclude another occurrence of such an accident, and the Shuttle program would continue without serious incident until the Space Shuttle Columbia disaster on February 1, 2003.
See also
References
- ^ Rogers Commission report (1986). "Report of the Presidential Commission on the Space Shuttle Challenger Accident, Volume 1, chapter 4, page 72".
- ^ Rogers Commission report (1986). "Report of the Presidential Commission on the Space Shuttle Challenger Accident, Volume 1, chapter 6".
- ^ a b Rogers Commission report (1986). "Report of the Presidential Commission on the Space Shuttle Challenger Accident, Volume 1, chapter 5". Retrieved 2007-01-01.
- ^ Cite error: The named reference
NYT Feynman
was invoked but never defined (see the help page). - ^ Gleick, James (1988-02-17). "Richard Feynman Dead at 69; Leading Theoretical Physicist". New York Times. Retrieved 2007-01-28.
- ^ "Report of the Presidential Commission on the Space Shuttle Challenger Accident". NASA. 1986-06-06. This link includes App. F.
- ^ Feynman, Richard P. with Ralph Leighton (1989). "What Do You Care What Other People Think?". New York: Bantam Books. pp. 204 of 256 pages, paperback. ISBN 0-553-34784-5..
- ^ "Appendix F of Rogers Commission report".
- ^ Feynman, Richard P. (1986) Appendix F - Personal Observations on Reliability of Shuttle
- ^ a b Feynman, Richard P. with Ralph Leighton, What Do You Care What Other People Think? Further Adventures of a Curious Character, hardcover 256 pages, Publisher: W W Norton & Co Ltd (7-Dec-1988), ISBN 0393026590, ISBN 978-0393026597.
- ^ The Best Mind Since Einstein, BBC-TV & WGBH Boston (NOVA), 1993
External links
- Report of the PRESIDENTIAL COMMISSION on the Space Shuttle Challenger Accident — the Rogers Commission report on the accident