Short-chain fatty acid

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Short-chain fatty acids (SCFAs) are fatty acids with fewer than six carbon atoms.[1] Derived from intestinal microbial fermentation of indigestible foods, SCFAs are the main energy source of colonocytes, making them crucial to gastrointestinal health.[1][2] SCFAs all possess varying degrees of water solubility, which distinguishes them from longer chain fatty acids that are immiscible.

List of SCFAs[edit]

Lipid number Name Salt/Ester Name Formula Mass
Common Systematic Common Systematic Molecular Structural
C1:0 Formic acid Methanoic acid Formate Methanoate CH2O2 HCOOH 46.03
Ameisensäure Skelett.svg
C2:0 Acetic acid Ethanoic acid Acetate Ethanoate C2H4O2 CH3COOH 60.05
C3:0 Propionic acid Propanoic acid Propionate Propanoate C3H6O2 CH3CH2COOH 74.08
Propionic acid chemical structure.svg
C4:0 Butyric acid Butanoic acid Butyrate Butanoate C4H8O2 CH3(CH2)2COOH 88.11
Butyric acid acsv.svg
C4:0 Isobutyric acid 2-Methylpropanoic acid Isobutyrate 2-Methylpropanoate C4H8O2 (CH3)2CHCOOH 88.11
C5:0 Valeric acid Pentanoic acid Valerate Pentanoate C5H10O2 CH3(CH2)3COOH 102.13
Valeric acid acsv.svg
C5:0 Isovaleric acid 3-Methylbutanoic acid Isovalerate 3-Methylbutanoate C5H10O2 (CH3)2CHCH2COOH 102.13
Isovaleric acid structure.png
C5:0 2-Methylbutyric acid 2-Methylbutyric acid 2-Methylbutanoate 2-Methylbutanoate C5H10O2 CH3CH2CH(CH3)COOH 102.13
2-Methylbutanoic acid.png


SCFAs are produced when dietary fiber is fermented in the colon.[1][3] Macronutrient composition (carbohydrate, protein, or fat) of diets affects circulating SCFAs.[4]

Acetate, propionate, and butyrate are the three most common SCFAs.[3]

SCFAs and medium-chain fatty acids are primarily absorbed through the portal vein during lipid digestion,[5] while long-chain fatty acids are packed into chylomicrons, enter lymphatic capillaries, then transfer to the blood at the subclavian vein.[1]

SCFAs have diverse physiological roles in body functions.[1][2] They can affect the production of lipids, energy and vitamins.[6] They can also affect appetite and cardiometabolic health.[4] The three main SCFAs, acetate, propionate and butyrate, were shown to lower blood pressure in experimental models,[7][8][9][10] and clinical trials to determine their effect on hypertensive patients are underway.[11] Butyrate is particularly important for colon health because it is the primary energy source for colonocytes (the epithelial cells of the colon).[1][2] The liver can use acetate for energy.[12]

See also[edit]


  1. ^ a b c d e f Brody, Tom (1999). Nutritional Biochemistry (2nd ed.). Academic Press. p. 320. ISBN 978-0121348366. Retrieved December 21, 2012.
  2. ^ a b c Canfora EE, Jocken JW, Blaak EE (2015). "Short-chain fatty acids in control of body weight and insulin sensitivity". Nature Reviews Endocrinology. 11 (10): 577–91. doi:10.1038/nrendo.2015.128. PMID 26260141. S2CID 1263823.
  3. ^ a b Wong, J. M.; De Souza, R; Kendall, C. W.; Emam, A; Jenkins, D. J. (2006). "Colonic health: Fermentation and short chain fatty acids". Journal of Clinical Gastroenterology. 40 (3): 235–43. doi:10.1097/00004836-200603000-00015. PMID 16633129. S2CID 46228892.
  4. ^ a b Mueller, Noel T; Zhang, Mingyu; Juraschek, Stephen P; Miller, Edgar R; Appel, Lawrence J (2020-01-11). "Effects of high-fiber diets enriched with carbohydrate, protein, or unsaturated fat on circulating short chain fatty acids: results from the OmniHeart randomized trial". The American Journal of Clinical Nutrition. 111 (3): 545–554. doi:10.1093/ajcn/nqz322. ISSN 0002-9165. PMC 7049528. PMID 31927581.
  5. ^ Kuksis, Arnis (2000). "Biochemistry of Glycerolipids and Formation of Chylomicrons". In Christophe, Armand B.; DeVriese, Stephanie (eds.). Fat Digestion and Absorption. The American Oil Chemists Society. p. 163. ISBN 978-1893997127. Retrieved December 21, 2012.
  6. ^ Byrne, C. S; Chambers, E. S; Morrison, D. J; Frost, G (2015). "The role of short chain fatty acids in appetite regulation and energy homeostasis". International Journal of Obesity. 39 (9): 1331–1338. doi:10.1038/ijo.2015.84. PMC 4564526. PMID 25971927.
  7. ^ Kaye, David M.; Shihata, Waled A.; Jama, Hamdi A.; Tsyganov, Kirill; Ziemann, Mark; Kiriazis, Helen; Horlock, Duncan; Vijay, Amrita; Giam, Beverly; Vinh, Antony; Johnson, Chad (2020-04-28). "Deficiency of Prebiotic Fiber and Insufficient Signaling Through Gut Metabolite-Sensing Receptors Leads to Cardiovascular Disease". Circulation. 141 (17): 1393–1403. doi:10.1161/CIRCULATIONAHA.119.043081. ISSN 1524-4539. PMID 32093510.
  8. ^ Marques, Francine Z.; Nelson, Erin; Chu, Po-Yin; Horlock, Duncan; Fiedler, April; Ziemann, Mark; Tan, Jian K.; Kuruppu, Sanjaya; Rajapakse, Niwanthi W.; El-Osta, Assam; Mackay, Charles R. (2017-03-07). "High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice". Circulation. 135 (10): 964–977. doi:10.1161/CIRCULATIONAHA.116.024545. ISSN 1524-4539. PMID 27927713.
  9. ^ Bartolomaeus, Hendrik; Balogh, András; Yakoub, Mina; Homann, Susanne; Markó, Lajos; Höges, Sascha; Tsvetkov, Dmitry; Krannich, Alexander; Wundersitz, Sebastian; Avery, Ellen G.; Haase, Nadine (2019-03-12). "Short-Chain Fatty Acid Propionate Protects From Hypertensive Cardiovascular Damage". Circulation. 139 (11): 1407–1421. doi:10.1161/CIRCULATIONAHA.118.036652. ISSN 1524-4539. PMC 6416008. PMID 30586752.
  10. ^ Kim, Seungbum; Goel, Ruby; Kumar, Ashok; Qi, Yanfei; Lobaton, Gil; Hosaka, Koji; Mohammed, Mohammed; Handberg, Eileen M.; Richards, Elaine M.; Pepine, Carl J.; Raizada, Mohan K. (2018-03-30). "Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure". Clinical Science. 132 (6): 701–718. doi:10.1042/CS20180087. ISSN 1470-8736. PMC 5955695. PMID 29507058.
  11. ^ Rhys-Jones, Dakota; Climie, Rachel E.; Gill, Paul A.; Jama, Hamdi A.; Head, Geoffrey A.; Gibson, Peter R.; Kaye, David M.; Muir, Jane G.; Marques, Francine Z. (2021-07-27). "Microbial Interventions to Control and Reduce Blood Pressure in Australia (MICRoBIA): rationale and design of a double-blinded randomised cross-over placebo controlled trial". Trials. 22 (1): 496. doi:10.1186/s13063-021-05468-2. ISSN 1745-6215. PMC 8313879. PMID 34315522.
  12. ^ Roy, Claude C.; Kien, C. Lawrence; Bouthillier, Lise; Levy, Emile (2006). "Short-chain fatty acids: Ready for prime time?". Nutrition in Clinical Practice. 21 (4): 351–366. doi:10.1177/0115426506021004351. ISSN 0884-5336. PMID 16870803.

Further reading[edit]