Jump to content

2022 in paleontology: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 2,952: Line 2,952:
* A study on the diversity of the vertebrates in the [[Yanliao Biota]], comparing this biota with other biotas of similar age, is published by Liu, Wu & Han (2022).<ref>{{Cite journal|last1=Liu |first1=F. |last2=Wu |first2=R. |last3=Han |first3=F. |year=2022 |title=Vertebrate diversity of the Yanliao Biota and comparison with other biotas |journal=Acta Palaeontologica Sinica |volume=61 |issue=1 |pages=88–106 |doi=10.19800/j.cnki.aps.2020027 |url=http://gswxb.cnjournals.cn/gswxb/article/abstract/20220106 }}</ref>
* A study on the diversity of the vertebrates in the [[Yanliao Biota]], comparing this biota with other biotas of similar age, is published by Liu, Wu & Han (2022).<ref>{{Cite journal|last1=Liu |first1=F. |last2=Wu |first2=R. |last3=Han |first3=F. |year=2022 |title=Vertebrate diversity of the Yanliao Biota and comparison with other biotas |journal=Acta Palaeontologica Sinica |volume=61 |issue=1 |pages=88–106 |doi=10.19800/j.cnki.aps.2020027 |url=http://gswxb.cnjournals.cn/gswxb/article/abstract/20220106 }}</ref>
* Revision of the Early Cretaceous vertebrate fauna from the Khok Pha Suam locality ([[Khok Kruat Formation]], [[Thailand]]) is published by Manitkoon ''et al.'' (2022).<ref>{{Cite journal|last1=Manitkoon |first1=S. |last2=Deesri |first2=U. |last3=Lauprasert |first3=K. |last4=Warapeang |first4=P. |last5=Nonsrirach |first5=T. |last6=Nilpanapan |first6=A. |last7=Wongko |first7=K. |last8=Chanthasit |first8=P. |year=2022 |title=Fossil assemblage from the Khok Pha Suam locality of northeastern, Thailand: an overview of vertebrate diversity from the Early Cretaceous Khok Kruat Formation (Aptian-Albian) |journal=Fossil Record |volume=25 |issue=1 |pages=83–98 |doi=10.3897/fr.25.83081 | doi-access = free }}</ref>
* Revision of the Early Cretaceous vertebrate fauna from the Khok Pha Suam locality ([[Khok Kruat Formation]], [[Thailand]]) is published by Manitkoon ''et al.'' (2022).<ref>{{Cite journal|last1=Manitkoon |first1=S. |last2=Deesri |first2=U. |last3=Lauprasert |first3=K. |last4=Warapeang |first4=P. |last5=Nonsrirach |first5=T. |last6=Nilpanapan |first6=A. |last7=Wongko |first7=K. |last8=Chanthasit |first8=P. |year=2022 |title=Fossil assemblage from the Khok Pha Suam locality of northeastern, Thailand: an overview of vertebrate diversity from the Early Cretaceous Khok Kruat Formation (Aptian-Albian) |journal=Fossil Record |volume=25 |issue=1 |pages=83–98 |doi=10.3897/fr.25.83081 | doi-access = free }}</ref>
* Revision of the [[Cenomanian]] continental vertebrate fauna from the Gara Samani area ([[Algeria]]) is published by Benyoucef ''et al.'' (2022).<ref>{{cite journal |last1=Benyoucef |first1=M. |last2=Pérez-García |first2=A. |last3=Bendella |first3=M. |last4=Ortega |first4=F. |last5=Vullo |first5=R. |last6=Bouchemla |first6=I. |last7=Ferré |first7=B. |year=2022 |title=The “mid”-Cretaceous (Lower Cenomanian) Continental Vertebrates of Gara Samani, Algeria. Sedimentological Framework and Palaeodiversity |journal=Frontiers in Earth Science |volume=10 |pages=Article 927059 |doi=10.3389/feart.2022.927059 |doi-access=free }}</ref>
* A diverse biotic community comprising bacteria, fungi, nematodes, several types of arthropods, and marine bivalves is reported from the fossil wood assemblage from the [[Santonian]] Mzamba Formation ([[South Africa]]) by Philippe ''et al.'' (2022).<ref>{{Cite journal|last1=Philippe |first1=M. |last2=McLoughlin |first2=S. |last3=Strullu-Derrien |first3=C. |last4=Bamford |first4=M. |last5=Kiel |first5=S. |last6=Nel |first6=A. |last7=Thévenard |first7=F. |title=Life in the woods: Taphonomic evolution of a diverse saproxylic community within fossil woods from Upper Cretaceous submarine mass flow deposits (Mzamba Formation, southeast Africa) |year=2022 |journal=Gondwana Research |volume=109 |pages=113–133 |doi=10.1016/j.gr.2022.04.008 |bibcode=2022GondR.109..113P }}</ref>
* A diverse biotic community comprising bacteria, fungi, nematodes, several types of arthropods, and marine bivalves is reported from the fossil wood assemblage from the [[Santonian]] Mzamba Formation ([[South Africa]]) by Philippe ''et al.'' (2022).<ref>{{Cite journal|last1=Philippe |first1=M. |last2=McLoughlin |first2=S. |last3=Strullu-Derrien |first3=C. |last4=Bamford |first4=M. |last5=Kiel |first5=S. |last6=Nel |first6=A. |last7=Thévenard |first7=F. |title=Life in the woods: Taphonomic evolution of a diverse saproxylic community within fossil woods from Upper Cretaceous submarine mass flow deposits (Mzamba Formation, southeast Africa) |year=2022 |journal=Gondwana Research |volume=109 |pages=113–133 |doi=10.1016/j.gr.2022.04.008 |bibcode=2022GondR.109..113P }}</ref>
* A diverse vertebrate fauna, sharing similarities with lowland to marginal marine ecosystems in the [[Oldman Formation|Oldman]] and [[Dinosaur Park Formation|Dinosaur Park]] formations (which were deposited in southern Alberta prior to the gap in the terrestrial fossil record caused by a transgression of the inland Bearpaw Seaway during the latter part of the [[Campanian]]), is described from the Unit 3 of the strictly terrestrial [[Wapiti Formation]] (Alberta, Canada) by Fanti ''et al.'' (2022).<ref>{{Cite journal|last1=Fanti |first1=F. |last2=Bell |first2=P. R. |last3=Vavrek |first3=M. |last4=Larson |first4=D. |last5=Koppelhus |first5=E. |last6=Sissons |first6=R. L. |last7=Langone |first7=A. |last8=Campione |first8=N. E. |last9=Sullivan |first9=C. |title=Filling the Bearpaw gap: Evidence for palaeoenvironment-driven taxon distribution in a diverse, non-marine ecosystem from the late Campanian of west-Central Alberta, Canada |year=2022 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=592 |pages=Article 110923 |doi=10.1016/j.palaeo.2022.110923 |bibcode=2022PPP...592k0923F |s2cid=247348345 }}</ref>
* A diverse vertebrate fauna, sharing similarities with lowland to marginal marine ecosystems in the [[Oldman Formation|Oldman]] and [[Dinosaur Park Formation|Dinosaur Park]] formations (which were deposited in southern Alberta prior to the gap in the terrestrial fossil record caused by a transgression of the inland Bearpaw Seaway during the latter part of the [[Campanian]]), is described from the Unit 3 of the strictly terrestrial [[Wapiti Formation]] (Alberta, Canada) by Fanti ''et al.'' (2022).<ref>{{Cite journal|last1=Fanti |first1=F. |last2=Bell |first2=P. R. |last3=Vavrek |first3=M. |last4=Larson |first4=D. |last5=Koppelhus |first5=E. |last6=Sissons |first6=R. L. |last7=Langone |first7=A. |last8=Campione |first8=N. E. |last9=Sullivan |first9=C. |title=Filling the Bearpaw gap: Evidence for palaeoenvironment-driven taxon distribution in a diverse, non-marine ecosystem from the late Campanian of west-Central Alberta, Canada |year=2022 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=592 |pages=Article 110923 |doi=10.1016/j.palaeo.2022.110923 |bibcode=2022PPP...592k0923F |s2cid=247348345 }}</ref>

Revision as of 21:13, 20 July 2022

List of years in paleontology (table)
In paleobotany
2019
2020
2021
2022
2023
2024
2025
In arthropod paleontology
2019
2020
2021
2022
2023
2024
2025
In paleoentomology
2019
2020
2021
2022
2023
2024
2025
In paleomalacology
2019
2020
2021
2022
2023
2024
2025
In reptile paleontology
2019
2020
2021
2022
2023
2024
2025
In archosaur paleontology
2019
2020
2021
2022
2023
2024
2025
In mammal paleontology
2019
2020
2021
2022
2023
2024
2025
In paleoichthyology
2019
2020
2021
2022
2023
2024
2025

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2022.

Flora

Plants

Fungi

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Other

Name Novelty Status Authors Age Type locality Location Notes Images

Calathophycus[2]

Gen. et sp. nov

Valid

Tang in Tang et al.

Cambrian (Fortunian)

Kuanchuanpu Formation

 China

Probably a eukaryotic multicellular alga of uncertain affinities. Genus includes new species C. irregulatus.

Reptamsassia[3]

Gen. et 2 sp. nov

Valid

Lee, Elias & Pratt

Ordovician (Floian)

Boat Harbour Formation

 Canada
( Newfoundland and Labrador)

A calcareous alga (possibly green alga) related to Amsassia. Genus includes new species R. divergens and R. minuta.

Research

  • Sforna et al. (2022) report the discovery of bound nickel-tetrapyrrole moieties preserved within cells of a ~1-billion-years-old eukaryote Arctacellularia tetragonala from the BII Group of the Mbuji-Mayi Supergroup (Democratic Republic of the Congo), identify the tetrapyrrole moieties as chlorophyll derivatives, and interpret A. tetragonala as one of the earliest known multicellular algae.[4]
  • A study on the mode of preservation of macroalgae and associated filamentous microfossils from the Tonian Dolores Creek Formation (Yukon, Canada) is published by Maloney et al. (2022).[5]
  • Retallack (2022) argues that Late Silurian and Early Devonian nematophytes would have towered over land plants from the same fossil plant assemblages, including vascular plant trees, that nematophytes were branched and formed closed canopies, that there were extensive networks of nutrient-gathering glomeromycotan mycorrhizae in Ordovician to Devonian paleosols, and that the environment with nematophytes as the tallest elements of terrestrial vegetation and soils riddled with mycorrhizae may have nurtured, sheltered and facilitated the evolution of early land plants.[6]

Cnidarians

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Acropora suwanneensis[7]

Sp. nov

Valid

Wallace & Portell

Early Oligocene

Suwannee Limestone

 United States
( Florida)

A species of Acropora.

Acropora upchurchi[7]

Sp. nov

Valid

Wallace & Portell

Early Oligocene

Suwannee Limestone

 United States
( Florida)

A species of Acropora.

Corwenia tirhelensis[8]

Sp. nov

In press

Rodríguez et al.

Carboniferous (Bashkirian)

Tirhela Formation

 Morocco

A rugose coral belonging to the family Aulophyllidae.

Glyptoconularia antiatlasica[9]

Sp. nov

Valid

Van Iten, Gutiérrez-Marco & Cournoyer

Ordovician (Darriwilian)

Taddrist Formation

 Morocco

A conulariid.

Ilankirus[10]

Gen. et sp. nov

Valid

Sarsembaev & Marusin

Cambrian Stage 2

 Russia

A conulariid. Genus includes new species I. kessyusensis.

Lafustalcyon[11]

Gen. et sp. nov

In press

Denayer et al.

Carboniferous (Serpukhovian)

 France

An alcyonacean octocoral. Genus includes new species L. vachardi.

Paraconularia ediacara[12]

Sp. nov

Leme, Van Iten & Simões

Latest Ediacaran

Tamengo Formation

 Brazil

A conulariid.

Semenomalophyllia[11]

Gen. nov

In press

Denayer et al.

Carboniferous (Serpukhovian)

 France

A colonial heterocoral. Genus includes S. herbigi, S. perretae, S. weyeri and S. webbi.

Septuconularia crassiformis[13]

Sp. nov

In press

Song et al.

Cambrian Stage 2

Yanjiahe Formation

 China

A member of the family Hexangulaconulariidae.

Stylomaeandra neuquensis[14]

Sp. nov

In press

Garberoglio, Löser & Lazo

Early Cretaceous (ValanginianHauterivian)

Agrio Formation

 Argentina

A stony coral belonging to the family Latomeandridae.

Syringopora paraconferta[15]

Sp. nov

In press

Ohar

Carboniferous (Mississippian)

 Ukraine

A tabulate coral.

Research

  • A study on the taphonomy and systematics of conulariid specimens from the Silurian (Telychian) Waukesha Lagerstätte (Wisconsin, United States) is published by Miller et al. (2022).[16]
  • Wang et al. (2022) describe phosphatized muscle fibers preserved in three dimensions in post-embryonic stages of olivooids from the Cambrian (Fortunian) Kuanchuanpu Formation (China) – representing the oldest occurrence of muscle tissue in cnidarians, and in animals in general, reported to date – and evaluate the implications of this finding and fossil evidence from ecdysozoans for the knowledge of the evolution of the muscle systems of early animals.[17]
  • A study on changes in the functional diversity of tabulate coral assemblages across the Devonian and early Carboniferous, and on their implications for the knowledge of the impact of extinction events from this time period on tabulate corals, is published by Bridge et al. (2022).[18]

Arthropods

Bryozoans

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Albardonia[19]

Gen. et sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

 Argentina

A trepostome belonging to the family Heterotrypidae. The type species is A. bifoliata.

Antropora ramaniaensis[20]

Sp. nov

Valid

Sonar, Pawar & Wayal

Miocene (Burdigalian)

Chhasra Formation

 India

A species of Antropora.

Argentinopora[19]

Gen. et sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

 Argentina

A trepostome of uncertain affinities. The type species is A. robusta.

Burdwoodipora griffini[21]

Sp. nov

Valid

Pérez & López-Gappa

Miocene (Burdigalian)

Monte León Formation

 Argentina

Canda ukirensis[20]

Sp. nov

Valid

Sonar, Pawar & Wayal

Miocene (Burdigalian)

Chhasra Formation

 India

A species of Canda.

Chazydictya ornata[19]

Sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

 Argentina

A cryptostome belonging to the family Escharoporidae.

Dianulites pakriensis[22]

Sp. nov

Valid

Ernst

Ordovician (Darriwilian)

 Estonia

A member of Stenolaemata belonging to the superorder Palaeostomata, the order Esthonioporata and the family Dianulitidae.

Dyscritella felixi[23]

Sp. nov

Valid

Ernst et al.

Carboniferous (Pennsylvanian)

Graham Formation

 United States
( Texas)

Heterotrypa enodis[19]

Sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

 Argentina

A trepostome belonging to the family Heterotrypidae.

Laxifenestella texana[23]

Sp. nov

Valid

Ernst et al.

Carboniferous (Pennsylvanian)

Graham Formation

 United States
( Texas)

Micropora mikesmithi[24]

Sp. nov

Valid

Taylor & Villier

Late Cretaceous (Campanian)

Aubeterre Formation

 France

A member of the family Microporidae.

Microporella gladirostra[25]

Sp. nov

Valid

Ramsfjell, Taylor & Di Martino

Miocene (Otaian and Altonian)

White Rock Limestone Formation

 New Zealand

A species of Microporella.

Microporella incurvata[25]

Sp. nov

Valid

Ramsfjell, Taylor & Di Martino

Miocene (Otaian and Altonian)

Clifden Limestone Formation

 New Zealand

A species of Microporella.

Microporella whiterocki[25]

Sp. nov

Valid

Ramsfjell, Taylor & Di Martino

Miocene (Otaian)

White Rock Limestone Formation

 New Zealand

A species of Microporella.

Nicholsonella spinigera[19]

Sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

 Argentina

A trepostome of uncertain affinities.

Odontoporella miocenica[21]

Sp. nov

Valid

Pérez & López-Gappa

Miocene (Burdigalian)

Monte León Formation

 Argentina

Pakripora[22]

Gen. et sp. nov

Valid

Ernst

Ordovician (Darriwilian)

 Estonia

A member of Trepostomata of uncertain phylogenetic placement. The type species is P. cavernosa.

Platelinella[24]

Gen. et sp. nov

Valid

Taylor & Villier

Late Cretaceous (Campanian)

Biron Formation

 France

A member of the family Microporidae. The type species is P. solea.

Pollexelea[26]

Gen. et sp. nov

Valid

Taylor

Early Cretaceous (Albian)

 India

A cyclostome belonging to the family Eleidae. The type species is P. badvei.

Pseudostictoporella simplex[19]

Sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

 Argentina

A cryptostome belonging to the family Stictoporellidae.

Reptomultelea cuffeyi[26]

Sp. nov

Valid

Taylor

Early Cretaceous (Albian)

 United States
( Texas)

A cyclostome belonging to the family Eleidae.

Thalamoporella badvei[27]

Sp. nov

Valid

Sonar, Pawar & Wayal

Miocene (Aquitanian)

Kharinadi Formation

 India

A species of Thalamoporella.

Thalamoporella bhujensis[27]

Sp. nov

Valid

Sonar, Pawar & Wayal

Miocene (Aquitanian)

Kharinadi Formation

 India

A species of Thalamoporella.

Xenotrypa argentinensis[19]

Sp. nov

Valid

Ernst & Carrera

Ordovician (Sandbian)

La Pola Formation

 Argentina

A cystoporate belonging to the family Xenotrypidae.

Research

  • Fossils which might represent the oldest bryozoans with calcareous skeletons reported to date are described from the Cambrian Harkless Formation (Nevada, United States) by Pruss et al. (2022).[28]
  • A study on the diversity of bryozoans from the Ordovician (Tremadocian) Fenhsiang Formation (China) is published by Ma et al. (2022).[29]
  • A study on the diversification dynamics of cheilostome bryozoans since the Late Jurassic is published by Moharrek et al. (2022).[30]
  • A study on the phylogenetic relationships and evolutionary history of cheilostome bryozoans is published by Orr et al. (2022), who interpret their findings as indicating that named cheilostome genera and species are natural groupings, and that skeletal traits can be used to assign fossil or contemporary specimens to cheilostome species.[31]

Brachiopods

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Altynorthis[32]

Gen. et 2 sp. et comb. nov

In press

Popov & Cocks

Ordovician

Berkutsyur Formation

 Kazakhstan

A member of the family Plectorthidae. The type species is A. vinogradovae; genus also includes new species A. betpakdalensis, as well as "Hesperorthis" tabylgatensis Misius (1986).

Apatomorpha akbakaiensis[32]

Sp. nov

In press

Popov & Cocks

Ordovician

Baigara Formation

 Kazakhstan

Aploobolus[32]

Gen. et sp. nov

In press

Popov & Cocks

Ordovician (Sandbian)

Kopkurgan Formation

 Kazakhstan

A member of the family Obolidae. The type species is A. tenuis.

Aramazdospirifer[33]

Gen. et comb. nov

Valid

Serobyan et al.

Devonian (Famennian)

 Armenia

A member of the family Cyrtospiriferidae. The type species is "Spirifer" orbelianus Abich (1858).

Arzonellina bogicae[34]

Sp. nov

In press

Vörös

Early Jurassic (Sinemurian?)

Brachiopodal Hierlatz Limestone

 Hungary

A member of Terebratulida belonging to the family Arzonellinidae.

Baitalorhyncha[32]

Gen. et sp. nov

In press

Popov & Cocks

Ordovician

 Kazakhstan

A member of the family Sphenotretidae. The type species is B. rectimarginata.

Batenevotreta? mexicana[35]

Sp. nov

Valid

Holmer et al.

Cambrian (Wuliuan)

El Gavilán Formation

 Mexico

A member of Acrotretida, possibly a member of the family Scaphelasmatidae.

Bimuria karatalensis[32]

Sp. nov

In press

Popov & Cocks

Ordovician

 Kazakhstan

A member of the family Bimuriidae.

Cirpa lucentina[36]

Sp. nov

Valid

Baeza-Carratalá & García Joral

Early Jurassic (Pliensbachian)

Gavilán Formation

 Spain

A member of Rhynchonellida belonging to the family Wellerellidae.

Costistriispira[32]

Gen. et sp. nov

In press

Popov & Cocks

Ordovician (Sandbian)

Kopkurgan Formation

 Kazakhstan

A member of Lissatrypoidea belonging to the family Kellerellidae. The type species is C. proavia.

Doughlatomena[32]

Gen. et sp. nov

In press

Popov & Cocks

Ordovician

 Kazakhstan

A member of the family Rafinesquinidae. The type species is D. splendens.

Eiratrypa[37]

Gen. et comb. nov

Valid

Baarli

Silurian (Aeronian and Telychian)

 Norway
 Russia
 Sweden
 United Kingdom

A member of the family Atrypidae. The type species is "Protatrypa" thorslundi Boucot & Johnson (1964); genus also includes "Atrypa" orbicularis Sowerby (1839) and "Atrypa" antiqua Kulkov in Kulkov & Severgina (1989).

Glosseudesia inexpectata[38]

Sp. nov

Mojon in Mojon & De Kaenel

Early Cretaceous (Barremian)

Saars Formation

  Switzerland

Kassinella simorini[32]

Sp. nov

In press

Popov & Cocks

Ordovician

Kopkurgan Formation

 Kazakhstan

Lepidomena betpakdalensis[32]

Sp. nov

In press

Popov & Cocks

Ordovician

Baigara Formation

 Kazakhstan

Lictorthis[32]

Gen. et comb. nov

In press

Popov & Cocks

Ordovician

 Kazakhstan

A member of the family Plectorthidae. The type species is "Plectorthis" licta Popov & Cocks (2006).

Lydirhyncha[32]

Gen. et comb. nov

In press

Popov & Cocks

Ordovician

 China
 Kazakhstan

A member of the family Ancistrorhynchidae. The type species is "Rhynchotrema" zhejiangensis Wang in Wang & Jin (1964); genus also includes "Rhynchotrema" gushanensis Liang in Liu et al. (1983) and "Rhynchotrema" tarimensis Sproat & Zhan (2018).

Pentagonospirifer[39]

Gen. et sp. nov

Valid

Serobyan et al.

Devonian (Famennian)

 Armenia

A cyrtospiriferid brachiopod. The type species is P. abrahamyanae.

Phaceloorthis? corrugata[32]

Sp. nov

In press

Popov & Cocks

Ordovician

 Kazakhstan

Piarorhynchella selongensis[40]

Sp. nov

Valid

Wang & Chen in Wang et al.

Early Triassic

 China

Proconchidium schleyi[41]

Sp. nov

Valid

Jin et al.

Late Ordovician

 Greenland

Prodavidsonia ebbighauseni[42]

Sp. nov

Valid

Halamski & Baliński in Halamski, Baliński & Koppka

Devonian (Eifelian)

Taboumakhlouf Formation

 Morocco

A member of the family Davidsoniidae.

Schwagerispira cheni[40]

Sp. nov

Valid

Wang & Chen in Wang et al.

Early Triassic

 China

Selongthyris[40]

Gen. et sp. nov

Valid

Wang & Chen in Wang et al.

Early Triassic

 China

Genus includes new species S. plana.

Sonculina baigarensis[32]

Sp. nov

In press

Popov & Cocks

Ordovician

 Kazakhstan

Spinatrypa ennigaldinannae[42]

Sp. nov

Valid

Halamski & Baliński in Halamski, Baliński & Koppka

Devonian (Eifelian)

Taboumakhlouf Formation

 Morocco

A member of the family Atrypidae.

Tcherskidium lonei[41]

Sp. nov

Valid

Jin et al.

Late Ordovician

 United States
( Alaska)

Testaprica alperovichi[32]

Sp. nov

In press

Popov & Cocks

Ordovician

 Kazakhstan

Tornatospirifer[39]

Gen. et comb. nov

Valid

Serobyan et al.

Devonian (Famennian)

 Armenia

A cyrtospiriferid brachiopod. The type species is T. armenicus.

Waagenoconcha peregoedovi[43]

Sp. nov

Valid

Makoshin

Early Permian

Kubalakh Formation

 Russia

A member of Productida.

Research

  • A study on the phylogenetic relationships and biogeography of members of the family Nisusiidae is published by Oh et al. (2022).[44]

Molluscs

Echinoderms

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Angulocrinus tomaszi[45]

Sp. nov

Valid

Zamora

Late Jurassic (Oxfordian)

Yatova Formation

 Spain

A crinoid belonging to the group Millericrinida and the family Millericrinidae.

Arauricystis clariondi[46]

Sp. nov

In press

Lefebvre et al.

Ordovician

A cornute stylophoran.

Atelestocrinus baumilleri[47]

Sp. nov

Valid

Gahn

Carboniferous (Viséan)

Ramp Creek Formation

 United States
( Indiana)

A cladid crinoid belonging to the group Dendrocrinida.

Ausichicrinites[48]

Gen. et sp. nov

Valid

Salamon et al.

Late Jurassic (Tithonian)

Antalo Limestone

 Ethiopia

A member of Comatulida. The type species is A. zelenskyyi.

Bohemiaecystis chouberti[46]

Sp. nov

In press

Lefebvre et al.

Ordovician

 Morocco

A cornute stylophoran.

Codiacrinus sevastopuloi[49]

Sp. nov

Valid

Ausich et al.

Devonian (Emsian)

 Poland

A cyathoform cladid crinoid.

Destombesicarpus[46]

Gen. et 2 sp. nov

In press

Lefebvre et al.

Ordovician

 Morocco

A cornute stylophoran. Genus includes new species D. izegguirenensis and D. budili.

Diamphidiocystis regnaulti[50]

Sp. nov

In press

Lefebvre et al.

Ordovician

An anomalocystitid mitrate.

Exallocrinus[51]

Gen. et sp. nov

In press

Webster, Heward & Ausich

Permian (Wordian)

Khuff Formation

 Oman

A crinoid, possibly a member of the family Ampelocrinidae. The type species is E. khuffensis.

Furculaster[52]

Gen. et sp. nov

In press

Gale

Late Cretaceous

Europe

A starfish belonging to the family Korethrasteridae. Genus includes new species F. cretae.

Habanaster itzae[53]

Sp. nov

In press

Villier et al.

Eocene (Lutetian)

Anotz Formation

 Spain

A heart urchin belonging to the family Ovulasteridae.

Kutscheraster[52]

Gen. et sp. nov

In press

Gale

Late Cretaceous (Maastrichtian)

 Germany

A starfish belonging to the group Velatida. Genus includes new species K. ruegenensis.

Milonicystis reboulorum[46]

Sp. nov

In press

Lefebvre et al.

Ordovician

A cornute stylophoran.

Muldaster[54]

Gen. et sp. nov

Valid

Thuy, Eriksson & Numberger-Thuy in Thuy et al.

Silurian (Wenlock)

Halla Formation

 Sweden

A brittle star. The type species is M. haakei.

Neobothriocidaris pentlandensis[55]

Sp. nov

Valid

Thompson et al.

Silurian

 Sweden
 United Kingdom

A sea urchin.

Ohiocrinus byeongseoni[56]

Sp. nov

Valid

Park et al.

Ordovician (Darriwilian)

Jigunsan Formation

 South Korea

A cincinnaticrinid crinoid.

Ophiodoris niersteinensis[57]

Sp. nov

Valid

Thuy, Nungesser & Numberger-Thuy

Oligocene (Rupelian)

Bodenheim Formation

 Germany

A brittle star belonging to the family Ophionereididae.

Ophiopetagno[54]

Gen. et sp. nov

Valid

Thuy, Eriksson & Numberger-Thuy in Thuy et al.

Silurian (Wenlock)

Fröjel Formation

 Sweden

A brittle star. The type species is O. paicei.

Ophiura pohangensis[58]

Sp. nov

Valid

Ishida et al.

Miocene

Duho Formation

 South Korea

A species of Ophiura.

Ophiura tankardi[57]

Sp. nov

Valid

Thuy, Nungesser & Numberger-Thuy

Oligocene (Rupelian)

Bodenheim Formation

 Germany

A species of Ophiura.

Orthopsis kiseljaki[59]

Sp. nov

Valid

Stecher

Late Triassic (Rhaetian)

Kössen Formation

 Austria

A sea urchin belonging to the group Carinacea and the family Orthopsidae.

Parahybocrinus[60]

Gen. et sp. nov

Valid

Guensburg & Sprinkle

Ordovician (Floian)

Fillmore Formation

 United States
( Utah)

A cladid crinoid belonging to the group Hybocrinida. The type species is P. siewersi.

Peedeeaster[61]

Gen. et sp. nov

Valid

Mah

Late Cretaceous (Maastrichtian)

Peedee Formation

 United States
( North Carolina)

A starfish belonging to the family Goniasteridae. The type species is P. sandersoni.

Syndiasmocrinus[60]

Gen. et sp. nov

Valid

Guensburg & Sprinkle

Ordovician (Floian)

Ninemile Formation

 United States
( Nevada
 Utah)

A cladid crinoid belonging to the group Hybocrinida. The type species is S. apokalypto.

Thoralicarpus[46]

Gen. et 2 sp. nov

In press

Lefebvre et al.

Ordovician

 Morocco

A cornute stylophoran. Genus includes new species T. bounemrouensis and T. prokopi.

Yorkicystis[62][63]

Gen. et sp. nov

Zamora et al.

Cambrian

Kinzers Formation

 United States
( Pennsylvania)

An edrioasteroid. The type species is Y. haefneri.

Research

  • A study on the evolution of the anatomy and life habits of Cambrian–Ordovician echinoderms is published by Novack-Gottshall et al. (2022).[64]
  • A study on the morphology of the internal bars in Lagynocystis pyramidalis and Jaekelocarpus oklahomensis, reevaluating the evidence for gill bars in stylophorans, is published by Álvarez-Armada et al. (2022).[65]
  • A study on dispersal patterns and morphological changes in sphaeronitid diploporans across the Ordovician–Silurian boundary is published by Sheffield et al. (2022).[66]
  • A study on the morphology and paleoecology of calceocrinid crinoids is published by Ausich (2022).[67]
  • A study on the phylogeny and divergence times of major lineages of sea urchins, comparing phylogenomic data with the fossil record, is published by Mongiardino Koch et al. (2022).[68]
  • Redescription of Cantabrigiaster fezouataensis is published by Blake & Hotchkiss (2022), who synonymize the genus Cantabrigiaster with the chinianasterid somasteroid genus Villebrunaster, and consider the interpretations of a close phylogenetic linkage between crinoids and starfish and an edrioasteroid ancestry of starfish to be inadequately supported.[69]

Conodonts

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Belodella salairica[70]

Sp. nov

Valid

Izokh

Devonian

 Russia

Caudicriodus yolkini[70]

Sp. nov

Valid

Izokh

Devonian

 Russia

Icriodus olgaborisovnae[71]

Sp. nov

Valid

Nazarova & Kononova

Devonian (Eifelian)

 Russia

Idiognathodus praeguizhouensis[72]

Sp. nov

Valid

Hu, Qi & Wang

Carboniferous (Pennsylvanian)

 China

Juanognathus? denticulatus[73]

Sp. nov

Valid

Zhen, Allen & Martin

Early Ordovician

Nambeet Formation

 Australia

Palmatolepis adorfensis[74]

Sp. nov

Valid

Saupe & Becker

Devonian (Frasnian)

 Australia
 Belgium
 Germany
 Morocco

Palmatolepis descendens[74]

Sp. nov

Valid

Saupe & Becker

Devonian (Frasnian)

 China
 Germany

Palmatolepis jamieae rosa[74]

Ssp. nov

Valid

Saupe & Becker

Devonian (Frasnian)

 Belgium
 China
 Germany
 Russia

Palmatolepis jamieae savagei[74]

Ssp. nov

Valid

Saupe & Becker

Devonian (Frasnian)

 China
 Germany
 Morocco
 Russia

Research

  • A study on the material properties of bioapatite in multiple elements in the coniform-bearing apparatus of Dapsilodus obliquicostatus, representing different ontogenetic stages of development, is published by Shohel et al. (2022).[75]
  • Redescription of Histiodella labiosa and a study on the phylogenetic affinities of members of the genus Histiodella is published by Zhen, Bauer & Bergström (2022).[76]
  • A study aiming to determine whether co-occurring Silurian conodont species from the Gotland succession in Sweden occupied different trophic niches is published by Terrill et al. (2022).[77]
  • A synthesis on the conodont occurrences along northern Gondwana at the Silurian/Devonian boundary is published by Ferretti et al. (2022).[78]
  • A study on the morphological variation of elements of the apparatus of Icriodus alternatus is published by Girard et al. (2022), who interpret their findings as indicating that subspecies of this species described for the end Frasnian and early Famennian constitute end-member morphologies characterizing different growth stages.[79]
  • A study comparing conodont diversity dynamics in Northeast Laurussia and Northeast Siberia during the Tournaisian, and evaluating its implications for the knowledge of the causes of the extinction among conodonts during the middle–late Tournaisian transition, is published by Zhuravlev & Plotitsyn (2022).[80]
  • A study on the apparatus composition of Lochriea commutata, and on its implications for the assignments of other Carbonifeous conodont species to the genus Lochriea, is published by von Bitter, Norby & Stamm (2022).[81]

Fish

Amphibians

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Albanerpeton ektopistikon[82]

Sp. nov

Valid

Carrano et al.

Early Cretaceous

Cloverly Formation

 United States
( Wyoming)

Chemnitzion[83]

Gen. et sp. nov

In press

Werneburg et al.

Permian (SakmarianArtinskian transition)

Leukersdorf Formation

 Germany

A zatracheid temnospondyl. The type species is C. richteri.

Cretadhefdaa[84]

Gen. et sp. nov

Valid

Lemierre & Blackburn

Late Cretaceous (Cenomanian)

Kem Kem Group (Douira Formation)

 Morocco

A neobatrachian frog. The type species is C. taouzensis.

Marmorerpeton wakei[85]

Sp. nov

Valid

Jones et al.

Middle Jurassic

Kilmaluag Formation

 United Kingdom

A member of the family Karauridae.

Rhinella xerophylla[86]

Sp. nov

In press

Ponssa et al.

Late Pliocene

Uquía Formation

 Argentina

A toad, a species of Rhinella.

Termonerpeton[87]

Gen. et sp. nov

Valid

Clack, Smithson & Ruta

Carboniferous (Viséan)

Bathgate Hills Volcanic Formation

 United Kingdom

A tetrapod of uncertain affinities, probably a stem-amniote. The type species is T. makrydactylus.

Research

  • A study on the anatomy of the Carboniferous temnospondyl specimen from the Joggins Fossil Cliffs (Nova Scotia, Canada) referred to Dendrysekos helogenes is published by Arbez, Atkins & Maddin (2022), who consider the genus Dendrysekos to be likely junior synonym of Dendrerpeton.[88]
  • Fossil material of large-bodied capitosaurs and a plagiosaurid is described from the Middle Triassic Fremouw Formation (Antarctica) by Gee & Sidor (2022), who also interpret the historic material from the Fremouw Formation attributed to Trematosauria as exhibiting features indicative of capitosaurian affinities.[89]
  • Redescription of Platycepsion wilkinsoni is published by Witzmann & Schoch (2022), who interpret this brachyopid as a true larva, demonstrating the presence of a larval stage in stereospondyls.[90]
  • A study aiming to test whether the hindlimb of Eryops megacephalus may have been capable of salamander-like hindlimb configurations is published by Herbst, Manafzadeh & Hutchinson (2022).[91]
  • Redescription of Parioxys ferricolus is published by Schoch & Sues (2022).[92]
  • An incomplete salamander dentary, possibly representing a previously unknown genus and species of batrachosauroidid, is described from the Maastrichtian Lance Formation (Wyoming, United States) by Gardner (2022).[93]
  • A study on the phylogenetic relationships of extant and extinct members of the family Ceratophryidae is published by Barcelos et al. (2022).[94]
  • Fossil material of a toad belonging or related to the genus Rhinella is described from the Serravallian Cura-Mallín Formation (Chile) by Guevara et al. (2022), representing the southernmost fossil record of Bufonidae in South America for the Miocene reported to date.[95]
  • A study on the seymouriamorph tracks from the Permian (Asselian) of the Boskovice Basin (Czech Republic), representing one of the oldest known records of seymouriamorphs worldwide, is published by Calábková, Březina & Madzia (2022), who interpret these tracks as evidence of presence of terrestrial seymouriamorphs which were much larger than the largest discosauriscid specimens known from this area, and likely evidence of a habitat shift that occurred relatively late in the ontogenetic development of discosauriscids.[96]
  • A study on the anatomy and pattern of replacement of teeth in Seymouria is published by Maho & Reisz (2022).[97]
  • Jansen & Marjanović (2022) study the microanatomy of the limb bones and axial skeleton of Batropetes palatinus, infer a terrestrial lifestyle for the taxon that involved digging but not outright burrowing, and argue that the presence of strengthened forelimbs in Triadobatrachus in spite of its lack of the ability to jump might have been a former adaptation to forelimb-based digging that made jumping of later anurans possible by exaptation.[98]

Reptiles

Synapsids

General reseach

  • A study on the morphological diversity of synapsid skulls is published by Marugán-Lobón, Gómez-Recio & Nebreda (2022).[99]

Non-mammalian synapsids

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Bienotheroides xingshanensis[100]

Sp. nov

Valid

Liu et al.

Middle Jurassic

Shaximiao Formation

 China

A tritylodontid cynodont.

Cifellilestes[101] Gen. et sp. nov Davis et al. Late Jurassic (Tithonian) Morrison Formation  United States A morganucodontan. The type species is C. ciscoensis.
Eoscansor[102] Gen. et sp. nov Valid Lucas et al. Carboniferous (Pennsylvanian) El Cobre Canyon Formation  United States ( New Mexico) A varanopid. The type species is E. cobrensis.

Euchambersia liuyudongi[103]

Sp. nov

Liu & Abdala

Permian (Wuchiapingian)

Naobaogou Formation

 China

A therocephalian.

Lalieudorhynchus[104]

Gen. et sp. nov

In press

Werneburg et al.

Permian (Roadian/Wordian to early Capitanian)

La Lieude Formation

 France

A caseid. The type species is L. gandi.

Notictoides[105]

Gen. et sp. nov

Sidor, Kulik & Huttenlocker

Early Triassic

Fremouw Formation

Antarctica

A therocephalian. Genus includes new species N. absens.

Phorcys[106]

Gen. et sp. nov

In press

Kammerer & Rubidge

Middle Permian (Wordian-Capitanian)

Abrahamskraal Formation

 South Africa

An early gorgonopsian. The type species is P. dubei.

Tessellatia[107]

Gen. et sp. nov

Gaetano et al.

Late Triassic (Norian)

Los Colorados Formation

 Argentina

A cynodont belonging to the group Probainognathia. The type species is T. bonapartei.

Research

  • A study on the anatomy of the skull of Cotylorhynchus romeri is published by Reisz, Scott & Modesto (2022).[108]
  • Fossil material of Dicynodon angielczyki is described from the Metangula Graben (Mozambique) and Luangwa Basin (Zambia) by Kammerer et al. (2022), representing the first specimens referable to this species found outside the Ruhuhu Basin (Tanzania).[109]
  • A study on the anatomy of the basicranial axis of emydopoid dicynodonts is published by Macungo et al. (2022), who provide evidence for fossorial adaptations of the basicranium in the studied taxa, and interpret these adaptations as supporting a head-lift digging behaviour for at least some cistecephalids.[110]
  • New material of the dicynodonts Shaanbeikannemeyeria and Parakannemeyeria, providing a re-description of the morphology and taxonomy of the former taxon, is described from the Middle Triassic Ermaying Formation (Ordos Basin, Shaanxi, China) by Jun Liu (2022).[111]
  • Sidor (2022) describes articulated pedes of a small gorgonopsian from the upper Permian upper Madumabisa Mudstone Formation (Zambia).[112]
  • A gorgonopsian specimen is described from the Wutonggou Formation (Turpan Basin, Xinjiang, China) by Liu & Yang (2022), who interpret this specimen as indicating that gorgonopsians survived in northern warm temperate zone about ∼253.3 million years ago, contemporaneous with the latest records from Russia and South Africa.[113]
  • A study on the pattern of tooth replacement in Cynosaurus suppostus, based on data from five specimens inferred to represent an ontogenetic growth series, is published by Norton et al. (2022).[114]
  • A study aiming to determine the body mass of Andescynodon mendozensis, Pascualgnathus polanskii, Massetognathus pascuali, Cynognathus crateronotus and Exaeretodon argentinus on the basis of linear measurements and circumferences of postcranial elements of specimens from Triassic units of the Ischigualasto-Villa Union Basin (Argentina) is published by Filippini, Abdala & Cassini (2022).[115]
  • New fossil material of Santacruzodon hopsoni and Chiniquodon sp., providing new information on the anatomy of the former taxon, is described from the Upper Triassic Santacruzodon Assemblage Zone (Santa Cruz Sequence, Santa Maria Supersequence, Brazil) by Melo, Martinelli & Soares (2022).[116]
  • Description of the anatomy of the mandible and teeth of Hadrocodium wui, including new information unavailable from previous fossil preparation, is published by Luo et al. (2022).[117]
  • Araújo et al. (2022) argue that morphological changes to the endolymph-filled semicircular ducts of the inner ear of synapsids were related to changes of their body temperatures, and that endothermy evolved abruptly during the Late Triassic in Mammaliamorpha, with all stem mammaliamorphs likely being ectotherms.[118]

Mammals

Other animals

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Acanthochaetetes fischeri[119]

Sp. nov

In press

Schlagintweit et al.

Paleocene (Thanetian)

Khurmala Formation

 Iran
 Iraq

A demosponge belonging to the family Acanthochaetetidae.

Anjigraptus[120]

Gen. et sp. nov

Valid

Muir et al.

Ordovician (Hirnantian)

 China

A graptolite. The type species is A. wangi.

Anjiplectella[121]

Gen. et sp. nov

Botting et al.

Ordovician (Hirnantian)

 China

A sponge belonging to the family Euplectellidae. The type species is A. davidipharus.

Anticalyptraea madenensis[122]

Sp. nov

In press

Zatoń et al.

Devonian

 Morocco

An anticalyptraeid tubeworm.

Archaeopetasus pachybasalis[123]

Sp. nov

Valid

Kouchinsky in Kouchinsky et al.

Cambrian (Tommotian)

Tyuser Formation

 Russia
( Sakha)

A chancelloriid.

Clathrodictyon megalamellatum[124]

Sp. nov

Valid

Jeon in Jeon et al.

Ordovician (Katian)

Xiazhen Formation

 China

A member of Stromatoporoidea belonging to the group Clathrodictyida.

Germanortmannia[125]

Nom. nov

Valid

Ceccolini & Cianferoni

Late Cretaceous

 Germany

A demosponge belonging to the group Astrophorida; a replacement name for Ortmannia Schrammen (1924).

Hadimopanella foveata[123]

Sp. nov

Valid

Kouchinsky in Kouchinsky et al.

Cambrian (Cambrian Stage 4)

Erkeket Formation

 Russia
( Sakha)

A palaeoscolecid.

Hadimopanella luchininae[126]

Sp. nov

Valid

Novozhilova

Early Cambrian

 Russia

A palaeoscolecid.

Iberogilletia[125]

Nom. nov

Valid

Ceccolini & Cianferoni

Early Cretaceous (Aptian)

 Spain

A demosponge belonging to the family Corallistidae; a replacement name for Gilletia Lagneau-Herenger (1962).

Lindstroemiella[127]

Gen. et sp. nov

Valid

Zatoń et al.

Silurian (Ludfordian)

 Estonia

A member of Tentaculita. Genus includes new species L. eichwaldi.

Nagini[128]

Gen. et sp. nov

Valid

Mann, Pardo & Maddin

Carboniferous

Francis Creek Shale

 United States
( Illinois)

A tetrapod of uncertain phylogenetic placement, a member of the family Molgophidae. The type species is N. mazonense.

Nectocollare[129]

Gen. et sp. nov

In press

Botting & Ma

Ordovician

 United Kingdom

A sponge, possibly a member of the family Hyalonematidae. Genus includes new species N. zakdouli.

Neodexiospira ferlinghettii[130]

Sp. nov

In press

Kočí, Goedert & Buckeridge

Early Eocene

Crescent Formation

 United States
( Washington)

A polychaete.

Neodexiospira vanslykei[130]

Sp. nov

In press

Kočí, Goedert & Buckeridge

Late Eocene

Lincoln Creek Formation

 United States
( Washington)

A polychaete.

Sanshapentella tentoriformis[131]

Sp. nov

Yun et al.

Cambrian Stage 3

Shuijingtuo Formation

 China

A hexactinellid sponge.

Syringodictyon nevadense[132]

Sp. nov

Valid

Stock

Devonian (Emsian)

McColley Canyon Formation

 United States
( Nevada)

A member of Stromatoporoidea.

Teutomastophorus[125]

Nom. nov

Valid

Ceccolini & Cianferoni

Late Cretaceous

 Germany

A demosponge belonging to the family Theonellidae; a replacement name for Mastophorus Schrammen (1924).

Trinacriarbuscula[125]

Nom. nov

Valid

Ceccolini & Cianferoni

Permian

 Italy

A demosponge belonging to the group Lithistida; a replacement name for Arbuscula Parona (1933).

Turgidaspongia[133]

Gen. et sp. nov

In press

Li et al.

Ordovician-Silurian boundary

 China

A hexactinellid sponge belonging to the family Stiodermatidae. The type species is T. porosa.

Utahnax[134]

Gen. et sp. nov

Valid

Lerosey-Aubril & Ortega-Hernández

Cambrian (Drumian)

 United States
( Utah)

A lobopodian. The type species is U. vannieri.

Utaurora[135]

Gen. et sp. nov

Valid

Pates et al.

Cambrian (Drumian)

Wheeler Formation

 United States
( Utah)

An opabiniid. The type species is U. comosa.

Research

  • A study on the fossil record of Petalonamae, their survival of the Ediacaran–Cambrian transition and the timing and causes of their extinction is published by Hoyal Cuthill (2022).[136]
  • Redescription and a study on the life habits of Pteridinium simplex is published by Darroch et al. (2022).[137]
  • Aragonés Suarez & Leys (2022) propose a method for identifying fossil organisms as sponge grade animals, and apply their method to a putative Ediacaran sponge Thectardis avalonensis.[138]
  • Liu et al. (2022) transfer "Ambrolinevitus" ventricosus to the genus Paramicrocornus, erect a new family Paramicrocornidae, and evaluate the implications of paramicrocornids for the knowledge of the evolution of hyoliths.[139]
  • Evidence that yunnanozoan branchial arches consisted of cellular cartilage with an extracellular matrix dominated by microfibrils (a feature hitherto considered specific to vertebrates) is presented by Tian et al. (2022), who interpret this finding as supporting the conclusion that yunnanozoans were stem vertebrates.[140]
  • Redescription and a study on the affinities of Odonterpeton triangulare is published by Mann, Pardo & Sues (2022), who name a new recumbirostran clade Chthonosauria containing the families Brachystelechidae and Molgophidae.[141]

Other organisms

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Beltanelliformis konovalovi[142]

Sp. nov

Kolesnikov

Ediacaran

Chernyi Kamen Formation

 Russia
( Perm Krai
 Sverdlovsk Oblast)

Bursachitina baldonia[143]

Sp. nov

Valid

Nõlvak, Liang & Hints

Ordovician (Darriwilian)

Šakyna Formation

 Latvia

A chitinozoan.

Conochitina ulsti[143]

Sp. nov

Valid

Nõlvak, Liang & Hints

Ordovician (Darriwilian)

Šakyna Formation

 Latvia

A chitinozoan.

Eremochitina? procera[143]

Sp. nov

Valid

Nõlvak, Liang & Hints

Ordovician (Darriwilian)

Šakyna Formation

 Latvia

A chitinozoan.

Glaphyrobalantium[144]

Gen. et sp. nov

Valid

Krings

Early Devonian

Rhynie chert

 United Kingdom

An organism of uncertain affinities, possibly a cyanobacterium or microscopic alga. Genus includes new species G. hueberi.

Jiumenia[145]

Gen. et sp. nov

Liu & Dong in Liu et al.

Ediacaran-Cambrian

Liuchapo Formation

 China

A strip-like fossil. The type species is J. cingula. The genetic name is preoccupied by Jiumenia Yuan (1980).

Longbizuiella[146]

Gen. et sp. nov

In press

Yi et al.

Ediacaran

Liuchapo Formation

 China

An organism preserved as a series of uniserially-arranged, uniform-sized, spherical segments, described on the basis of fossils formerly assigned to the genus Horodyskia. The type species is L. hunanensis.

Nenoxites irregularis[146]

Sp. nov

In press

Yi et al.

Ediacaran

Liuchapo Formation

 China

An organism preserved as uniserially arranged segments, interpret by Yi et al. (2022) as a body fossil rather than a trace fossil.

Nenoxites jishouensis[146]

Sp. nov

In press

Yi et al.

Ediacaran

Liuchapo Formation

 China

An organism preserved as serially-arranged, uniform-sized, crescent segments, interpret by Yi et al. (2022) as a body fossil rather than a trace fossil.

Ordinilunulatus[145]

Gen. et comb. nov

Liu & Dong in Liu et al.

Ediacaran-Cambrian

Liuchapo Formation

 China

An organism consisting of uniform, evenly spaced disk-shaped segments with a terminal spherical structure. The type species is "Palaeopascichnus" jiumenensis Dong, Xiao, Shen & Zhou (2008).

Parahorodyskia[145]

Gen. et sp. et comb. nov

Liu & Dong in Liu et al.

Ediacaran-Cambrian

Liuchapo Formation

 China

An organism consisting of even-sized spherical and ellipsoidal segments with consistent spacing. The type species is P. disjuncta; genus also includes "Horodyskia" minor Dong, Xiao, Shen & Zhou (2008).

Poratusiramus[146]

Gen. et sp. nov

In press

Yi et al.

Ediacaran

Liuchapo Formation

 China

An organism preserved as a long horizontal stem with side branches growing upward, with similarities to possible Cambrian dasycladalean algae such as Seletonella. The type species is P. xiangxiensis.

Portfjeldia[147]

Gen. et sp. nov

In press

Willman & Peel

Ediacaran

Portfjeld Formation

 Greenland

An organism of uncertain affinities, possibly an alga. Genus includes new species P. aestatis.

Sphaerochitina? latviensis[143]

Sp. nov

Valid

Nõlvak, Liang & Hints

Ordovician (Darriwilian)

Baldone Formation

 Latvia

A chitinozoan.

Research

  • A study on the morphometric variation, taxonomy, stratigraphic distribution and habitat settings of palaeopascichnids is published by Kolesnikov & Desiatkin (2022).[148]
  • Zhang & Zhang (2022) describe new embryo-like Megasphaera fossils from the Ediacaran Zhenba microfossil assemblage, and interpret the studied specimens as inconsistent with the metazoan interpretation of the Ediacaran Megasphaera fossils, and supporting their encysting-protist affinity.[149]
  • A study aiming to determine whether Dickinsonia grew by tissue patterning like animals or by meristems like plants and pseudomeristems like fungi, based on data from damaged specimens from the Ustʹ Pinega Formation (Russia), is published by Retallack (2022).[150]
  • Slater et al. (2022) present a global record of imprint nanoplankton fossils, and interpret their findings as contradicting the view that declines in nanofossil abundance through several past global warming events are evidence of biocalcification crises caused by ocean acidification and related factors.[151]
  • A study on the impact of the Paleocene–Eocene Thermal Maximum on tropical planktic foraminifera in the central Pacific Ocean is published by Hupp, Kelly & Williams (2022).[152]
  • Revision of the taxonomy, regional distribution, ecological preferences and stratigraphic significance of the middle Miocene foraminifera from the northern Namibian continental shelf is published by Bergh & Compton (2022).[153]
  • A study on the taphonomy and morphology of the type material of Charniodiscus concentricus is published by Pérez-Pinedo et al. (2022), who emend the generic diagnosis of Charniodiscus.[154]

History of life in general

  • A study on the age of the Lantian biota is published by Yang et al. (2022).[155]
  • A study on ecosystem structure changes during the late Ediacaran is published by Eden, Manica & Mitchell (2022).[156]
  • A study on animal cognitive complexity in Cambrian and post-Cambrian marine ecosystems is published by Hsieh, Plotnick & Bush (2022).[157]
  • An association of palaeoscolecids, brachiopods and parasitic tube worms, interpreted as record of a brachiopod-dominated, vertically stratified benthic community where the different phyla filled multiple ecological niches, is reported from the Cambrian Stage 4 Wulongqing Formation (China) by Chen et al. (2022).[158]
  • Sun et al. (2022) report the discovery of the Linyi Lagerstätte, a new Drumian lagerstätte from the Zhangxia Formation (Shandong, China) containing a diverse and well-preserved Burgess Shale-type fossil assemblage.[159]
  • A study on the ecological processes that structured the composition of trilobite and echinoderm communities from the Central Anti-Atlas (Morocco), Montagne Noire (France) and Cordillera Oriental (Argentina) during the Early Ordovician is published by Saleh et al. (2022).[160]
  • A new tropical Lagerstätte containing a variety of soft tissues and rich shelly fossils, and preserving a fauna consisting of Cambrian relics as well as of taxa which originated during the Ordovician (Liexi fauna), is reported from the Lower Ordovician Madaoyu Formation (Hunan, China) by Fang et al. (2022).[161]
  • Evidence of symbiotic associations of stromatoporoids with soft-bodied worms, calcareous tentaculitoid tubeworms and rugosans, as well as evidence of symbiotic associations of tabulate corals with cornulitids, is reported from the Silurian of Baltica (Belarus, Moldova, Russia and Ukraine) by Borisenko et al. (2022).[162]
  • A study on patterns of latitudinal diversity gradients of marine invertebrate fossils during climatic changes from the Carboniferous icehouse to the Triassic greenhouse climates is published by Zhang, Shen & Erwin (2022), who interpret their findings as indicating that peaks of the latitudinal diversity gradients may be shaped by multiple factors rather than alternating icehouse and greenhouse climates.[163]
  • A study on rates of evolution and evolutionary constraints during the earliest (Carboniferous–early Permian) radiation of amniotes across their anatomy, examining differences between early synapsids and early reptiles, is published by Brocklehurst, Ford & Benson (2022).[164]
  • Review of the stratigraphic and paleontological data on the Permian equatorial ecosystem from Mallorca (Spain) is published by Matamales-Andreu et al. (2022).[165]
  • A study on changes in species composition of the brachiopod fossil record from the Permian Kapp Starostin Formation (Spitsbergen, Norway), and on their implications for the knowledge of the global significance of the Capitanian mass extinction event, is published by Lee et al. (2022).[166]
  • A study on changes in the composition of the Sundyr tetrapod assemblage (Russia) during the Middle-Late Permian transition is published by Shishkin (2022).[167]
  • Revision of tetrapod tracks from the Capitanian Pélitique Formation (France) is published by Marchetti et al. (2022).[168]
  • Review of the patterns of the Permian–Triassic extinction event in the ocean and on land, discussing the hypotheses surrounding the kill mechanisms of this extinction, is published by Dal Corso et al. (2022).[169]
  • A study on the ecological selectivity of marine extinctions across the end-Permian mass extinction in the South China region is published by Foster et al. (2022).[170]
  • A study on trace fossils from 400 horizons in 26 sections in South China and adjacent regions, spanning the uppermost Permian to topmost Lower Triassic strata, is published by Feng et al. (2022), who interpret their findings as indicating that a well-established infaunal ecologic structure developed in the late Early Triassic, before the full restoration of the epifauna-dominated ecosystem in the Middle Triassic.[171]
  • Diverse assemblage of tetrapods, including a lonchorhynchine trematosaurid, at least two taxa of capitosauroid temnospondyls, a kannemeyeriiform dicynodont, procolophonid parareptiles and several taxa of archosauromorph reptiles (including the first definite record of Tanystropheus from eastern North America), is described from the Middle Triassic Economy Member of the Wolfville Formation (Nova Scotia, Canada) by Sues et al. (2022).[172]
  • A study on the diversity of the vertebrates in the Yanliao Biota, comparing this biota with other biotas of similar age, is published by Liu, Wu & Han (2022).[173]
  • Revision of the Early Cretaceous vertebrate fauna from the Khok Pha Suam locality (Khok Kruat Formation, Thailand) is published by Manitkoon et al. (2022).[174]
  • Revision of the Cenomanian continental vertebrate fauna from the Gara Samani area (Algeria) is published by Benyoucef et al. (2022).[175]
  • A diverse biotic community comprising bacteria, fungi, nematodes, several types of arthropods, and marine bivalves is reported from the fossil wood assemblage from the Santonian Mzamba Formation (South Africa) by Philippe et al. (2022).[176]
  • A diverse vertebrate fauna, sharing similarities with lowland to marginal marine ecosystems in the Oldman and Dinosaur Park formations (which were deposited in southern Alberta prior to the gap in the terrestrial fossil record caused by a transgression of the inland Bearpaw Seaway during the latter part of the Campanian), is described from the Unit 3 of the strictly terrestrial Wapiti Formation (Alberta, Canada) by Fanti et al. (2022).[177]
  • A study on the Late Cretaceous trace fossil assemblage from the Chicxulub area (Gulf of Mexico), revealing the presence of a diverse macrobenthic tracemaker community in the Yucatán area prior to the Chicxulub impact event, is published by Rodríguez-Tovar et al. (2022).[178]
  • McCurry et al. (2022) report the discovery of a new Miocene Lagerstätte named McGraths Flat (New South Wales, Australia), preserving a rich diversity of microfossils, plants, insects, spiders, and vertebrate remains, and preserving evidence of several species interactions, including predation, parasitism and pollination.[179]
  • Revision of the late Miocene vertebrate fauna of Builstyn Khudag (Mongolia) is published by Daxner-Höck et al. (2022).[180]
  • A study on the relationship between landscape and climatic changes and the evolution of the late Miocene faunas of terrestrial vertebrates and marine mammals of southeastern Europe is published by Zelenkov et al. (2022).[181]
  • A study on the impact of the extinct Neotropical megafauna on the variability in plant functional traits and biome geography in Central and South America is published by Dantas & Pausas (2022).[182]
  • A study on the relative abundances of fossil squamates and anurans from McEachern's Deathtrap Cave (Australia), aiming to determine whether compositional changes of this fauna during the last ∼14,000 years were related to late Pleistocene–Holocene climatic fluctuations, is published by Ramm et al. (2022).[183]
  • A study aiming to reconstruct Holocene feeding guilds in extinct megaherbivores of Madagascar on the basis of carbon and nitrogen isotope data is published by Hansford & Turvey (2022).[184]
  • A study on the daily dentine apposition rates in extant and fossil amniotes, aiming to test the hypothesized daily limits of odontoblast activity, examine phylogenetic and allometric patterns of dentine growth evolution and reconstruct ancestral states of daily dentine apposition for major amniote clades, is published by Finch & D'Emic (2022).[185]

Other research

  • A study on the diagnostic characteristics of the Chengjiang Biota deposit and on its sedimentary environment is published by Saleh et al. (2022).[186]
  • Zhao et al. (2022) use a continuous astronomical signal detected as geochemical variations in the late Cambrian Alum Shale Formation (Sweden) to establish a 16-million-years-long astronomical time scale, providing detailed temporal constraints on the paleoenvironmental and biological changes during the late Cambrian.[187]
  • A study on the lithology and stratigraphy of the Famennian-aged Lebedjan Formation (Lipetsk Oblast, Russia), on the composition of the Lebedjan biota and on its paleoenvironment, is published by Bicknell & Naugolnykh (2022).[188]
  • A study on the development of the mid-late Cisuralian environments and ecosystems in central Pangaea, based on data from the late Cisuralian fossil assemblage of the Southern Alps and its comparison with other Cisuralian assemblages, is published by Marchetti et al. (2022).[189]
  • The first shallow-marine methane seeps reported from the Australian Upper Paleozoic, as well as a new seep biota, are described from the Sakmarian lower Holmwood Shale in the Irwin Basin by Haig et al. (2022).[190]
  • A study on the timeline and character of environmental changes in the Bowen Basin (Queensland, Australia) leading up to the Permian–Triassic extinction event is published by Fielding et al. (2022).[191]
  • A study investigating fossilised shells of gastropods and bivalves from the Permian–Triassic succession exposed at Lusitaniadalen (Svalbard, Norway) for dissolution and repair marks, and aiming to determine whether a worldwide ocean acidification event occurred during the Permian–Triassic transition, is published by Foster et al. (2022).[192]
  • Evidence from the Bristol Channel Basin (United Kingdom), indicating that intensive euxinia and acidification driven by Central Atlantic magmatic province activity formed a two-pronged kill mechanism at the end-Triassic mass extinction, is presented by Fox et al. (2022).[193]
  • Onoue et al. (2022) present a continental weathering record in the northwestern Tethys during the end-Triassic mass extinction event, inferred from strontium, carbon and oxygen isotope data from carbonate–clastic deposits in the Kardolína section (Slovakia), and interpret their findings as indicating that the marine environment in the Late Triassic European basins may have developed an oxygen minimum zone due to the increase in continental weathering during the latest Rhaetian, which might have had an important role in the marine end-Triassic extinction.[194]
  • A study on the age of the Early Cretaceous fossil assemblage from the Moqi fossil bed (China) is published by Yu et al. (2022).[195]
  • Beveridge et al. (2022) present new radioisotopic ages for the Campanian Wahweap Formation (Utah, United States), a lithostratigraphic revision and a review of the spatio-temporal distribution of vertebrate fossils from this formation, including revised ages for early tyrannosaurid, hadrosaurid and centrosaurine dinosaurs.[196]
  • A study on the age of the Cape Lamb Member of the Snow Hill Island Formation and of the overlying Sandwich Bluff Member of the Lopez de Bertodano Formation (Vega Island, Antarctica) is published by Roberts et al. (2022), who interpret their findings as indicating that Mesozoic marine vertebrates and non-avian dinosaurs persisted in Antarctica up to the terminal Cretaceous.[197]
  • A study on the bone apposition in three paddlefish dentaries and three sturgeon pectoral fin spines from the Tanis site (North Dakota, United States), aiming to pinpoint the season in which bone apposition terminated, is published by During et al. (2022), who interpret their findings as indicating that the impact that caused the Cretaceous–Paleogene extinction event took place during boreal spring.[198]
  • Review of the environmental consequences of the Chicxulub impact at the Cretaceous–Paleogene boundary is published by Morgan et al. (2022).[199]
  • Brachert et al. (2022) present oxygen and carbon isotope time series from reef corals from the Middle Eocene Climatic Optimum (~40 million years ago) from the sands of Auvers (France), who interpret their findings as providing evidence of zooxanthellate symbiosis in tropical reef corals of the Paleogene, as well as providing evidence of subdued sea surface temperature seasonality of 7° to 8 °C during the Middle Eocene Climatic Optimum.[200]
  • Evidence of preservation of porphyrins in a gar belonging to the genus Atractosteus from the Messel pit (Germany), possibly representing diagenetically altered heme originating from the fossil, is presented by Siljeström, Neubeck & Steele (2022).[201]
  • A study on the early Oligocene-middle Miocene wildfire history of the northern Tibetan Plateau and on the relationship between wildfire frequencies and temperature changes, based on data from sedimentary records of the microcharcoals from the Qaidam Basin, is published by Miao et al. (2022).[202]
  • New information of the age, stratigraphy, biota and palaeoenvironment of the Miocene Els Casots site (Vallès-Penedès Basin; Catalonia, Spain) is presented by Casanovas-Vilar et al. (2022).[203]
  • A study aiming to reconstruct the middle Miocene habitats on the northern North American Great Plains, as indicated by stable carbon isotope data from a wide variety of fossil ungulates from four local faunas in Nebraska of late Barstovian age, is published by Nguy & Secord (2022).[204]
  • A study on the environmental variability in Africa during the Pliocene and Pleistocene, and on the impact of this environmental variability on the evolution of African mammals, is published by Cohen et al. (2022).[205]
  • A study on the habitat types at the Woranso-Mille site (Ethiopia) during the Pliocene, and on factors which allowed the coexistence of more than one species of Australopithecus at the site, is published by Denise Su & Yohannes Haile-Selassie (2022).[206]
  • A study on the environmental context of hominin evolution in the Plio-Pleistocene of Africa, as indicated by oxygen and carbon enamel isotope data from carnivorans from the Omo Group of the Turkana Basin (Kenya), is published by Hopley et al. (2022).[207]
  • A study on the age of the Xiashagou Fauna from the Nihewan Basin in northern China is published by Tu et al. (2022), who interpret the age of this fauna as consistent with the ages of the Senèze and Olivola Faunas in Europe, and possibly indicative of the existence of an ecological corridor for faunal dispersals across northern Eurasia during the early Pleistocene.[208]
  • Evidence of the association of burnt tusk and burnt lithics within a clearly defined archaeological horizon at the Lower Paleolithic site of Evron Quarry (Israel), dated between 1.0 and 0.8 Mya and lacking visual signatures for fire, is presented by Stepka et al. (2022).[209]
  • A study on the relative importance of six drivers of vegetation change (moisture availability, fire activity, mammalian herbivore density, temperature, temperature seasonality, CO2) in western Africa over the past ~500,000 years, comparing past environmental change data from Lake Bosumtwi (Ghana) with global data, is published by Gosling et al. (2022), who interpret their findings as indicating that shifts in atmospheric CO2 concentrations did not drive changes in woody cover in the tropics at the millennial scale.[210]
  • Woolly mammoth, steppe bison, caballine horse and willow ptarmigan mitochondrial genomes are reconstructed from samples of permafrost silts from central Yukon (Canada) spanning the last 30,000 years by Murchie et al. (2022).[211]
  • A study on the timing of the opening of the ice-free corridor along the eastern front of the Rocky Mountains in the late Pleistocene, aiming to determine whether this corridor was available for the first peopling of the Americas after the Last Glacial Maximum, is published by Clark et al. (2022).[212]
  • Wiemann & Briggs (2022) demonstrated the presence of different biological signals in Raman and Fourier-Transform Infrared spectroscopy data of a diversity of carbonaceous animal fossils through independent laboratory confirmation (2022).[213]
  • A study on the impact of food hardness and size on the morphology of the mandible of extant pigs, and on its implications for the use of mandibular morphology as a proxy in paleodietary reconstructions, is published by Neaux et al. (2022).[214]
  • Amano et al. (2022) present a method to mathematically isolate and selectively eliminate the taphonomic deformation of a fossil skull for restoration of its original appearance, and apply this method to reconstruction of a skull of Mesopithecus from the late Miocene of Greece.[215]
  • Demuth et al. (2022) present a new method for volumetric three-dimensional reconstructions of musculature in extant and extinct taxa, and apply this method to reconstruction of the hindlimb musculature of Euparkeria capensis.[216]
  • Lallensack & Falkingham (2022) present a new method that allows for estimating limb phase based on variation patterns in long trackways, and use this method to estimate limb phases of giant wide-gauged sauropod dinosaurs that produced three long trackways from the Albian De Queen Formation (Arkansas, United States).[217]
  • Survey of examples of scientific practices stemming from colonialism, focusing on the studies of fossils from Brazil (Araripe Basin) and Mexico (Sabinas, La Popa and Parras basins) published during 1990–2021, is published by Cisneros et al. (2022), who propose recommendations to scientists, journals, museums, research institutions and government and funding agencies in order to overcome these practices.[218]

Paleoclimate

  • Joachimski et al. (2022) reconstruct late Permian to Middle Triassic atmospheric CO2 record, and interpret their findings as indicative of an approximate fold increase in pCO2 from the latest Permian to Early Triassic.[219]
  • A study on the climate response to orbital variations in a Late Triassic midlatitude temperate setting in Jameson Land (Greenland) and the tropical low paleolatitude setting of the Newark Basin is published by Mau, Kent & Clemmensen (2022).[220]
  • Olsen et al. (2022) present evidence from the Late Triassic and Early Jurassic strata of the Junggar Basin (northwest China) indicating that, despite extraordinary high partial pressure of CO2, freezing winter temperatures characterized high Pangaean latitudes during the early Mesozoic.[221]
  • Jones, Petersen & Curley (2022) report carbonate clumped isotope paleotemperatures of the mid-Cretaceous thermal maximum measured from Cenomanian oyster fossils of the Western Interior Seaway, and interpret their findings as indicative of extreme mid-latitude warmth in North America.[222]
  • A study on the latitudinal temperature gradient over the last 95 million years, as indicated by data from planktonic foraminifera δ18O, is published by Gaskell et al. (2022).[223]
  • A study on the sulfur isotope anomalies in the Cretaceous-Paleogene boundary impact debris and overlying sediments is published by Junium et al. (2022), who interpret their findings as evidence of injection of massive amounts of sulfur into the stratosphere in the aftermath of the Chicxulub impact, and evidence of the role of the sulfur-bearing gases in driving a postimpact winter.[224]
  • A study on changes of deep ocean temperature across the past 65 million years, inferred from clumped isotope thermometry, is published by Meckler et al. (2022), whose temperature estimates from the deep Atlantic Ocean are overall much warmer compared with oxygen isotope–based reconstructions.[225]
  • Agterhuis et al. (2022) report deep-sea temperature estimates across the Eocene Thermal Maximum 2 and the hyperthermal event that occurred approximately 2 million years after the Paleocene–Eocene Thermal Maximum (approximately 54 million years ago).[226]
  • A study on the climatic impact of oceanic gateway changes at the Eocene–Oligocene Transition is published by Straume et al. (2022).[227]
  • A study on the ocean crustal production (a proxy for tectonic degassing of carbon) since the Miocene is published by Herbert et al. (2022), who argue that changes in tectonic degassing of carbon can account for the majority of long-term ice sheet and global temperature evolution throughout the past 20 million years.[228]
  • A study on the impact of climate variability on the evolution of early African Homo, Eurasian Homo erectus, Homo heidelbergensis, Neanderthals and modern humans is published by Timmermann et al. (2022).[229]
  • Evidence of five phases of lake development at Tayma (Saudi Arabia) is presented by Neugebauer et al. (2022), who interpret their findings as indicative of unexpectedly short duration (dating from 8800 to 7900 years before present) of the Holocene Humid Period in Northern Arabia.[230]

References

  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ Tang, Q.-Q.; Zheng, Y.-J.; Qin, S.; Wang, Y.-C.; Yang, X.-G.; Wang, X.; Sun, J.; Uesugi, K.; Komiya, T.; Han, J. (2022). "New materials of multicellular algae from the earliest Cambrian Kuanchuanpu biota in South China". Acta Palaeontologica Polonica. 67 (2): 317–327. doi:10.4202/app.00946.2021.
  3. ^ Lee, D.-J.; Elias, R. J.; Pratt, B. R. (2022). "Reptamsassia n. gen. (Amsassiaceae n. fam.; calcareous algae) from the Lower Ordovician (Floian) of western Newfoundland, and the earliest symbiotic intergrowth of modular species". Journal of Paleontology. 96 (3): 715–728. doi:10.1017/jpa.2021.122. S2CID 246399388.
  4. ^ Sforna, M. C.; Loron, C. C.; Demoulin, C. F.; François, C.; Cornet, Y.; Lara, Y. J.; Grolimund, D.; Sanchez, D. F.; Medjoubi, K.; Somogyi, A.; Addad, A.; Fadel, A.; Compère, P.; Baudet, D.; Brocks, J. J.; Javaux, E. J. (2022). "Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae". Nature Communications. 13 (1): Article number 146. Bibcode:2022NatCo..13..146S. doi:10.1038/s41467-021-27810-7. PMC 8748435. PMID 35013306.
  5. ^ Maloney, K. M.; Schiffbauer, J. D.; Halverson, G. P.; Xiao, S.; Laflamme, M. (2022). "Preservation of early Tonian macroalgal fossils from the Dolores Creek Formation, Yukon". Scientific Reports. 12 (1): Article number 6222. Bibcode:2022NatSR..12.6222M. doi:10.1038/s41598-022-10223-x. PMC 9007953. PMID 35418588.
  6. ^ Retallack, G. J. (2022). "Ordovician-Devonian lichen canopies before evolution of woody trees". Gondwana Research. 106: 211–223. Bibcode:2022GondR.106..211R. doi:10.1016/j.gr.2022.01.010. S2CID 246320087.
  7. ^ a b Wallace, C. C.; Portell, R. W. (2022). "Earliest western Atlantic staghorn corals (Acropora) from the lower Oligocene Suwannee Limestone of Florida, USA, and their significance for modern coral distribution". Journal of Paleontology: 1–10. doi:10.1017/jpa.2022.47.
  8. ^ Rodríguez, S.; Said, I.; Somerville, I. D.; Cózar, P.; Coronado, I. (2022). "Coral assemblages of the Serpukhovian–Bashkirian transition from Adarouch (Morocco)". PalZ. in press. doi:10.1007/s12542-021-00586-3. S2CID 246873023.
  9. ^ Van Iten, H.; Gutiérrez-Marco, J. C.; Cournoyer, M. E. (2022). "Unusual assemblage of conulariids (Cnidaria, Scyphozoa) from the Taddrist Formation (Middle Ordovician, Darriwilian) of southern Morocco". Journal of Paleontology. Online edition: 1–11. doi:10.1017/jpa.2022.6. S2CID 247611923.
  10. ^ Sarsembaev, Z. A.; Marusin, V. V. (2022). "Nonmineralized triradial conulariids from the lowermost Cambrian Stage 2 of the Olenek Uplift, Siberian Platform". Journal of Paleontology. Online edition: 1–12. doi:10.1017/jpa.2022.21. S2CID 248171036.
  11. ^ a b Denayer, J; Poty, E.; Tourneur, F.; Aretz, M. (2022). "Colonial Heterocorallia (Cnidaria, Anthozoa) and their epibionts from the lower Carboniferous of Montagne Noire and Pyrenees, southern France". PalZ. in press. doi:10.1007/s12542-021-00588-1. S2CID 245654060.
  12. ^ Leme, J. M.; Van Iten, H.; Simões, M. G. (2022). "A New Conulariid (Cnidaria, Scyphozoa) From the Terminal Ediacaran of Brazil". Frontiers in Earth Science. 10: Article 777746. doi:10.3389/feart.2022.777746.
  13. ^ Song, Z.; Guo, J.; Han, J.; Van Iten, H.; Qiang, Y.; Peng, J.; Sun, J.; Zhang, Z. (2022). "A New Species of Septuconularia (Hexangulaconulariidae, Cnidaria) from Cambrian Stage 2, South China". Acta Geologica Sinica (English Edition). in press. doi:10.1111/1755-6724.14917. S2CID 247428409.
  14. ^ Garberoglio, R. M.; Löser, H.; Lazo, D. G. (2022). "Lower Cretaceous corals from the Agrio Formation, Neuquén Basin, west-central Argentina: Families Latomeandridae, Madreporidae, Thamnasteriidae, and Holocoenia Group". Cretaceous Research. 135: Article 105195. doi:10.1016/j.cretres.2022.105195. S2CID 247416059.
  15. ^ Ohar, V. (2022). "Tournaisian and early Viséan tabulate corals from the Donets Basin, Ukraine and some aspects of their taxonomy". PalZ. in press. doi:10.1007/s12542-021-00587-2. S2CID 246815834.
  16. ^ Miller, A. P.; Jacquet, S. M.; Anderson, E. P.; Schiffbauer, J. D. (2022). "Conulariids from the Silurian (late Telychian) Waukesha Lagerstätte, Wisconsin". Historical Biology: An International Journal of Paleobiology. in press: 1–21. doi:10.1080/08912963.2021.2017917. S2CID 246317873.
  17. ^ Wang, X.; Vannier, J.; Yang, X.; Leclère, L.; Ou, Q.; Song, X.; Komiya, T.; Han, J. (2022). "Muscle systems and motility of early animals highlighted by cnidarians from the basal Cambrian". eLife. 11: e74716. doi:10.7554/eLife.74716. PMC 8837203. PMID 35098925. S2CID 246428624.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  18. ^ Bridge, T. C. L.; Baird, A. H.; Pandolfi, J. M.; McWilliam, M. J.; Zapalski, M. K. (2022). "Functional consequences of Palaeozoic reef collapse". Scientific Reports. 12 (1): Article number 1386. Bibcode:2022NatSR..12.1386B. doi:10.1038/s41598-022-05154-6. PMC 8792005. PMID 35082318.
  19. ^ a b c d e f g Ernst, A.; Carrera, M. G. (2022). "A cool-water bryozoan association from the La Pola Formation (Sandbian, Ordovician) of Argentine Precordillera". Geodiversitas. 44 (20): 563–601. doi:10.5252/geodiversitas2022v44a20.
  20. ^ a b Sonar, M. A.; Pawar, R. V.; Wayal, D. V. (2022). "Newly discovered species of cheilostomatid Bryozoa from the Miocene of western Kachchh, Gujarat, India". European Journal of Taxonomy (821): 16–39. doi:10.5852/ejt.2022.821.1795.
  21. ^ a b Pérez, L. M.; López-Gappa, J. (2022). "Bryozoans associated with gastropod shells in the early Miocene of Patagonia (Argentina)". Ameghiniana. 59 (2): 162–170. doi:10.5710/AMGH.27.01.2022.3485. S2CID 247000257.
  22. ^ a b Ernst, A. (2022). "Bryozoan fauna from the Kunda Stage (Darriwilian, Middle Ordovician) of Estonia and NW Russia". Bulletin of Geosciences. 97 (1): 33–68. doi:10.3140/bull.geosci.1843. S2CID 246304904.
  23. ^ a b Ernst, A.; Claussen, A. L.; Seuss, B.; Wyse Jackson, P. N. (2022). "Stenolaemate bryozoans from the Graham Formation, Pennsylvanian (Virgilian) at Lost Creek Lake, Texas, USA". Palaeontologia Electronica. 25 (2): Article number 25.2.a15. doi:10.26879/1174.
  24. ^ a b Taylor, P. D.; Villier, L. (2022). "Cretaceous microporid cheilostome bryozoans from the Campanian historical stratotype of southwest France". Geodiversitas. 44 (18): 515–525. doi:10.5252/geodiversitas2022v44a18. S2CID 248892877.
  25. ^ a b c Ramsfjell, M. H.; Taylor, P. D.; Di Martino, E. (2022). "New early Miocene species of the cheilostome bryozoan Microporella from the South Island of New Zealand". Alcheringa: An Australasian Journal of Palaeontology. doi:10.1080/03115518.2022.2084564.
  26. ^ a b Taylor, P. D. (2022). "First taxonomic descriptions of operculate cyclostome bryozoans (Eleidae) from the Cretaceous of India and North America". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 304 (3): 227–237. doi:10.1127/njgpa/2022/1066.
  27. ^ a b Sonar, M. A.; Pawar, R. V.; Wayal, D. V. (2022). "Fossil Thalamoporellidae (Bryozoa) from Paleogene–Neogene sediments of western Kachchh, Gujarat, India". Zootaxa. 5104 (2): 251–274. doi:10.11646/zootaxa.5104.2.5. PMID 35391038. S2CID 247116985.
  28. ^ Pruss, S. B.; Leeser, L.; Smith, E. F.; Zhuravlev, A. Yu.; Taylor, P. D. (2022). "The oldest mineralized bryozoan? A possible palaeostomate in the lower Cambrian of Nevada, USA". Science Advances. 8 (16): eabm8465. Bibcode:2022SciA....8M8465P. doi:10.1126/sciadv.abm8465. PMC 9020656. PMID 35442738.
  29. ^ Ma, J.Y.; Taylor, P. D.; Buttler, C. J.; Xia, F.S. (2022). "Bryozoans from the Early Ordovician Fenhsiang Formation (Tremadocian) of South China and the early diversification of the phylum". The Science of Nature. 109 (2): Article number 21. Bibcode:2022SciNa.109...21M. doi:10.1007/s00114-022-01791-z. PMID 35333983. S2CID 247712842.
  30. ^ Moharrek, F.; Taylor, P. D.; Silvestro, D.; Jenkins, H. L.; Gordon, D. P.; Waeschenbach, A. (2022). "Diversification dynamics of cheilostome bryozoans based on a Bayesian analysis of the fossil record". Palaeontology. 65 (1): e12586. doi:10.1111/pala.12586. S2CID 245791052.
  31. ^ Orr, R. J. S.; Di Martino, E.; Ramsfjell, M. H.; Gordon, D. P.; Berning, B.; Chowdhury, I.; Craig, S.; Cumming, R. L.; Figuerola, B.; Florence, W.; Harmelin, J.-G.; Hirose, M.; Huang, D.; Jain, S. S.; Jenkins, H. L.; Kotenko, O. N.; Kuklinski, P.; Lee, H. E.; Madurell, T.; McCann, L.; Mello, H. L.; Obst, M.; Ostrovsky, A. N.; Paulay, G.; Porter, J. S.; Shunatova, N. N.; Smith, A. M.; Souto-Derungs, J.; Vieira, L. M.; Voje, K. L.; Waeschenbach, A.; Zágoršek, K.; Warnock, R. C. M.; Liow, L. H. (2022). "Paleozoic origins of cheilostome bryozoans and their parental care inferred by a new genome-skimmed phylogeny". Science Advances. 8 (13): eabm7452. Bibcode:2022SciA....8M7452O. doi:10.1126/sciadv.abm7452. PMC 8967238. PMID 35353568.
  32. ^ a b c d e f g h i j k l m n Popov, L. E.; Cocks, L. R. M. (2022). "A mid-Ordovician brachiopod evolutionary hotspot in southern Kazakhstan". Fossils and Strata. 66: 1–160. doi:10.1002/9781119782377. ISBN 978-1-119-78236-0.
  33. ^ Serobyan, V.; Danelian, T.; Crônier, C.; Grigoryan, A.; Mottequin, B. (2022). "Aramazdospirifer orbelianus (Abich, 1858) n. comb., a new cyrtospiriferid brachiopod genus and a biostratigraphically important species from the lower Famennian (Upper Devonian) of Armenia". Comptes Rendus Palevol. 21 (6): 145–156. doi:10.5852/cr-palevol2022v21a6. S2CID 246885014.
  34. ^ Vörös, A. (2022). "Monospecific mass occurrence of a new species of the Early Jurassic genus Arzonellina (Brachiopoda) at Fenyveskút (Bakony Mountains, Hungary)". Földtani Közlöny. 152 (1): 17–30. doi:10.23928/foldt.kozl.2022.152.1.17. S2CID 248356547.
  35. ^ Holmer, L. E.; Clausen, S.; Popov, L. E.; Ghobadi Pour, M.; Liang, Y.; Zhang, Z.; Palafox Reyes, J. J.; Sosa-Leon, J. P.; Buitrón-Sánchez, B. E. (2022). "Cambrian (Stage 4 to Wuliuan) brachiopods from Sonora, Mexico". Journal of Paleontology: 1–21. doi:10.1017/jpa.2022.35.
  36. ^ Baeza-Carratalá, J. F.; García Joral, F. (2022). "The last representatives of the Superfamily Wellerelloidea (Brachiopoda, Rhynchonellida) in the westernmost Tethys (Iberian paleomargins) prior to their demise in the early Toarcian Mass Extinction Event". Journal of Paleontology. Online edition: 1–33. doi:10.1017/jpa.2022.24. S2CID 248703358.
  37. ^ Baarli, B. G. (2022). "The new brachiopod genus Eiratrypa and the genus Clintonella from the Lower Silurian (Llandovery) of Baltica". Norwegian Journal of Geology. doi:10.17850/njg102-1-3. S2CID 247424318.
  38. ^ Mojon, P.-O.; De Kaenel, E. (2022). "New paleontological and biostratigraphical data (calcareous nannofossils, ostracods, brachiopods), correlations and lithostratigraphic units in the Urgonian facies (latest Hauterivian-Barremian) of the Swiss and French Jura Mountains: the Falaises Member and the Saars Formation (former "Gorges de l'Orbe Formation")". Swiss Journal of Geosciences. 115: Article 17. doi:10.1186/s00015-022-00416-x. S2CID 248574040.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  39. ^ a b Serobyan, V.; Danelian, T.; Crônier, C.; Grigoryan, A.; Mottequin, B. (2022). "New and revised cyrtospiriferid (Spiriferida) brachiopods from the lower Famennian (Upper Devonian) of Armenia". Journal of Paleontology. Online edition: 1–20. doi:10.1017/jpa.2022.9. S2CID 247888809.
  40. ^ a b c Wang, F.Y.; Chen, J.; Dai, X.; Song, H.J. (2022). "A new Early Triassic brachiopod fauna from southern Tibet, China: Implications on brachiopod recovery and the late Smithian extinction in southern Tethys". Journal of Paleontology. 96 (Supplement S88): 1–32. doi:10.1017/jpa.2021.119.
  41. ^ a b Jin, J.; Blodgett, R. B.; Harper, D. A. T.; Rasmussen, C. M. Ø. (2022). "Warm-water Tcherskidium fauna (Brachiopoda) in the Late Ordovician Northern Hemisphere of Laurentia and peri-Laurentia". Journal of Paleontology: 1–18. doi:10.1017/jpa.2022.58.
  42. ^ a b Halamski, A. T.; Baliński, A.; Koppka, J. (2022). "Middle Devonian brachiopods from northern Maïder (eastern Anti-Atlas, Morocco)". Annales Societatis Geologorum Poloniae. 92 (1): 1–86. doi:10.14241/asgp.2022.03. S2CID 247555203.
  43. ^ Makoshin, V. I. (2022). "A new species of the genus Waagenoconcha Chao (Brachiopoda, Productida) from the Asselian-Sakmarian deposits of the lower reaches of the Lena River, North-East of Russia". Paleontological Journal. 56 (4): 32–36.
  44. ^ Oh, Y.; Lee, D.-C.; Lee, S.; Lee, S.-B.; Hong, P. S.; Hong, J. (2022). "Palaeobiogeography of the family Nisusiidae (Cambrian rhynchonelliform brachiopods) using the 'area-transition count' method and systematic revision of Korean species". Papers in Palaeontology. 8 (1): e1420. doi:10.1002/spp2.1420. S2CID 246306508.
  45. ^ Zamora, S. (2022). "Systematics, Taphonomy, and Paleoecology of Millericrinids (Millericrinida, Articulata, Crinoidea) from the Late Jurassic of Spain". Contributions from the Museum of Paleontology, University of Michigan. 34 (7): 82–102. doi:10.7302/4251.
  46. ^ a b c d e Lefebvre, B.; Nohejlová, M.; Martin, E. L. O.; Kašička, L.; Zicha, O.; Gutiérrez-Marco, J. C. (2022). "New Middle and Late Ordovician cornute stylophorans (Echinodermata) from Morocco and other peri-Gondwanan areas". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Vol. 485. The Geological Society of London. pp. 345–522. doi:10.1144/SP485-2021-99. S2CID 246330814. {{cite book}}: |journal= ignored (help)
  47. ^ Gahn, F. J. (2022). "Atelestocrinus baumilleri, n. sp., a new Early Mississippian (Viséan) crinoid, and related pseudomonocyclic forms". Contributions from the Museum of Paleontology, University of Michigan. 34 (13): 193–208. doi:10.7302/4856.
  48. ^ Salamon, M. A.; Jain, S.; Brachaniec, T.; Duda, P.; Płachno, B. J.; Gorzelak, P. (2022). "Ausichicrinites zelenskyyi gen. et sp. nov., a first nearly complete feather star (Crinoidea) from the Upper Jurassic of Africa". Royal Society Open Science. 9 (7): Article ID 220345. doi:10.1098/rsos.220345.
  49. ^ Ausich, W. I.; Salamon, M. A.; Płachno, B. J.; Brachaniec, T.; Krawczyński, W.; Boczarowski, A.; Paszcza, K.; Łukowiak, M.; Gorzelak, P. (2022). "Unraveling the hidden paleobiodiversity of the Middle Devonian (Emsian) crinoids (Crinoidea, Echinodermata) from Poland". PeerJ. 10: e12842. doi:10.7717/peerj.12842. PMC 8840065. PMID 35186460.
  50. ^ Lefebvre, B.; Nohejlova, M.; Kašička, L.; Zicha, O. (2022). "New Peri-Gondwanan occurrences of the Ordovician genus Diamphidiocystis (Echinodermata, Stylophora) - Implications for mitrocystitid palaeobiogeography and diversity". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Vol. 485. The Geological Society of London. pp. 311–344. doi:10.1144/SP485-2021-100. S2CID 246026621. {{cite book}}: |journal= ignored (help)
  51. ^ Webster, G. D.; Heward, A. P.; Ausich, W. I. (2022). "First crinoid crown from the Permian Khuff Formation (Wordian) of Oman". Proceedings of the Geologists' Association. 133 (2): 154–161. doi:10.1016/j.pgeola.2022.02.005. S2CID 247539305.
  52. ^ a b Gale, A. (2022). ""Slime stars" (Echinodermata, Asteroidea, Velatida) from the Upper Cretaceous of northern Europe". Cretaceous Research. 137: Article 105223. doi:10.1016/j.cretres.2022.105223. S2CID 248092753.
  53. ^ Villier, L.; Larrañaga, J.; Payros, A.; Moreno, T.; Hieu, N.; Zamora, S. (2022). "Systematics and phylogenetic interpretation of a new bathyal spatangoid echinoid from the Eocene of Spain: Habanaster itzae nov. sp". Geobios. doi:10.1016/j.geobios.2022.07.005.
  54. ^ a b Thuy, B.; Eriksson, M. E.; Kutscher, M.; Lindgren, J.; Numberger-Thuy, L. D.; Wright, D. F. (2022). "Miniaturization during a Silurian environmental crisis generated the modern brittle star body plan". Communications Biology. 5 (1): Article number 14. doi:10.1038/s42003-021-02971-9. PMC 8748437. PMID 35013524.
  55. ^ Thompson, J. R.; Cotton, L. J.; Candela, Y.; Kutscher, M.; Reich, M.; Bottjer, D. J. (2022). "The Ordovician diversification of sea urchins: systematics of the Bothriocidaroida (Echinodermata: Echinoidea)". Journal of Systematic Palaeontology. 19 (20): 1395–1448. doi:10.1080/14772019.2022.2042408. S2CID 248192052.
  56. ^ Park, H.; Lee, S.-B.; Woo, J.; Lee, D.-C. (2022). "The first Middle Ordovician and Gondwanan record of the cincinnaticrinid crinoid Ohiocrinus byeongseoni n. sp. from South Korea: biostratigraphy, paleobiogeography, and taphonomy". Journal of Paleontology. Online edition: 1–11. doi:10.1017/jpa.2022.8. S2CID 247492659.
  57. ^ a b Thuy, B.; Nungesser, K.; Numberger-Thuy, L. D. (2022). "New Brittle Stars (Echinodermata, Ophiuroidea) from the Oligocene of the Mainz Basin, Germany". Taxonomy. 2 (2): 196–207. doi:10.3390/taxonomy2020015.
  58. ^ Ishida, Y.; Thuy, B.; Nam, G.-S.; Martynov, A.; Fujita, T.; Kim, J.-H. (2022). "A New Species of Ophiura (Echinodermata, Ophiuroidea) from Miocene Deep-Sea Deposits in the Pohang Basin, Korea". Paleontological Research. 26 (1): 18–30. doi:10.2517/PR200002. S2CID 245478821.
  59. ^ Stecher, R. (2022). "First record of the echinoid genus Orthopsis Cotteau, 1864 from the Kössen Formation (Rhaetian, uppermost Triassic) of Vorarlberg (Austria), with description of a new species" (PDF). Annalen des Naturhistorischen Museums in Wien, Serie A. 122: 165–185. JSTOR 27101237.
  60. ^ a b Guensburg, T. E.; Sprinkle, J. (2022). "Morphologic Expressions and Paleogeographic Implications of Earliest Known (Floian, Early Ordovician) Hybocrinids". Contributions from the Museum of Paleontology, University of Michigan. 34 (3): 17–33. doi:10.7302/3813.
  61. ^ Mah, C. L. (2022). "A new genus and species of Goniasteridae, Peedeeaster sandersoni, and the first occurrence of Sclerasterias (Asteriidae) from the Cretaceous Peedee Formation of North Carolina". Zootaxa. 5138 (5): 533–548. doi:10.11646/zootaxa.5138.5.2. S2CID 248951846.
  62. ^ Zamora, S.; Rahman, I. A.; Sumrall, C. D.; Gibson, A. P.; Thompson, J. R. (2022). "Cambrian edrioasteroid reveals new mechanism for secondary reduction of the skeleton in echinoderms". Proceedings of the Royal Society B: Biological Sciences. 289 (1970): Article ID 20212733. doi:10.1098/rspb.2021.2733. PMC 8889179. PMID 35232240. S2CID 247170097.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  63. ^ Zamora, Samuel, Yorkicystis, the 500 million-year-old relative of starfish that lost its skeleton, The Conversation, May 24, 2022 with images including a projection for the type species, Yorkicystis haefneri, named after its finder, Chris Haefner of York, Pennsylvania, USA, for genus that existed during the "Cambrian Explosion" that flourished 539 million to 485 million years ago — with additional references that could enable creation of a separate article on the genus — note: this source article has a Creative Commons license and may be republished freely
  64. ^ Novack-Gottshall, P. M.; Sultan, A.; Smith, N. S.; Purcell, J.; Hanson, K. E.; Lively, R.; Ranjha, I.; Collins, C.; Parker, R.; Sumrall, C. D.; Deline, B. (2022). "Morphological volatility precedes ecological innovation in early echinoderms". Nature Ecology & Evolution. 6 (3): 263–272. doi:10.1038/s41559-021-01656-0. PMID 35145267. S2CID 246750373.
  65. ^ Álvarez-Armada, N.; Cameron, C. B.; Bauer, J. E.; Rahman, I. A. (2022). "Heterochrony and parallel evolution of echinoderm, hemichordate and cephalochordate internal bars". Proceedings of the Royal Society B: Biological Sciences. 289 (1974): Article ID 20220258. doi:10.1098/rspb.2022.0258. PMC 9091856. PMID 35538784.
  66. ^ Sheffield, S. L.; Lam, A. R.; Phillips, S. F.; Deline, B. (2022). "Morphological Dynamics and Response Following the Dispersal of Ordovician–Silurian Diploporan Echinoderms to Laurentia". Contributions from the Museum of Paleontology, University of Michigan. 34 (9): 123–140. doi:10.7302/4375.
  67. ^ Ausich, W. I. (2022). "The Calceocrinid Puzzle". Contributions from the Museum of Paleontology, University of Michigan. 34 (8): 103–122. doi:10.7302/4252.
  68. ^ Mongiardino Koch, N.; Thompson, J. R.; Hiley, A. S.; McCowin, M. F.; Armstrong, A. F.; Coppard, S. E.; Aguilera, F.; Bronstein, O.; Kroh, A.; Mooi, R.; Rouse, G. W. (2022). "Phylogenomic analyses of echinoid diversification prompt a re-evaluation of their fossil record". eLife. 11: e72460. doi:10.7554/eLife.72460. PMC 8940180. PMID 35315317.
  69. ^ Blake, D. B.; Hotchkiss, F. H. C. (2022). "Origin of the subphylum Asterozoa and redescription of a Moroccan Ordovician somasteroid". Geobios. doi:10.1016/j.geobios.2022.07.002.
  70. ^ a b Izokh, N. G. (2022). "New Middle Devonian conodonts from the north east Salair (south of the West Siberia)". Paleontological Journal. 56 (1): 85–90. doi:10.1134/S0031030122010075. S2CID 248132807.
  71. ^ Nazarova, V. M.; Kononova, L. I. (2022). "Icriodus olgaborisovnae sp. nov.—a new conodont species from the Mosolovian Regional Stage (Eifelian Stage, Middle Devonian) of the Voronezh Anteclise". Paleontological Journal. 56 (3): 284–295. doi:10.1134/S0031030122030091.
  72. ^ Hu, K.Y.; Qi, Y.P.; Wang, X.D. (2022). "A new species Idiognathodus praeguizhouensis n. sp. (Conodonta, Pennsylvanian) from South China". Journal of Paleontology: 1–3. doi:10.1017/jpa.2022.53.
  73. ^ Zhen, Y. Y.; Allen, H. J.; Martin, S. K. (2022). "Early Ordovician conodonts from Barnicarndy 1 stratigraphic well of the Southern Canning Basin, Western Australia". Alcheringa: An Australasian Journal of Palaeontology. 46 (1): 43–58. doi:10.1080/03115518.2021.2017481. S2CID 246303337.
  74. ^ a b c d Saupe, F.; Becker, R. T. (2022). "Refined conodont stratigraphy at Martenberg (Rhenish Massif, Germany) as base for a formal middle/upper Frasnian substage boundary". Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-022-00537-z.
  75. ^ Shohel, M.; Ray, K. K.; Tivanski, A. V.; McAdams, N. E. B.; Bancroft, A. M.; Cramer, B. D.; Forbes, T. Z. (2022). "Nanomechanical variability in the early evolution of vertebrate dentition". Scientific Reports. 12 (1): Article number 10203. doi:10.1038/s41598-022-14157-2. PMC 9205932. PMID 35715512.
  76. ^ Zhen, Y.Y.; Bauer, J. A.; Bergström, S. M. (2022). "Revision of Histiodella labiosa Bauer, 2010, and its inferred phylogeny in the evolution of the Middle Ordovician conodont genus Histiodella Harris, 1962". Journal of Paleontology: 1–17. doi:10.1017/jpa.2022.26. S2CID 248607642.
  77. ^ Terrill, D. F.; Jarochowska, E.; Henderson, C. M.; Shirley, B.; Bremer, O. (2022). "Sr/Ca and Ba/Ca ratios support trophic partitioning within a Silurian conodont community from Gotland, Sweden". Paleobiology. in press: 1–21. doi:10.1017/pab.2022.9. S2CID 248062641.
  78. ^ Ferretti, A.; Corriga, M. G.; Slavík, L.; Corradini, C. (2022). "Running across the Silurian/Devonian Boundary along Northern Gondwana: A Conodont Perspective". Geosciences. 12 (1): Article 43. Bibcode:2022Geosc..12...43F. doi:10.3390/geosciences12010043.
  79. ^ Girard, C.; Charruault, A.-L.; Gluck, T.; Corradini, C.; Renaud, S. (2022). "Deciphering the morphological variation and its ontogenetic dynamics in the Late Devonian conodont Icriodus alternatus". Fossil Record. 25 (1): 25–41. doi:10.3897/fr.25.80211. S2CID 246587891.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  80. ^ Zhuravlev, A. V.; Plotitsyn, A. N. (2022). "The middle–late Tournaisian crisis in conodont diversity: a comparison between Northeast Laurussia and Northeast Siberia". Palaeoworld. in press. doi:10.1016/j.palwor.2022.01.001. S2CID 246060690.
  81. ^ von Bitter, P. H.; Norby, R. D.; Stamm, R. G. (2022). "The Carboniferous conodont Lochriea commutata (Branson and Mehl, 1941), the type species of Lochriea Scott, 1942: nomenclatural history, apparatus composition and effects on Lochriea species". Journal of Paleontology. 96 (Supplement S87): 1–38. doi:10.1017/jpa.2021.2. S2CID 246245148.
  82. ^ Carrano, M. T.; Oreska, M. P. J.; Murch, A.; Trujillo, K. C.; Chamberlain, K. R. (2022). "Vertebrate paleontology of the Cloverly Formation (Lower Cretaceous), III: a new species of Albanerpeton, with biogeographic and paleoecological implications". Journal of Vertebrate Paleontology. 41 (5): e2003372. doi:10.1080/02724634.2021.2003372. S2CID 247335328.
  83. ^ Werneburg, R.; Witzmann, F.; Schneider, J. W.; Rößler, R. (2022). "A new basal zatracheid temnospondyl from the early Permian Chemnitz Fossil Lagerstätte, central-east Germany". PalZ. doi:10.1007/s12542-022-00624-8.
  84. ^ Lemierre, A.; Blackburn, D. C. (2022). "A new genus and species of frog from the Kem Kem (Morocco), the second neobatrachian from Cretaceous Africa". PeerJ. 10: e13669. doi:10.7717/peerj.13699.
  85. ^ Jones, M. E. H.; Benson, R. B. J.; Skutschas, P.; Hill, L.; Panciroli, E.; Schmitt, A. D.; Walsh, S. A.; Evans, S. E. (2022). "Middle Jurassic fossils document an early stage in salamander evolution". Proceedings of the National Academy of Sciences of the United States of America. 119 (30): e2114100119. doi:10.1073/pnas.2114100119.
  86. ^ Ponssa, M. L.; Babot, M. J.; Ortiz, P. E.; Candela, A. M.; Pereyra, M. O. (2022). "A new late Pliocene toad of the genus Rhinella (Bufonidae) from northwestern Argentina". Journal of South American Earth Sciences. 115: Article 103749. Bibcode:2022JSAES.11503749P. doi:10.1016/j.jsames.2022.103749. S2CID 247261185.
  87. ^ Clack, J. A.; Smithson, T. R.; Ruta, M. (2022). "A Mississippian (early Carboniferous) tetrapod showing early diversification of the hindlimbs". Communications Biology. 5 (1): Article number 283. doi:10.1038/s42003-022-03199-x. PMC 9010477. PMID 35422092.
  88. ^ Arbez, T.; Atkins, J. B.; Maddin, H. C. (2022). "Cranial anatomy and systematics of Dendrerpeton cf. helogenes (Tetrapoda, Temnospondyli) from the Pennsylvanian of Joggins, revisited through micro-CT scanning". Papers in Palaeontology. 8 (2): e1421. doi:10.1002/spp2.1421. S2CID 247420642.
  89. ^ Gee, B. M.; Sidor, C. A. (2022). "Cold capitosaurs and polar plagiosaurs: new temnospondyl records from the upper Fremouw Formation (Middle Triassic) of Antarctica". Journal of Vertebrate Paleontology. 41 (4): e1998086. doi:10.1080/02724634.2021.1998086. S2CID 246832719.
  90. ^ Witzmann, F.; Schoch, R. R. (2022). "The larval brachyopid Platycepsion wilkinsoni from the Triassic of New South Wales provides insight into the stereospondyl life cycle". Journal of Paleontology: 1–14. doi:10.1017/jpa.2022.57.
  91. ^ Herbst, E. C.; Manafzadeh, A. R.; Hutchinson, J. R. (2022). "Multi-joint analysis of pose viability supports the possibility of salamander-like hindlimb configurations in the Permian tetrapod Eryops megacephalus". Integrative and Comparative Biology. doi:10.1093/icb/icac083. PMID 35687000.
  92. ^ Schoch, R. R.; Sues, H.-D. (2022). "The dissorophoid temnospondyl Parioxys ferricolus from the early Permian (Cisuralian) of Texas". Journal of Paleontology. in press: 1–11. doi:10.1017/jpa.2022.10. S2CID 247920021.
  93. ^ Gardner, J. D. (2022). "A unique dentary suggests a third genus of batrachosauroidid salamander existed during the latest Cretaceous in the western USA". Acta Palaeontologica Polonica. 67 (1): 35–50. doi:10.4202/app.00926.2021. S2CID 247872161.
  94. ^ Barcelos, L. A.; Almeida-Silva, D.; Santos, C. M. D.; Verdade, V. K. (2022). "Phylogenetic analysis of Ceratophryidae (Anura: Hyloidea) including extant and extinct species". Journal of Systematic Palaeontology. 19 (20): 1449–1466. doi:10.1080/14772019.2022.2050824. S2CID 248653602.
  95. ^ Guevara, J. P.; Suazo Lara, F.; Alarcón-Muñoz, J.; Buldrini, K.; Soto-Acuña, S.; Rubilar-Rogers, D. (2022). "The first fossil frog (Anura: Bufonidae) from the Cura-Mallín Formation (Río Pedregoso Member, middle Miocene) of Lonquimay, Araucania Region, Central Chile". Journal of South American Earth Sciences. 115: Article 103753. doi:10.1016/j.jsames.2022.103753. S2CID 247207628.
  96. ^ Calábková, G.; Březina, J.; Madzia, D. (2022). "Evidence of large terrestrial seymouriamorphs in the lowermost Permian of the Czech Republic". Papers in Palaeontology. 8 (2): e1428. doi:10.1002/spp2.1428. S2CID 247822357.
  97. ^ Maho, T.; Reisz, R. R. (2022). "Dental anatomy and replacement patterns in the early Permian stem amniote, Seymouria". Journal of Anatomy. doi:10.1111/joa.13715. PMID 35762030.
  98. ^ Jansen, M.; Marjanović, D. (2022). "The scratch-digging lifestyle of the Permian "microsaur" Batropetes Carroll & Gaskill, 1971 as a model for the exaptative origin of jumping locomotion in frogs". Comptes Rendus Palevol. 21 (23): 463–488. doi:10.5852/cr-palevol2022v21a23.
  99. ^ Marugán-Lobón, J.; Gómez-Recio, M.; Nebreda, S. M. (2022). "The geometry of synapsid skull disparity". Historical Biology: An International Journal of Paleobiology. 34 (8): 1692–1700. doi:10.1080/08912963.2022.2071708. S2CID 248585919.
  100. ^ Liu, L.; Zhou, C.-F.; Wang, J.-S.; Xue, J.-Z. (2022). "A new tritylodontid from the Middle Jurassic Shaximiao Formation of western Hubei, China". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2022.2094262.
  101. ^ Davis, Brian; Jager, Kai; Rougier, Guillermo; Trujillo, Kelli; Chamberlain, Kevin (2022). "A morganucodontan (Mammaliaformes) from the Upper Jurassic Morrison Formation, Utah, USA". Acta Palaeontologica Polonica. 67. doi:10.4202/app.00955.2021. ISSN 0567-7920. S2CID 247861504.
  102. ^ Lucas, Spencer G.; Rinehart, Larry F.; Celeskey, Matthew; Berman, David S.; Henrici, Amy C. (2022). "A Scansorial Varanopid Eupelycosaur from the Pennsylvanian of New Mexico". Annals of Carnegie Museum. 87 (3): 167–205. doi:10.2992/007.087.0301.
  103. ^ Liu, J.; Abdala, F. (2022). "The emblematic South African therocephalian Euchambersia in China: a new link in the dispersal of late Permian vertebrates across Pangea". Biology Letters. 18 (7): Article ID 20220222. doi:10.1098/rsbl.2022.0222.
  104. ^ Werneburg, R.; Spindler, F.; Falconnet, J.; Steyer, J.-S.; Vianey-Liaud, M.; Schneider, J.-W. (2022). "A new caseid synapsid from the Permian (Guadalupian) of the Lodève basin (Occitanie, France)". Palæovertebrata. 45 (2): e2. doi:10.18563/pv.45.2.e2.
  105. ^ Sidor, C. A.; Kulik, Z. T.; Huttenlocker, A. K. (2022). "A new bauriamorph therocephalian adds a novel component to the Lower Triassic tetrapod assemblage of the Fremouw Formation (Transantarctic Basin) of Antarctica". Journal of Vertebrate Paleontology: e2081510. doi:10.1080/02724634.2021.2081510.
  106. ^ Kammerer, C. F.; Rubidge, B. S. (2022). "The earliest gorgonopsians from the Karoo Basin of South Africa". Journal of African Earth Sciences. 194: Article 104631. doi:10.1016/j.jafrearsci.2022.104631.
  107. ^ Gaetano, L. C.; Abdala, F.; Seoane, F. D.; Tartaglione, A.; Schulz, M.; Otero, A.; Leardi, J. M.; Apaldetti, C.; Krapovickas, V.; Steimbach, E. (2022). "A new cynodont from the Upper Triassic Los Colorados Formation (Argentina, South America) reveals a novel paleobiogeographic context for mammalian ancestors". Scientific Reports. 12 (1): Article number 6451. doi:10.1038/s41598-022-10486-4. PMC 9038739. PMID 35468982.
  108. ^ Reisz, R. R.; Scott, D.; Modesto, S. P. (2022). "Cranial Anatomy of the Caseid Synapsid Cotylorhynchus romeri, a Large Terrestrial Herbivore From the Lower Permian of Oklahoma, U.S.A". Frontiers in Earth Science. 10: Article 847560. doi:10.3389/feart.2022.847560.
  109. ^ Kammerer, C. F.; Araújo, R.; Cumbane, K.; MaCungo, Z.; Smith, R. M. H.; Angielczyk, K. D. (2022). "New material of Dicynodon angielczyki (Synapsida: Anomodontia) from Mozambique and Zambia with biostratigraphic implications for African Permo-Triassic basins". Journal of Vertebrate Paleontology: e2041652. doi:10.1080/02724634.2021.2041652. S2CID 248277237.
  110. ^ Macungo, Z.; Benoit, J.; Fernandez, V.; Araújo, R. M. N. (2022). "X-ray microcomputed and synchrotron tomographic analysis of the basicranial axis of emydopoid dicynodonts: implications for fossoriality and phylogeny". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlac033.
  111. ^ Liu, J. (2022). "On kannemeyeriiform dicynodonts from the Shaanbeikannemeyeria Assemblage Zone of the Ordos Basin, China". Vertebrata PalAsiatica. 60 (3): 212–248. doi:10.19615/j.cnki.2096-9899.220601.
  112. ^ Sidor, C. A. (2022). "New information on gorgonopsian pedal morphology based on articulated material from Zambia". Journal of African Earth Sciences. 191: Article 104533. Bibcode:2022JAfES.19104533S. doi:10.1016/j.jafrearsci.2022.104533. S2CID 247983136.
  113. ^ Liu, J.; Yang, W. (2022). "A gorgonopsian from the Wutonggou Formation (Changhsingian, Permian) of Turpan Basin, Xinjiang, China". Palaeoworld. doi:10.1016/j.palwor.2022.04.004.
  114. ^ Norton, L. A.; Abdala, F.; Rubidge, B. S.; Botha, J. (2022). "Tooth replacement in the non-mammalian cynodont Cynosaurus suppostus (Therapsida) from the late Permian of South Africa". Journal of Vertebrate Paleontology. 41 (4): e2001650. doi:10.1080/02724634.2021.2001650. S2CID 245861861.
  115. ^ Filippini, F. S.; Abdala, F.; Cassini, G. H. (2022). "Body mass estimation in Triassic cynodonts from Argentina based on limb variables". Acta Palaeontologica Polonica. 67 (2): 543–557. doi:10.4202/app.00919.2021. S2CID 248146371.
  116. ^ Melo, T. P.; Martinelli, A. G.; Soares, M. B. (2022). "New occurrences of massetognathine traversodontids and chiniquodontids (Synapsida, Cynodontia) from the early Late Triassic Santacruzodon Assemblage Zone (Santa Maria Supersequence, southern Brazil): Geographic and biostratigraphic implications". Journal of South American Earth Sciences. 115: Article 103757. Bibcode:2022JSAES.11503757M. doi:10.1016/j.jsames.2022.103757. S2CID 247248628.
  117. ^ Luo, Z.-X.; Bhullar, B.-A. S.; Crompton, A. W.; Neander, A. I.; Rowe, T. B. (2022). "Reexamination of the mandibular and dental morphology of the Early Jurassic mammaliaform Hadrocodium wui". Acta Palaeontologica Polonica. 67 (1): 95–113. doi:10.4202/app.00949.2021. S2CID 247905795.
  118. ^ Araújo, R.; David, R.; Benoit, J.; Lungmus, J. K.; Stoessel, A.; Barrett, P. M.; Maisano, J. A.; Ekdale, E.; Orliac, M.; Luo, Z.-X.; Martinelli, A. G.; Hoffman, E. A.; Sidor, C. A.; Martins, R. M. S.; Spoor, F.; Angielczyk, K. D. (2022). "Inner ear biomechanics reveals a Late Triassic origin for mammalian endothermy". Nature: 1–6. doi:10.1038/s41586-022-04963-z.
  119. ^ Schlagintweit, F.; Sánchez-Beristain, F.; Daoud, H. S.; Rashidi, K. (2022). "Acanthochaetetes fischeri n. sp. (coralline demosponge) from the upper Paleocene (Thanetian) of Iraq (Kurdistan Region) and Iran (Sistan Suture Zone)". Acta Palaeontologica Romaniae. 18 (2): 53–62. doi:10.35463/j.apr.2022.02.02. S2CID 246318072.
  120. ^ Muir, L. A.; Zhang, Y.; Botting, J. P.; Ma, X. (2022). "Convergent evolution in planktic graptolites: independent origin of the dicranograptid morphology in the Hirnantian (latest Ordovician)". Alcheringa: An Australasian Journal of Palaeontology. 45 (4): 395–400. doi:10.1080/03115518.2021.2003430. S2CID 245865884.
  121. ^ Botting, J. P.; Janussen, D.; Muir, L. A.; Dohrmann, M.; Ma, J.; Zhang, Y. (2022). "Extraordinarily early Venus' flower basket sponges (Hexactinellida, Euplectellidae) from the uppermost Ordovician Anji Biota, China". Palaeontology. 65 (2): e12592. doi:10.1111/pala.12592. S2CID 247641202.
  122. ^ Zatoń, M.; Słowiński, J.; Vinn, O.; Jakubowicz, M. (2022). "Middle Devonian microconchids and anticalyptraeids (Tentaculita) from the northern shelf of Gondwana (Morocco): palaeoecological and palaeobiogeographical implications". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2022.2077648.
  123. ^ a b Kouchinsky, A.; Alexander, R.; Bengtson, S.; Bowyer, F.; Clausen, S.; Holmer, L. E.; Kolesnikov, K. A.; Korovnikov, I. V.; Pavlov, V.; Skovsted, C. B.; Ushatinskaya, G.; Wood, R.; Zhuravlev, A. Y. (2022). "Early–middle Cambrian stratigraphy and faunas from northern Siberia". Acta Palaeontologica Polonica. 67 (2): 341–464. doi:10.4202/app.00930.2021.
  124. ^ Jeon, J.; Liang, K.; Kershaw, S.; Park, J.; Lee, M.; Zhang, Y. (2022). "Rise of clathrodictyid stromatoporoids during the Great Ordovician Biodiversification Event: insights from the Upper Ordovician Xiazhen Formation of South China". Journal of Paleontology: 1–33. doi:10.1017/jpa.2022.36.
  125. ^ a b c d Ceccolini, F.; Cianferoni, F. (2022). "Four replacement names in fossil demosponges (Porifera: Demospongiae)". Revista Brasileira de Paleontologia. 25 (2): 165–167. doi:10.4072/rbp.2022.2.06.
  126. ^ Novozhilova, N. V. (2022). "Early Cambrian palaeoscolecidan sclerites from the western limb of the Chekurovka anticline (Siberian Platform)". Paleontological Journal. 56 (2): 147–153. doi:10.1134/S0031030122020095. S2CID 248303171.
  127. ^ Zatoń, M.; Vinn, O.; Toom, U.; Słowiński, J. (2022). "New encrusting tentaculitoids from the Silurian of Estonia and taxonomic status of Anticalyptraea Quenstedt, 1867". GFF: 1–7. doi:10.1080/11035897.2022.2042378. S2CID 248103801.
  128. ^ Mann, A.; Pardo, J. D.; Maddin, H. C. (2022). "Snake-like limb loss in a Carboniferous amniote". Nature Ecology & Evolution. 6 (5): 614–621. doi:10.1038/s41559-022-01698-y. PMID 35347258. S2CID 247778148.
  129. ^ Botting, J. P.; Ma, J.-Y. (2022). "A probable hyalonematid sponge (Hexactinellida: Amphidiscophora) from the Middle Ordovician of the Builth Inlier, Wales". Palaeoworld. in press. doi:10.1016/j.palwor.2022.01.011. S2CID 246594829.
  130. ^ a b Kočí, T.; Goedert, J. L.; Buckeridge, H. S. (2022). "Eocene tube-dwelling annelids (Polychaeta: Sedentaria) from the Black Hills, western Washington State: the first record of Neodexiospira from North America". PalZ. in press. doi:10.1007/s12542-022-00604-y. S2CID 247623413.
  131. ^ Yun, H.; Luo, C.; Chang, C.; Li, L.; Reitner, J.; Zhang, X. (2022). "Adaptive specialization of a unique sponge body from the Cambrian Qingjiang biota". Proceedings of the Royal Society B: Biological Sciences. 289 (1977): Article ID 20220804. doi:10.1098/rspb.2022.0804. PMC 9198775. PMID 35703053.
  132. ^ Stock, C. W. (2022). "Rare stromatoporoids from the Lower Devonian (Emsian) of Nevada, and their biostratigraphic and paleobiogeographic significance". Journal of Paleontology: 1–12. doi:10.1017/jpa.2022.18.
  133. ^ Li, L.; Reitner, J.; Gong, F.; Yan, G.; Wu, R. (2022). "A new stiodermatid (Hexactinellida, Porifera) from the latest Ordovician of Anhui, South China and its significance for searching the missing link between the Cambrian and late Palaeozoic stiodermatid lineage". Historical Biology: An International Journal of Paleobiology. in press: 1–11. doi:10.1080/08912963.2021.2024180. S2CID 245820581.
  134. ^ Lerosey-Aubril, R.; Ortega-Hernández, J. (2022). "A new lobopodian from the middle Cambrian of Utah: did swimming body flaps convergently evolve in stem-group arthropods?". Papers in Palaeontology. 8 (3): e1450. doi:10.1002/spp2.1450.
  135. ^ Pates, S.; Wolfe, J. M.; Lerosey-Aubril, R.; Daley, A. C.; Ortega-Hernández, J. (2022). "New opabiniid diversifies the weirdest wonders of the euarthropod stem group". Proceedings of the Royal Society B: Biological Sciences. 289 (1968): Article ID 20212093. doi:10.1098/rspb.2021.2093. PMC 8826304. PMID 35135344.
  136. ^ Hoyal Cuthill, J. F. (2022). "Ediacaran survivors in the Cambrian: suspicions, denials and a smoking gun" (PDF). Geological Magazine. in press: 1–10. doi:10.1017/S0016756821001333. S2CID 247829362.
  137. ^ Darroch, S. A. F.; Gibson, B. M.; Syversen, M.; Rahman, I. A.; Racicot, R. A.; Dunn, F. S.; Gutarra, S.; Schindler, E.; Wehrmann, A.; Laflamme, M. (2022). "The life and times of Pteridinium simplex". Paleobiology: 1–30. doi:10.1017/pab.2022.2. S2CID 248879848.
  138. ^ Aragonés Suarez, P.; Leys, S. P. (31 January 2022). "The sponge pump as a morphological character in the fossil record" (PDF). Paleobiology: 1–16. doi:10.1017/PAB.2021.43. ISSN 0094-8373. Wikidata Q111384420.
  139. ^ Liu, F.; Skovsted, C. B.; Topper, T. P.; Zhang, Z. (2022). "Hyolithid-like hyoliths without helens from the early Cambrian of South China, and their implications for the evolution of hyoliths". BMC Ecology and Evolution. 22 (1): Article number 64. doi:10.1186/s12862-022-02022-9. PMC 9116025. PMID 35581561.
  140. ^ Tian, Q.; Zhao, F.; Zeng, H.; Zhu, M.; Jiang, B. (2022). "Ultrastructure reveals ancestral vertebrate pharyngeal skeleton in yunnanozoans". Science. 377 (6602): 218–222. doi:10.1126/science.abm2708.
  141. ^ Mann, A.; Pardo, J. D.; Sues, H.-D. (2022). "Osteology and phylogenetic position of the diminutive 'microsaur' Odonterpeton triangulare from the Pennsylvanian of Linton, Ohio, and major features of recumbirostran phylogeny". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlac043.
  142. ^ Kolesnikov, A. (2022). "Beltanelliformis konovalovi sp. nov. From the Terminal Neoproterozoic of Central Urals: Taphonomic and Ecological Implications". Frontiers in Earth Science. 10: Article 875001. Bibcode:2022FrEaS..10.5001K. doi:10.3389/feart.2022.875001.
  143. ^ a b c d Nõlvak, J.; Liang, Y.; Hints, O. (2022). "Early and early Middle Ordovician chitinozoans from the Baldone drill core, central Latvia". Estonian Journal of Earth Sciences. 71 (1): 25–43. doi:10.3176/earth.2022.03.
  144. ^ Krings, M. (2022). "Glaphyrobalantium hueberi gen. et sp. nov., a Cryptic Microbial Fossil, Presumably a Cyanobacterium or Microscopic Alga, from the Lower Devonian Rhynie Chert". International Journal of Plant Sciences. 183 (6): 432–440. doi:10.1086/720386. S2CID 248727677.
  145. ^ a b c Liu, H.; Dong, L.; Qin, S.; Liu, W.; Li, C. (2022). "Restudy of string fossils from the Ediacaran-Cambrian Liuchapo Formation in Guizhou Province, South China". Precambrian Research. 376: Article 106693. Bibcode:2022PreR..376j6693L. doi:10.1016/j.precamres.2022.106693. S2CID 248688088.
  146. ^ a b c d Yi, Y.; Chen, F.; Algeo, T. J.; Feng, Q. (2022). "Deep-water fossil assemblages from the Ediacaran-Cambrian transition of western Hunan, South China and their biostratigraphic and evolutionary implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 591: Article 110878. Bibcode:2022PPP...591k0878Y. doi:10.1016/j.palaeo.2022.110878. S2CID 246806627.
  147. ^ Willman, S.; Peel, J. S. (2022). "Problematic tubular fossils from the Portfjeld Formation (Ediacaran) of North Greenland". Journal of Paleontology: 1–11. doi:10.1017/jpa.2022.43.
  148. ^ Kolesnikov, A.; Desiatkin, V. (2022). "Taxonomy and palaeoenvironmental distribution of palaeopascichnids". Geological Magazine: 1–17. doi:10.1017/S0016756822000437.
  149. ^ Zhang, Y.; Zhang, X. (2022). "Non-metazoan affinity of embryo-like Megasphaera fossils from the Ediacaran Zhenba microfossil assemblage". Precambrian Research. 374: Article 106645. Bibcode:2022PreR..374j6645Z. doi:10.1016/j.precamres.2022.106645. S2CID 247959735.
  150. ^ Retallack, G. J. (2022). "Damaged Dickinsonia specimens provide clues to Ediacaran vendobiont biology". PLOS ONE. 17 (6): e0269638. doi:10.1371/journal.pone.0269638. PMC 9202952. PMID 35709144.
  151. ^ Slater, S. M.; Bown, P.; Twitchett, R. J.; Danise, S.; Vajda, V. (2022). "Global record of "ghost" nannofossils reveals plankton resilience to high CO2 and warming". Science. 376 (6595): 853–856. doi:10.1126/science.abm7330. PMID 35587965. S2CID 248917294.
  152. ^ Hupp, B. N.; Kelly, D. C.; Williams, J. W. (2022). "Isotopic filtering reveals high sensitivity of planktic calcifiers to Paleocene–Eocene thermal maximum warming and acidification". Proceedings of the National Academy of Sciences of the United States of America. 119 (9): e2115561119. doi:10.1073/pnas.2115561119. PMC 8892336. PMID 35193977.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  153. ^ Bergh, E. W.; Compton, J. S. (2022). "Taxonomy of Middle Miocene foraminifera from the northern Namibian continental shelf". Zootaxa. 5091 (1): 1–55. doi:10.11646/zootaxa.5091.1.1. PMID 35391261. S2CID 248024083.
  154. ^ Pérez-Pinedo, D.; McKean, C.; Taylor, R.; Nicholls, R.; McIlroy, D. (2022). "Charniodiscus and Arborea Are Separate Genera Within the Arboreomorpha: Using the Holotype of C. concentricus to Resolve a Taphonomic/Taxonomic Tangle". Frontiers in Earth Science. 9: Article 785929. Bibcode:2022FrEaS...9.1393P. doi:10.3389/feart.2021.785929.
  155. ^ Yang, C.; Li, Y.; Selby, D.; Wan, B.; Guan, C.; Zhou, C.; Li, X.-H. (2022). "Implications for Ediacaran biological evolution from the ca. 602 Ma Lantian biota in China". Geology. 50 (5): 562–566. Bibcode:2022Geo....50..562Y. doi:10.1130/G49734.1. S2CID 246788576.
  156. ^ Eden, R.; Manica, A.; Mitchell, E. G. (2022). "Metacommunity analyses show an increase in ecological specialisation throughout the Ediacaran period". PLOS Biology. 20 (5): e3001289. doi:10.1371/journal.pbio.3001289. PMC 9113585. PMID 35580078.
  157. ^ Hsieh, S.; Plotnick, R. E.; Bush, A. M. (2022). "The Phanerozoic aftermath of the Cambrian information revolution: sensory and cognitive complexity in marine faunas". Paleobiology. in press: 1–23. doi:10.1017/pab.2021.46. S2CID 246399509.
  158. ^ Chen, F.; Topper, T. P.; Skovsted, C. B.; Strotz, L. C.; Shen, J.; Zhang, Z. (2022). "Cambrian ecological complexities: perspectives from the earliest brachiopod - supported benthic communities in the early Cambrian Guanshan Lagerstätte". Gondwana Research. 107: 30–41. Bibcode:2022GondR.107...30C. doi:10.1016/j.gr.2022.02.008. S2CID 247204451.
  159. ^ Sun, Z.; Zhao, F.; Zeng, H.; Luo, C.; Van Iten, H.; Zhu, M. (2022). "The middle Cambrian Linyi Lagerstätte from the North China Craton: a new window on the Cambrian evolutionary fauna". National Science Review. doi:10.1093/nsr/nwac069.
  160. ^ Saleh, F.; Guenser, P.; Gibert, C.; Balseiro, D.; Serra, F.; Waisfeld, B. G.; Antcliffe, J. B.; Daley, A. C.; Mángano, M. G.; Buatois, L. A.; Ma, X.; Vizcaïno, D.; Lefebvre, B. (2022). "Contrasting Early Ordovician assembly patterns highlight the complex initial stages of the Ordovician Radiation". Scientific Reports. 12 (1): Article number 3852. Bibcode:2022NatSR..12.3852S. doi:10.1038/s41598-022-07822-z. PMC 8907272. PMID 35264650.
  161. ^ Fang, X.; Mao, Y.; Liu, Q.; Yuan, W.; Chen, Z.; Wu, R.; Li, L.; Zhang, Y.; Ma, J.; Wang, W.; Zhan, R.; Peng, S.; Zhang, Y.; Huang, D. (2022). "The Liexi fauna: a new Lagerstätte from the Lower Ordovician of South China". Proceedings of the Royal Society B: Biological Sciences. 289 (1978): Article ID 20221027. doi:10.1098/rspb.2022.1027.
  162. ^ Borisenko, T.; Vinn, O.; Grytsenko, V.; Francovschi, I.; Zaika, Y. "Symbiosis in corals and stromatoporoids from the Silurian of Baltica". Palaeontologia Electronica. 25 (2): Article number 25.2.a17. doi:10.26879/1206.
  163. ^ Zhang, S.-H.; Shen, S.-Z.; Erwin, D. H. (2022). "Latitudinal diversity gradient dynamics during Carboniferous to Triassic icehouse and greenhouse climates". Geology. doi:10.1130/G50110.1.
  164. ^ Brocklehurst, N.; Ford, D. P.; Benson, R. B. J. (2022). "Early origins of divergent patterns of morphological evolution on the mammal and reptile stem-lineages". Systematic Biology. in press. doi:10.1093/sysbio/syac020. PMID 35274702.
  165. ^ Matamales-Andreu, R.; Mujal, E.; Dinarès-Turell, J.; Kustatscher, E.; Roghi, G.; Oms, O.; Galobart, À.; Fortuny, J. (2022). "Early–middle Permian ecosystems of equatorial Pangaea: Integrated multi-stratigraphic and palaeontological review of the Permian of Mallorca (Balearic Islands, western Mediterranean)". Earth-Science Reviews. 228: Article 103948. Bibcode:2022ESRv..22803948M. doi:10.1016/j.earscirev.2022.103948. S2CID 246438404.
  166. ^ Lee, S.; Shi, G. R.; Nakrem, H. A.; Woo, J.; Tazawa, J.-I. (2022). "Mass extinction or extirpation: Permian biotic turnovers in the northwestern margin of Pangea". GSA Bulletin. in press. doi:10.1130/B36227.1. S2CID 246585320.
  167. ^ Shishkin, M. A. (2022). "Disturbance of organizational equilibrium during the change of ancient tetrapod communities: its manifestations at the Middle-Late Permian transition". Paleontological Journal. 56 (3): 237–246. doi:10.1134/S0031030122030170.
  168. ^ Marchetti, L.; Logghe, A.; Mujal, E.; Barrier, P.; Montenat, C.; Nel, A.; Pouillon, J.-M.; Garrouste, R.; Steyer, J. S. (2022). "Vertebrate tracks from the Permian of Gonfaron (Provence, Southern France) and their implications for the late Capitanian terrestrial extinction event". Palaeogeography, Palaeoclimatology, Palaeoecology. 599: Article 111043. doi:10.1016/j.palaeo.2022.111043. S2CID 248597280.
  169. ^ Dal Corso, J.; Song, H.; Callegaro, S.; Chu, D.; Sun, Y.; Hilton, J.; Grasby, S. E.; Joachimski, M. M.; Wignall, P. B. (2022). "Environmental crises at the Permian–Triassic mass extinction". Nature Reviews Earth & Environment. 3 (3): 197–214. Bibcode:2022NRvEE...3..197D. doi:10.1038/s43017-021-00259-4. S2CID 247013868.
  170. ^ Foster, W. J.; Ayzel, G.; Münchmeyer, J.; Rettelbach, T.; Kitzmann, N. H.; Isson, T. T.; Mutti, M.; Aberhan, M. (2022). "Machine learning identifies ecological selectivity patterns across the end-Permian mass extinction". Paleobiology. in press: 1–15. doi:10.1017/pab.2022.1. S2CID 247203709.
  171. ^ Feng, X.; Chen, Z.-Q.; Benton, M. J.; Su, C.; Bottjer, D. J.; Cribb, A. T.; Li, Z.; Zhao, L.; Zhu, G.; Huang, Y.; Guo, Z. (2022). "Resilience of infaunal ecosystems during the Early Triassic greenhouse Earth". Science Advances. 8 (26): eabo0597. doi:10.1126/sciadv.abo0597. PMC 9242451. PMID 35767613.
  172. ^ Sues, H.-D.; Olsen, P. E.; Fedak, T. J.; Schoch, R. R. (2022). "Diverse assemblage of Middle Triassic continental tetrapods from the Newark Supergroup of Nova Scotia (Canada)". Journal of Vertebrate Paleontology. 41 (4): e2023168. doi:10.1080/02724634.2021.2023168. S2CID 247181044.
  173. ^ Liu, F.; Wu, R.; Han, F. (2022). "Vertebrate diversity of the Yanliao Biota and comparison with other biotas". Acta Palaeontologica Sinica. 61 (1): 88–106. doi:10.19800/j.cnki.aps.2020027.
  174. ^ Manitkoon, S.; Deesri, U.; Lauprasert, K.; Warapeang, P.; Nonsrirach, T.; Nilpanapan, A.; Wongko, K.; Chanthasit, P. (2022). "Fossil assemblage from the Khok Pha Suam locality of northeastern, Thailand: an overview of vertebrate diversity from the Early Cretaceous Khok Kruat Formation (Aptian-Albian)". Fossil Record. 25 (1): 83–98. doi:10.3897/fr.25.83081.
  175. ^ Benyoucef, M.; Pérez-García, A.; Bendella, M.; Ortega, F.; Vullo, R.; Bouchemla, I.; Ferré, B. (2022). "The "mid"-Cretaceous (Lower Cenomanian) Continental Vertebrates of Gara Samani, Algeria. Sedimentological Framework and Palaeodiversity". Frontiers in Earth Science. 10: Article 927059. doi:10.3389/feart.2022.927059.
  176. ^ Philippe, M.; McLoughlin, S.; Strullu-Derrien, C.; Bamford, M.; Kiel, S.; Nel, A.; Thévenard, F. (2022). "Life in the woods: Taphonomic evolution of a diverse saproxylic community within fossil woods from Upper Cretaceous submarine mass flow deposits (Mzamba Formation, southeast Africa)". Gondwana Research. 109: 113–133. Bibcode:2022GondR.109..113P. doi:10.1016/j.gr.2022.04.008.
  177. ^ Fanti, F.; Bell, P. R.; Vavrek, M.; Larson, D.; Koppelhus, E.; Sissons, R. L.; Langone, A.; Campione, N. E.; Sullivan, C. (2022). "Filling the Bearpaw gap: Evidence for palaeoenvironment-driven taxon distribution in a diverse, non-marine ecosystem from the late Campanian of west-Central Alberta, Canada". Palaeogeography, Palaeoclimatology, Palaeoecology. 592: Article 110923. Bibcode:2022PPP...592k0923F. doi:10.1016/j.palaeo.2022.110923. S2CID 247348345.
  178. ^ Rodríguez-Tovar, F. J.; Kaskes, P.; Ormö, J.; Gulick, S. P. S.; Whalen, M. T.; Jones, H. L.; Lowery, C. M.; Bralower, T. J.; Smit, J.; King, D. T.; Goderis, S.; Claeys, P. (2022). "Life before impact in the Chicxulub area: unique marine ichnological signatures preserved in crater suevite". Scientific Reports. 12 (1): Article number 11376. doi:10.1038/s41598-022-15566-z. PMC 9256630. PMID 35790847.
  179. ^ McCurry, M. R.; Cantrill, D. J.; Smith, P. M.; Beattie, R.; Dettmann, M.; Baranov, V.; Magee, C.; Nguyen, J. M. T.; Forster, M. A.; Hinde, J.; Pogson, R.; Wang, H.; Marjo, C. E.; Vasconcelos, P.; Frese, M. (2022). "A Lagerstätte from Australia provides insight into the nature of Miocene mesic ecosystems". Science Advances. 8 (1): eabm1406. Bibcode:2022SciA....8M1406M. doi:10.1126/sciadv.abm1406. PMC 8741189. PMID 34995110.
  180. ^ Daxner-Höck, G.; Čerňanský, A.; Flynn, L. J.; Wessels, W. (2022). "Fossil vertebrates from the late Miocene of Builstyn Khudag (Valley of Lakes, Central Mongolia)" (PDF). Annalen des Naturhistorischen Museums in Wien, Serie A. 123: 81–135. JSTOR 27121975.
  181. ^ Zelenkov, N. V.; Syromyatnikova, E. V.; Tarasenko, K. K.; Titov, V. V.; Tesakov, A. S. (2022). "Southeastern Europe as the arena of vertebrate evolution in the late Miocene". Paleontological Journal. 56 (2): 213–226. doi:10.1134/S0031030122020149. S2CID 248303321.
  182. ^ Dantas, V. L.; Pausas, J. G. (2022). "The legacy of the extinct Neotropical megafauna on plants and biomes". Nature Communications. 13 (1): Article number 129. Bibcode:2022NatCo..13..129D. doi:10.1038/s41467-021-27749-9. PMC 8748933. PMID 35013233.
  183. ^ Ramm, T.; Thorn, K. M.; Hipsley, C. A.; Müller, J.; Hocknull, S.; Melville, J. (2022). "Herpetofaunal diversity changes with climate: evidence from the Quaternary of McEachern's Deathtrap Cave, southeastern Australia". Journal of Vertebrate Paleontology. 41 (5): e2009844. doi:10.1080/02724634.2021.2009844. S2CID 247277364.
  184. ^ Hansford, J. P.; Turvey, S. T. (2022). "Dietary isotopes of Madagascar's extinct megafauna reveal holocene browsing and grazing guilds". Biology Letters. 18 (4): Article ID 20220094. doi:10.1098/rsbl.2022.0094. PMC 9006009. PMID 35414222. S2CID 248119857.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  185. ^ Finch, S. P.; D'Emic, M. D. (2022). "Evolution of amniote dentine apposition rates". Biology Letters. 18 (4): Article ID 20220092. doi:10.1098/rsbl.2022.0092. PMC 9042580. PMID 35472282.
  186. ^ Saleh, F.; Qi, C.; Buatois, L. A.; Mángano, M. G.; Paz, M.; Vaucher, R.; Zheng, Q.; Hou, X.-G.; Gabbott, S. E.; Ma, X. (2022). "The Chengjiang Biota inhabited a deltaic environment". Nature Communications. 13 (1): Article number 1569. Bibcode:2022NatCo..13.1569S. doi:10.1038/s41467-022-29246-z. PMC 8943010. PMID 35322027.
  187. ^ Zhao, Z.; Thibault, N. R.; Dahl, T. W.; Schovsbo, N. H.; Sørensen, A. L.; Rasmussen, C. M. Ø.; Nielsen, A. T. (2022). "Synchronizing rock clocks in the late Cambrian". Nature Communications. 13 (1): Article number 1990. Bibcode:2022NatCo..13.1990Z. doi:10.1038/s41467-022-29651-4. PMC 9007955. PMID 35418121.
  188. ^ Bicknell, R. D. C.; Naugolnykh, S. V. (2022). "Palaeoecological reconstruction of the Late Devonian Lebedjan biota". Historical Biology: An International Journal of Paleobiology. in press: 1–9. doi:10.1080/08912963.2022.2032025. S2CID 246820064.
  189. ^ Marchetti, L.; Forte, G.; Kustatscher, E.; DiMichele, W. A.; Lucas, S. G.; Roghi, G.; Juncal, M. A.; Hartkopf-Fröder, C.; Krainer, K.; Morelli, C.; Ronchi, A. (2022). "The Artinskian Warming Event: an Euramerican change in climate and the terrestrial biota during the early Permian". Earth-Science Reviews. 226: Article 103922. Bibcode:2022ESRv..22603922M. doi:10.1016/j.earscirev.2022.103922. S2CID 245892961.
  190. ^ Haig, D. W.; Dillinger, A.; Playford, G.; Riera, R.; Sadekov, A.; Skrzypek, G.; Håkansson, E.; Mory, A. J.; Peyrot, D.; Thomas, C. (2022). "Methane seeps following Early Permian (Sakmarian) deglaciation, interior East Gondwana, Western Australia: Multiphase carbonate cements, distinct carbon-isotope signatures, extraordinary biota". Palaeogeography, Palaeoclimatology, Palaeoecology. 591: Article 110862. Bibcode:2022PPP...591k0862H. doi:10.1016/j.palaeo.2022.110862. S2CID 246645062.
  191. ^ Fielding, C. R.; Frank, T. D.; Savatic, K.; Mays, C.; McLoughlin, S.; Vajda, V.; Nicoll, R. S. (2022). "Environmental change in the late Permian of Queensland, NE Australia: The warmup to the end-Permian Extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 594: Article 110936. Bibcode:2022PPP...594k0936F. doi:10.1016/j.palaeo.2022.110936. S2CID 247514266.
  192. ^ Foster, W. J.; Hirtz, J. A.; Farrell, C.; Reistroffer, M.; Twitchett, R. J.; Martindale, R. C. (2022). "Bioindicators of severe ocean acidification are absent from the end-Permian mass extinction". Scientific Reports. 12 (1): Article number 1202. Bibcode:2022NatSR..12.1202F. doi:10.1038/s41598-022-04991-9. PMC 8786885. PMID 35075151.
  193. ^ Fox, C. P.; Whiteside, J. H.; Olsen, P. E.; Cui, X.; Summons, R. E.; Idiz, E.; Grice, K. (2022). "Two-pronged kill mechanism at the end-Triassic mass extinction". Geology. 50 (4): 448–453. Bibcode:2022Geo....50..448F. doi:10.1130/G49560.1. S2CID 245782726.
  194. ^ Onoue, T.; Michalík, J.; Shirozu, H.; Yamashita, M.; Yamashita, K.; Kusaka, S.; Soda, K. (2022). "Extreme continental weathering in the northwestern Tethys during the end-Triassic mass extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 594: Article 110934. Bibcode:2022PPP...594k0934O. doi:10.1016/j.palaeo.2022.110934. S2CID 247515330.
  195. ^ Yu, Z.; Dong, L.; Huyskens, M. H.; Yin, Q.-Z.; Wang, Y.; Deng, C.; He, H. (2022). "The exceptionally preserved Early Cretaceous "Moqi Fauna" from eastern Inner Mongolia, China, and its age relationship with the Jehol Biota". Palaeogeography, Palaeoclimatology, Palaeoecology. 589: Article 110824. Bibcode:2022PPP...589k0824Y. doi:10.1016/j.palaeo.2021.110824. S2CID 245714839.
  196. ^ Beveridge, T. L.; Roberts, E. M.; Ramezani, J.; Titus, A. L.; Eaton, J. G.; Irmis, R. B.; Sertich, J. J. W. (2022). "Refined geochronology and revised stratigraphic nomenclature of the Upper Cretaceous Wahweap Formation, Utah, U.S.A. and the age of early Campanian vertebrates from southern Laramidia". Palaeogeography, Palaeoclimatology, Palaeoecology. 591: Article 110876. Bibcode:2022PPP...591k0876B. doi:10.1016/j.palaeo.2022.110876. S2CID 246766015.
  197. ^ Roberts, E. M.; O'Connor, P. M.; Clarke, J. A.; Slotznick, S. P.; Placzek, C. J.; Tobin, T. S.; Hannaford, C.; Orr, T.; Jinnah, Z. A.; Claeson, K. M.; Salisbury, S.; Kirschvink, J. L.; Pirrie, D.; Lamanna, M. C. (2022). "New age constraints support a K/Pg boundary interval on Vega Island, Antarctica: Implications for latest Cretaceous vertebrates and paleoenvironments". GSA Bulletin. doi:10.1130/B36422.1.
  198. ^ During, M. A. D.; Smit, J.; Voeten, D. F. A. E.; Berruyer, C.; Tafforeau, P.; Sanchez, S.; Stein, K. H. W.; Verdegaal-Warmerdam, S. J. A.; van der Lubbe, J. H. J. L. (2022). "The Mesozoic terminated in boreal spring". Nature. 603 (7899): 91–94. Bibcode:2022Natur.603...91D. doi:10.1038/s41586-022-04446-1. PMC 8891016. PMID 35197634. S2CID 247082799.
  199. ^ Morgan, J. V.; Bralower, T. J.; Brugget, J.; Wünnemann, K. (2022). "The Chicxulub impact and its environmental consequences". Nature Reviews Earth & Environment. 3 (5): 338–354. doi:10.1038/s43017-022-00283-y. S2CID 248088486.
  200. ^ Brachert, T. C.; Felis, T.; Gagnaison, C.; Hoehle, M.; Reuter, M.; Spreter, P. M. (2022). "Slow-growing reef corals as climate archives: A case study of the Middle Eocene Climatic Optimum 40 Ma ago". Science Advances. 8 (20): eabm3875. doi:10.1126/sciadv.abm3875. PMC 9122318. PMID 35594346.
  201. ^ Siljeström, S.; Neubeck, A.; Steele, A. (2022). "Detection of porphyrins in vertebrate fossils from the Messel and implications for organic preservation in the fossil record". PLOS ONE. 17 (6): e0269568. doi:10.1371/journal.pone.0269568.
  202. ^ Miao, Y.; Chang, H.; Li, L.; Cheng, F.; Garzione, C.; Yang, Y. (2022). "Early Oligocene—Late Miocene Wildfire History in the Northern Tibetan Plateau and Links to Temperature-Driven Precipitation Changes". Frontiers in Earth Science. 10: Article 850809. doi:10.3389/feart.2022.850809.
  203. ^ Casanovas-Vilar, I.; Garcés, M.; Marcuello, Á.; Abella, J.; Madurell-Malapeira, J.; Jovells-Vaqué, S.; Cabrera, L.; Galindo, J.; Beamud, E.; Ledo, J. J.; Queralt, P.; Martí, A.; Sanjuan, J.; Martín-Closas, C.; Jiménez-Moreno, G.; Luján, À. H.; Villa, A.; DeMiguel, D.; Sánchez, I. M.; Robles, J. M.; Furió, M.; Van den Hoek Ostende, L. W.; Sánchez-Marco, A.; Sanisidro, Ó.; Valenciano, A.; García-Paredes, I.; Angelone, A.; Pons-Monjo, G.; Azanza, B.; Delfino, M.; Bolet, A.; Grau-Camats, M.; Vizcaíno-Varo, V.; Mormeneo, D.; Kimura, Y.; Moyà-Solà, S.; Alba, D. M. (2022). "Els Casots (Subirats, Catalonia), a key site for the Miocene vertebrate record of Southwestern Europe". Historical Biology: An International Journal of Paleobiology. 34 (8): 1494–1508. doi:10.1080/08912963.2022.2043296. hdl:10261/265685. S2CID 247468844.
  204. ^ Nguy, W. H.; Secord, R. (2022). "Middle Miocene paleoenvironmental reconstruction in the central Great Plains, USA, from stable carbon isotopes in ungulates". Palaeogeography, Palaeoclimatology, Palaeoecology. 594: Article 110929. Bibcode:2022PPP...594k0929N. doi:10.1016/j.palaeo.2022.110929. S2CID 247389370.
  205. ^ Cohen, A. S.; Du, A.; Rowan, J.; Yost, C. L.; Billingsley, A. L.; Campisano, C. J.; Brown, E. T.; Deino, A. L.; Feibel, C. S.; Grant, K.; Kingston, J. D.; Lupien, R. L.; Muiruri, V.; Owen, R. B.; Reed, K. E.; Russell, J.; Stockhecke, M. (2022). "Plio-Pleistocene environmental variability in Africa and its implications for mammalian evolution". Proceedings of the National Academy of Sciences of the United States of America. 119 (16): e2107393119. Bibcode:2022PNAS..11907393C. doi:10.1073/pnas.2107393119. PMC 9169865. PMID 35412903. S2CID 248128445.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  206. ^ Su, D. F.; Haile-Selassie, Yohannes (2022). "Mosaic habitats at Woranso-Mille (Ethiopia) during the Pliocene and implications for Australopithecus paleoecology and taxonomic diversity". Journal of Human Evolution. 163: Article 103076. doi:10.1016/j.jhevol.2021.103076. PMID 34998271. S2CID 245788627.
  207. ^ Hopley, P. J.; Cerling, T. E.; Crété, L.; Werdelin, L.; Mwebi, O.; Manthi, F. K.; Leakey, L. N. (2022). "Stable isotope analysis of carnivores from the Turkana Basin, Kenya: Evidence for temporally-mixed fossil assemblages". Quaternary International. doi:10.1016/j.quaint.2022.04.004.
  208. ^ Tu, H.; Luo, L.; Deng, C.; Ou, Z.; Lai, Z.; Shen, G.; Bae, C. J.; Granger, D. (2022). "Isochron 26Al/10Be burial dating of the Xiashagou Fauna in the Nihewan Basin, northern China: Implications for biogeography and early hominin dispersals". Quaternary Science Reviews. 283: Article 107447. Bibcode:2022QSRv..28307447T. doi:10.1016/j.quascirev.2022.107447. S2CID 247826933.
  209. ^ Stepka, Z.; Azuri, I.; Horwitz, L. K.; Chazan, M.; Natalio, F. (2022). "Hidden signatures of early fire at Evron Quarry (1.0 to 0.8 Mya)". Proceedings of the National Academy of Sciences of the United States of America. 119 (25): e2123439119. doi:10.1073/pnas.2123439119. PMC 9231470. PMID 35696581.
  210. ^ Gosling, W. D.; Miller, C. S.; Shanahan, T. M.; Holden, P. B.; Overpeck, J. T.; van Langevelde, F. (2022). "A stronger role for long-term moisture change than for CO2 in determining tropical woody vegetation change" (PDF). Science. 376 (6593): 653–656. doi:10.1126/science.abg4618. PMID 35511966. S2CID 248541663.
  211. ^ Murchie, T. J.; Karpinski, E.; Eaton, K.; Duggan, A. T.; Baleka, S.; Zazula, G.; MacPhee, R. D. E.; Froese, D.; Poinar, H. N. (2022). "Pleistocene mitogenomes reconstructed from the environmental DNA of permafrost sediments". Current Biology. 32 (4): 851–860.e7. doi:10.1016/j.cub.2021.12.023. PMID 35016010. S2CID 245838890.
  212. ^ Clark, J.; Carlson, A. E.; Reyes, A. V.; Carlson, E. C. B.; Guillaume, L.; Milne, G. A.; Tarasov, L.; Caffee, M.; Wilcken, K.; Rood, D. H. (2022). "The age of the opening of the Ice-Free Corridor and implications for the peopling of the Americas". Proceedings of the National Academy of Sciences of the United States of America. 119 (14): e2118558119. doi:10.1073/pnas.2118558119. PMC 9168949. PMID 35312340.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  213. ^ Wiemann, Jasmina; Briggs, Derek E. G. (2022). "Raman spectroscopy is a powerful tool in molecular paleobiology: An analytical response to Alleon et al. (doi.org/10.1002/bies.202000295)". BioEssays. 44 (2): Article 2100070. doi:10.1002/bies.202100070. ISSN 1521-1878. PMID 34993976. S2CID 245824320. Archived from the original on 2022-01-10. Retrieved 2022-01-10.
  214. ^ Neaux, D.; Louail, M.; Ferchaud, S.; Surault, J.; Merceron, G. (2022). "Experimental assessment of the relationship between diet and mandibular morphology using a pig model: new insights for paleodietary reconstructions". The Anatomical Record. in press. doi:10.1002/ar.24895. PMID 35142076. S2CID 246700374.
  215. ^ Amano, H.; Rae, T. C.; Tsoukala, E.; Nakatsukasa, M.; Ogihara, N. (2022). "Computerized restoration of a fossil cranium based on selective elimination of estimated taphonomic deformation". American Journal of Biological Anthropology. 178 (3): 448–460. doi:10.1002/ajpa.24493. S2CID 246618526.
  216. ^ Demuth, O. E.; Wiseman, A. L. A.; van Beesel, J.; Mallison, H.; Hutchinson, J. R. (2022). "Three-dimensional polygonal muscle modelling and line of action estimation in living and extinct taxa". Scientific Reports. 12 (1): Article number 3358. Bibcode:2022NatSR..12.3358D. doi:10.1038/s41598-022-07074-x. PMC 8888607. PMID 35233027.
  217. ^ Lallensack, J. N.; Falkingham, P. L. (2022). "A new method to calculate limb phase from trackways reveals gaits of sauropod dinosaurs". Current Biology. 32 (7): 1635–1640.e4. doi:10.1016/j.cub.2022.02.012. PMID 35240050. S2CID 247198973.
  218. ^ Cisneros, J. C.; Raja, N. B.; Ghilardi, A. M.; Dunne, E. M.; Pinheiro, F. L.; Regalado Fernández, O. R; Sales, M. A. F.; Rodríguez-de la Rosa, R. A.; Miranda-Martínez, A. Y.; González-Mora, S.; Bantim, R. A. M.; de Lima, F. J.; Pardo, J. D. (2022). "Digging deeper into colonial palaeontological practices in modern day Mexico and Brazil". Royal Society Open Science. 9 (3): Article ID 210898. Bibcode:2022RSOS....910898C. doi:10.1098/rsos.210898. PMC 8889171. PMID 35291323.
  219. ^ Joachimski, M. M.; Müller, J.; Gallagher, T. M.; Mathes, G.; Chu, D. L.; Mouraviev, F.; Silantiev, V.; Sun, Y. D.; Tong, J. N. (2022). "Five million years of high atmospheric CO2 in the aftermath of the Permian-Triassic mass extinction". Geology. 50 (6): 650–654. doi:10.1130/G49714.1. S2CID 248116846.
  220. ^ Mau, M.; Kent, D. V.; Clemmensen, L. B. (2022). "Planetary chaos and inverted climate phasing in the Late Triassic of Greenland". Proceedings of the National Academy of Sciences of the United States of America. 119 (17): e2118696119. Bibcode:2022PNAS..11918696M. doi:10.1073/pnas.2118696119. PMC 9169927. PMID 35452307. S2CID 248346031.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  221. ^ Olsen, P.; Sha, J.; Fang, Y.; Chang, C.; Whiteside, J. H.; Kinney, S.; Sues, H.-D.; Kent, D.; Schaller, M.; Vajda, V. (2022). "Arctic ice and the ecological rise of the dinosaurs". Science Advances. 8 (26): eabo6342. doi:10.1126/sciadv.abo6342. PMID 35776799.
  222. ^ Jones, M. M.; Petersen, S. V.; Curley, A. N. (2022). "A tropically hot mid-Cretaceous North American Western Interior Seaway". Geology. doi:10.1130/G49998.1. S2CID 248676201.
  223. ^ Gaskell, D. E.; Huber, M.; O’Brien, C. L.; Inglis, G. N.; Acosta, R. P.; Poulsen, C. J.; Hull, P. M. (2022). "The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years". Proceedings of the National Academy of Sciences of the United States of America. 119 (11): e2111332119. Bibcode:2022PNAS..11911332G. doi:10.1073/pnas.2111332119. PMC 8931236. PMID 35254906. S2CID 247293580.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  224. ^ Junium, C. K.; Zerkle, A. L.; Witts, J. D.; Ivany, L. C.; Yancey, T. E.; Liu, C.; Claire, M. W. (2022). "Massive perturbations to atmospheric sulfur in the aftermath of the Chicxulub impact". Proceedings of the National Academy of Sciences of the United States of America. 119 (14): e2119194119. doi:10.1073/pnas.2119194119. PMC 9168947. PMID 35312339.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  225. ^ Meckler, A. N.; Sexton, P. F.; Piasecki, A. M.; Leutert, T. J.; Marquardt, J.; Ziegler, M.; Agterhuis, T.; Lourens, L. J.; Rae, J. W. B.; Barnet, J.; Tripati, A.; Bernasconi, S. M. (2022). "Cenozoic evolution of deep ocean temperature from clumped isotope thermometry". Science. 377 (6601): 86–90. doi:10.1126/science.abk0604. PMID 35771913.
  226. ^ Agterhuis, T.; Ziegler, M.; de Winter, N. J.; Lourens, L. J. (2022). "Warm deep-sea temperatures across Eocene Thermal Maximum 2 from clumped isotope thermometry". Communications Earth & Environment. 3 (1): Article number 39. Bibcode:2022ComEE...3...39A. doi:10.1038/s43247-022-00350-8.
  227. ^ Straume, E. O.; Nummelin, A.; Gaina, C.; Nisancioglu, K. H. (2022). "Climate transition at the Eocene–Oligocene influenced by bathymetric changes to the Atlantic–Arctic oceanic gateways". Proceedings of the National Academy of Sciences of the United States of America. 119 (17): e2115346119. Bibcode:2022PNAS..11915346S. doi:10.1073/pnas.2115346119. PMC 9169914. PMID 35446685. S2CID 248323534.
  228. ^ Herbert, T. D.; Dalton, C. A.; Liu, Z.; Salazar, A.; Si, W.; Wilson, D. S. (2022). "Tectonic degassing drove global temperature trends since 20 Ma". Science. 377 (6601): 116–119. doi:10.1126/science.abl4353. PMID 35771904.
  229. ^ Timmermann, A.; Yun, K.-S.; Raia, P.; Ruan, J.; Mondanaro, A.; Zeller, E.; Zollikofer, C.; Ponce de León, M.; Lemmon, D.; Willeit, M.; Ganopolski, A. (2022). "Climate effects on archaic human habitats and species successions". Nature. 604 (7906): 495–501. Bibcode:2022Natur.604..495T. doi:10.1038/s41586-022-04600-9. PMC 9021022. PMID 35418680.
  230. ^ Neugebauer, I.; Dinies, M.; Plessen, B.; Dräger, N.; Brauer, A.; Brückner, H.; Frenzel, P.; Gleixner, G.; Hoelzmann, P.; Krahn, K. J.; Pint, A.; Schwab, V. F.; Schwarz, A.; Tjallingii, R.; Engel, M. (2022). "The unexpectedly short Holocene Humid Period in Northern Arabia". Communications Earth & Environment. 3 (1): Article number 47. Bibcode:2022ComEE...3...47N. doi:10.1038/s43247-022-00368-y.