Rhombic triacontahedron: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m →‎Dimensions: Typo fixing, replaced: a inscribed sphere → an inscribed sphere using AWB (8686)
Line 58: Line 58:
|colspan=2|There are 64 vertices and 192 unit length edges forming pentagonal symmetry along specific axis (as well as hexagonal symmetries on other axis).
|colspan=2|There are 64 vertices and 192 unit length edges forming pentagonal symmetry along specific axis (as well as hexagonal symmetries on other axis).
|}
|}

===Stellations===
The rhombic triacontahedron has over 227 stellations.<ref>{{cite journal | last = Pawley | first = G. S. | title = The 227 triacontahedra | journal = Geometriae Dedicata | volume = 4 | issue = 2-4 | pages = 221-232 | publisher = Kluwer Academic Publishers | date = 1975 | issn = 1572-9168 | doi = 10.1007/BF00148756}}</ref>


==See also==
==See also==

Revision as of 09:00, 3 May 2013

Rhombic triacontahedron

(Click here for rotating model)
Type Catalan solid
Coxeter diagram
Conway notation jD
Face type V3.5.3.5

rhombus
Faces 30
Edges 60
Vertices 32
Vertices by type 20{3}+12{5}
Symmetry group Ih, H3, [5,3], (*532)
Rotation group I, [5,3]+, (532)
Dihedral angle 144°
Properties convex, face-transitive isohedral, isotoxal, zonohedron

Icosidodecahedron
(dual polyhedron)
Rhombic triacontahedron Net
Net

In geometry, the rhombic triacontahedron is a convex polyhedron with 30 rhombic faces. It is an Archimedean dual solid, or a Catalan solid. It is the polyhedral dual of the icosidodecahedron, and it is a zonohedron.


One face of the rhombic triacontahedron. The
diagonals' lengths are in the golden ratio.

The ratio of the long diagonal to the short diagonal of each face is exactly equal to the golden ratio, φ, so that the acute angles on each face measure 2 tan−1(1/φ) = tan−1(2), or approximately 63.43°. A rhombus so obtained is called a golden rhombus.

Being the dual of an Archimedean polyhedron, the rhombic triacontahedron is face-transitive, meaning the symmetry group of the solid acts transitively on the set of faces. In elementary terms, this means that for any two faces A and B there is a rotation or reflection of the solid that leaves it occupying the same region of space while moving face A to face B. The rhombic triacontahedron is also somewhat special in being one of the nine edge-transitive convex polyhedra, the others being the five Platonic solids, the cuboctahedron, the icosidodecahedron, and the rhombic dodecahedron.

The rhombic triacontahedron is also interesting in that it has all the vertices of an icosahedron, a dodecahedron, a hexahedron, and a tetrahedron.

Dimensions

If the edge length of a rhombic triacontahedron is a, surface area, volume, the radius of an inscribed sphere (tangent to each of the rhombic triacontahedron's faces) and midradius, which touches the middle of each edge are:[1]

where φ is the golden ratio.

The plane of each face is perpendicular to the center of the rhombic triacontahedron, and is located at the same distance (short diagonals belong only to the edges of the inscribed regular dodecahedron, while long diagonals are included only in edges of the inscribed icosahedron). Using one of the three orthogonal golden rectangles drawn into the inscribed icosahedron we can easily deduce the distance between the center of the solid and the center of its rhombic face.

Uses of rhombic triacontahedra

Danish designer Holger Strøm used the rhombic triacontahedron as a basis for the design of his buildable lamp IQ-light. (IQ for "Interlocking Quadrilaterals")

An example of the use of a rhombic triacontahedron in the design of a lamp. IQ stands for “Interlocking Quadrilaterals”.

Woodworker Jane Kostick builds boxes in the shape of a rhombic triacontahedron.[2] The simple construction is based on the less than obvious relationship between the rhombic triacontahedron and the cube.

Roger von Oech's "Ball of Whacks" comes in the shape of a rhombic triacontahedron.

In some roleplaying games, and for elementary school uses, the rhombic triacontahedron is used as the "d30" thirty-sided die.

Related polyhedra

Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532) [5,3]+, (532)
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

This polyhedron is a part of a sequence of rhombic polyhedra and tilings with [n,3] Coxeter group symmetry. The cube can be seen as a rhombic hexahedron where the rhombi are also rectangles.

Quasiregular tilings: (3.n)2
Sym.
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paraco. Noncompact hyperbolic
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
p6m
*732
[7,3]
 
*832
[8,3]...
 
*∞32
[∞,3]
 
[12i,3] [9i,3] [6i,3]
Figure
Figure
Vertex (3.3)2 (3.4)2 (3.5)2 (3.6)2 (3.7)2 (3.8)2 (3.∞)2 (3.12i)2 (3.9i)2 (3.6i)2
Schläfli r{3,3} r{3,4} r{3,5} r{3,6} r{3,7} r{3,8} r{3,∞} r{3,12i} r{3,9i} r{3,6i}
Coxeter

Dual uniform figures
Dual
conf.

V(3.3)2

V(3.4)2

V(3.5)2

V(3.6)2

V(3.7)2

V(3.8)2

V(3.∞)2

The rhombic triacontahedron forms the convex hull of one projection of a 6-cube to 3 dimensions.

A rhombic triacontahedron with an inscribed tetrahedron (red) and cube (yellow).
(Click here for rotating model)
A rhombic triacontahedron with an inscribed dodecahedron (blue) and icosahedron (purple).
(Click here for rotating model)

The 3D basis vectors [u,v,w] are:
u = (1, φ, 0, -1, φ, 0)
v = (φ, 0, 1, φ, 0, -1)
w = (0, 1, φ, 0, -1, φ)

Shown with inner edges hidden
There are 64 vertices and 192 unit length edges forming pentagonal symmetry along specific axis (as well as hexagonal symmetries on other axis).

Stellations

The rhombic triacontahedron has over 227 stellations.[3]

See also

References

  1. ^ Stephen Wolfram, "[1]" from Wolfram Alpha. Retrieved January 7, 2013.
  2. ^ triacontahedron box - KO Sticks LLC
  3. ^ Pawley, G. S. (1975). "The 227 triacontahedra". Geometriae Dedicata. 4 (2–4). Kluwer Academic Publishers: 221–232. doi:10.1007/BF00148756. ISSN 1572-9168.
  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X. (Section 3-9)
  • Wenninger, Magnus (1983), Dual Models, Cambridge University Press, ISBN 978-0-521-54325-5, MR730208 (The thirteen semiregular convex polyhedra and their duals, Page 22, Rhombic triacontahedron)
  • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 [2] (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, page 285, Rhombic triacontahedron )

External links