LTE Advanced

From Wikipedia, the free encyclopedia
Jump to: navigation, search

LTE Advanced is a mobile communication standard and a major enhancement of the Long Term Evolution (LTE) standard. It was formally submitted as a candidate 4G system to ITU-T in late 2009 as meeting the requirements of the IMT-Advanced standard, and was standardized by the 3rd Generation Partnership Project (3GPP) in March 2011 as 3GPP Release 10.[1]

Background[edit]

The LTE format was first proposed by NTT DoCoMo of Japan and has been adopted as the international standard.[2] LTE standardization has matured to a state where changes in the specification are limited to corrections and bug fixes. The first commercial services were launched in Sweden and Norway in December 2009[3] followed by the United States and Japan in 2010. More LTE networks were deployed globally during 2010 as a natural evolution of several 2G and 3G systems, including Global system for mobile communications (GSM) and Universal Mobile Telecommunications System (UMTS) (3GPP as well as 3GPP2).

The work by 3GPP to define a 4G candidate radio interface technology started in Release 9 with the study phase for LTE-Advanced. Being described as a 3.9G (beyond 3G but pre-4G), the first release of LTE did not meet the requirements for 4G (also called IMT Advanced as defined by the International Telecommunication Union) such as peak data rates up to 1 Gb/s. The ITU has invited the submission of candidate Radio Interface Technologies (RITs) following their requirements in a circular letter, 3GPP Technical Report (TR) 36.913, "Requirements for Further Advancements for E-UTRA (LTE-Advanced)."[4] These are based on ITU's requirements for 4G and on operators’ own requirements for advanced LTE. Major technical considerations include the following:

  • Continual improvement to the LTE radio technology and architecture
  • Scenarios and performance requirements for working with legacy radio technologies
  • Backward compatibility of LTE-Advanced with LTE. An LTE terminal should be able to work in an LTE-Advanced network and vice versa. Any exceptions will be considered by 3GPP.
  • Consideration of recent World Radiocommunication Conference (WRC-07) decisions regarding frequency bands to ensure that LTE-Advanced accommodates the geographically available spectrum for channels above 20 MHz. Also, specifications must recognize those parts of the world in which wideband channels are not available.

Likewise, 'WiMAX 2', 802.16m, has been approved by ITU as the IMT Advanced family. WiMAX 2 is designed to be backward compatible with WiMAX 1 devices. Most vendors now support conversion of 'pre-4G', pre-advanced versions and some support software upgrades of base station equipment from 3G.

The mobile communication industry and standards organizations have therefore started work on 4G access technologies, such as LTE Advanced. At a workshop in April 2008 in China, 3GPP agreed the plans for work on Long Term Evolution (LTE).[5] A first set of specifications were approved in June 2008.[6] Besides the peak data rate 1 Gb/s as defined by the ITU-R, it also targets faster switching between power states and improved performance at the cell edge. Detailed proposals are being studied within the working groups.

Proposals[edit]

The target of 3GPP LTE Advanced is to reach and surpass the ITU requirements. LTE Advanced should be compatible with first release LTE equipment, and should share frequency bands with first release LTE. In the feasibility study for LTE Advanced, 3GPP determined that LTE Advanced would meet the ITU-R requirements for 4G. The results of the study are published in 3GPP Technical Report (TR) 36.912.[7]

One of the important LTE Advanced benefits is the ability to take advantage of advanced topology networks; optimized heterogeneous networks with a mix of macrocells with low power nodes such as picocells, femtocells and new relay nodes. The next significant performance leap in wireless networks will come from making the most of topology, and brings the network closer to the user by adding many of these low power nodes — LTE Advanced further improves the capacity and coverage, and ensures user fairness. LTE Advanced also introduces multicarrier to be able to use ultra wide bandwidth, up to 100 MHz of spectrum supporting very high data rates.

In the research phase many proposals have been studied as candidates for LTE Advanced (LTE-A) technologies. The proposals could roughly be categorized into:[8]

  • Support for relay node base stations
  • Coordinated multipoint (CoMP) transmission and reception
  • UE Dual TX antenna solutions for SU-MIMO and diversity MIMO, commonly referred to as 2x2 MIMO
  • Scalable system bandwidth exceeding 20 MHz, up to 100 MHz
  • Carrier aggregation of contiguous and non-contiguous spectrum allocations
  • Local area optimization of air interface
  • Nomadic / Local Area network and mobility solutions
  • Flexible spectrum usage
  • Cognitive radio
  • Automatic and autonomous network configuration and operation
  • Support of autonomous network and device test, measurement tied to network management and optimization
  • Enhanced precoding and forward error correction
  • Interference management and suppression
  • Asymmetric bandwidth assignment for FDD
  • Hybrid OFDMA and SC-FDMA in uplink
  • UL/DL inter eNB coordinated MIMO
  • SONs, Self Organizing Networks methodologies

Within the range of system development, LTE-Advanced and WiMAX 2, can use up to 8x8 MIMO and 128 QAM in downlink direction. Example performance: 100 MHz aggregated bandwidth, LTE-Advanced provides almost 3.3 Gbit peak download rates per sector of the base station under ideal conditions. Advanced network architectures combined with distributed and collaborative smart antenna technologies provide several years road map of commercial enhancements.

A summary of a study carried out in 3GPP can be found in TR36.912.[9]

Timeframe and introduction of additional features[edit]

Original standardization work for LTE-Advanced was done as part of 3GPP Release 10, which was frozen in April 2011. Trials were based on pre-release equipment. Major vendors support software upgrades to later versions and ongoing improvements.

In order to improve the quality of service for users in hotspots and on cell edges, heterogenous networks (HetNet) are formed of a mixture of macro-, pico- and femto base stations serving corresponding-size areas. Frozen in December 2012, 3GPP Release 11[10] concentrates on better support of HetNet. Coordinated Multi-Point operation (CoMP) is a key feature of Release 11 in order to support such network structures. Whereas users located at a cell edge in homogenous networks suffer from decreasing signal strength compounded by neighbor cell interference, CoMP is designed to enable use of a neighboring cell to also transmit the same signal as the serving cell, enhancing quality of service on the perimeter of a serving cell. In-device Co-existence (IDC) is another topic addressed in Release 11. IDC features are designed to ameliorate disturbances within the user equipment caused between LTE/LTE-A and the various other radio subsystems such as WiFi, Bluetooth, and the GPS receiver. Further enhancements for MIMO such as 4x4 configuration for the uplink were standardized.

The higher number of cells in HetNet results in user equipment changing the serving cell more frequently when in motion. The ongoing work on LTE-Advanced [11] in Release 12, amongst other areas, concentrates on addressing issues that come about when users move through HetNet, such as frequent hand-overs between cells.

Technology demonstrations[edit]

Company Country Date Note
NTT DoCoMo  Japan February 2007 [12] The operator announced the completion of a 4G trial where it achieved a maximum packet transmission rate of approximately 5 Gbit/s in the downlink
using 12 transmit and 12 receive antennas and 100 MHz frequency bandwidth to a mobile station moving at 10 km/h.
TeliaSonera  Norway December 2009 [3] The operator launched the first commercial LTE services in Norway.
TeliaSonera  Sweden December 2009 [3] The operator launched the first commercial LTE services in Sweden.
Agilent Technologies - February 2011 [13] The vendor demonstrated at Mobile World Congress the industry's first test solutions for LTE-Advanced
with both signal generation and signal analysis solutions.
Yota  Russia February 2011 [14] The operator launched the first-ever commercial mobile implementation of the technology, at 11 of its base-stations around Moscow.
However compatible handsets weren't available until the first-half of 2013.
Ericsson - June 2011 [15] The vendor demonstrated LTE-Advanced in Kista.
touch  Lebanon April 2013 [16] The operator trialed LTE-Advanced with Chinese vendor Huawei and combined 800 MHz spectrum and 1.8 GHz spectrum. touch achieved 250 Mbit/s.
A1  Austria June 2013 [17] The operator trialed LTE-Advanced with Ericsson and NSN using 4x4 MIMO. A1 achieved 580 Mbit/s.
SK Telecom  South Korea June 2013 [18] The operator announced to launch LTE-Advanced services.
Samsung  South Korea June 2013 [19] The vendor released an LTE-Advanced version of the Galaxy S4.
LG U+  South Korea July 2013 [20] The operator unveiled an LTE-Advanced network built by the Swedish vendor Ericsson. LG U+ combine 850 MHz spectrum and 2.1 GHz spectrum.
LG U+ provides up to 150 Mbit/s which is equal to category 4 LTE.
Telstra  Australia August 2013 [21] The operator trialed LTE-Advanced with Swedish vendor Ericsson and combined 900 MHz spectrum and 1.8 GHz spectrum.
SMART  Philippines August 2013 [22] The operator trialed LTE-Advanced.
SoftBank  Japan September 2013 [23] The operator trialed LTE-Advanced in Tokyo with Chinese vendor Huawei. Softbank used spectrum 3.5 GHz spectrum band and achieved 770 Mbit/s.
KT  South Korea September 2013 [24] The operator unveiled an LTE-Advanced network. KT uses 1.8 GHz spectrum. KT provides up to 150 Mbit/s which is equal to category 4 LTE.
VIVA  Kuwait September 2013 [25] The operator announced to upgrade to LTE-Advanced.
beCloud/ MTS  Belarus October 2013 [26] The operator trialed LTE-Advanced with Chinese vendor Huawei.
SFR  France October 2013 [27] The operator trialed LTE-Advanced in Marseille and combined 800 MHz spectrum and 2.6 GHz spectrum. SFR achieved 174 Mbit/s.
EE  United Kingdom November 2013 [28] The operator trialed LTE-Advanced in London with Chinese vendor Huawei and combined 20 MHz of 1.8 GHz spectrum
and 20 MHz of 2.6 GHz spectrum. EE achieved 300 Mbit/s which is equal to category 6 LTE.
Zain  Kuwait November 2013 [29] The operator announced to roll out LTE-Advanced.
O2  Germany November 2013 [30] The operator trialed LTE-Advanced in Munich with Chinese vendor Huawei and combined 10 MHz of 800 MHz spectrum
and 20 MHz of 2.6 GHz spectrum. O2 achieved 225 Mbit/s.
SK Telecom  South Korea November 2013 [31] The operator trialed LTE-Advanced and combined 10 MHz of 850 MHz spectrum and 20 MHz of 1.8 GHz spectrum.
SK Telecom achieved 225 Mbit/s.
Vodafone  Germany November 2013 [32] The operator trialed LTE-Advanced in Dresden with Swedish vendor Ericsson and combined 10 MHz of 800 MHz spectrum and
20 MHz of 2.6 GHz spectrum. Vodafone achieved 225 Mbit/s.
Netgear  Australia December 2013 [33] The vendor unveiled a mobile LTE-Advanced hotspot through Telstra in Australia.
Telstra  Australia December 2013 [34] The operator trialed LTE-Advanced with Swedish vendor Ericsson and combined 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum.
Telstra achieved 300 Mbit/s which is equal to category 6 LTE.
Optus  Australia December 2013 [35] The operator trialed TD-LTE-Advanced with Chinese vendor Huawei and combined two 20 MHz channels of 2.3 GHz spectrum.
Optus achieved over 160 Mbit/s.
Unitel  Angola January 2014 [36] The operator trialed LTE-Advanced in Luanda with Swedish vendor Ericsson. Unitel combined 900 MHz spectrum and 1.8 GHz spectrum.
Sunrise   Switzerland January 2014 [37] The operator trialed LTE-Advanced with Chinese vendor Huawei. Commercial service is planned for Q3 2014.
Telstra  Australia January 2014 [38] The Swedish vendor Ericsson trialed LTE-Advanced with American supplier Qualcomm on the Telstra network.
Nokia Networks - February 2014 [39] The vendor demonstrated at Mobile World Congress 450 Mbit/s data speeds for individual users by using LTE-Advanced.
Elisa  Finland February 2014 [40] The operator trialed LTE-Advanced with American supplier Broadcom and Finnish vendor Nokia Networks.
Elisa combined 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. Elisa achieved 300 Mbit/s which is equal to category 6 LTE.
Deutsche Telekom  Germany February 2014 [41][42] The operator trialed LTE-Advanced in Alzey using 4x4 MIMO. Deutsche Telekom achieved 580 Mbit/s.
Commercial service is planned for summer 2014.
Huawei - February 2014 [43] The vendor introduced at Mobile World Congress the LTE Cat 6-enabled mobile broadband router Huawei E5186 and the mobile LTE Cat 6-enabled hotspot Huawei E5786.
CSL  Hong Kong February 2014 [44] The operator unveiled an LTE-Advanced network built by the Chinese vendor ZTE. CSL combine 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum.
CSL provides up to 300 Mbit/s which is equal to category 6 LTE.
MegaFon  Russia February 2014 [45] The operator unveiled an LTE-Advanced network in Moscow and Sochi built by the Chinese vendor Huawei. MegaFon combine two 20 MHz channels of 2.6 GHz spectrum.
MegaFon provides up to 300 Mbit/s which is equal to category 6 LTE.
ZTE - February 2014 [46] The vendor introduced at Mobile World Congress the mobile LTE-Advanced hotspot ZTE Flare.
Vodafone  Italy February 2014 [47] The operator trialed LTE-Advanced in Naples and combined 1.8 GHz spectrum and 2.6 GHz spectrum. Vodafone achieved 253 Mbit/s.
Vodafone  Spain February 2014 [48] The operator trialed LTE-Advanced in Barcelona using 4x4 MIMO. Vodafone achieved 580 Mbit/s.
Eta Devices - February 2014 [49] The supplier demonstrated at the Mobile World Congress Envelope Tracking Advanced (ETAdvanced) for LTE-A over 80 MHz channels.
Base  Belgium February 2014 [50] The operator trialed LTE-Advanced in Hasselt with Chinese vendor ZTE. Base achieved over 250 Mbit/s.
AT&T  United States March 2014 [51] The operator unveiled an LTE-Advanced network in Chicago and other markets.
AT&T combined 700 MHz spectrum and 1.7 GHz spectrum. AT&T achieved 110 Mbit/s
Orange  Spain March 2014 [52] The operator trialed LTE-Advanced in Valencia and combined 10 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum.
Orange achieved 222 Mbit/s.
Etisalat  UAE April 2014 [53] The operator trialed LTE-Advanced in Abu Dhabi with French vendor Alcatel-Lucent.
Etisalat combined 20 MHz of 800 MHz spectrum and 20 MHz of 1.8 GHz spectrum.
Etisalat achieved 300 Mbit/s which is equal to category 6 LTE.
China Mobile  China April 2014 [54] The operator trialed TD-LTE-Advanced in Chengdu with Chinese vendor Huawei.
Magyar Telekom  Hungary April 2014 [55] The operator demonstrated LTE-Advanced in Budapest with Swedish vendor Ericsson. Magyar Telekom achieved 250 Mbit/s.
Huawei - April 2014 [56] The Chinese vendor Huawei trialed LTE-Advanced with Qualcomm. Huawei achieved 300 Mbit/s which is equal to category 6 LTE.
Telstra  Australia April 2014 [57] The operator unveiled another mobile LTE-Advanced hotspot from Huawei.
Mobistar  Belgium January 2014 -
April 2014
[58] The operator trialed LTE-Advanced in Mechelen with Chinese vendor Huawei.
Mobistar combined 10 MHz of 800 MHz spectrum and 20 MHz of 1.8 GHz spectrum.
Mobistar achieved 213 Mbit/s.
Hrvatski Telekom  Croatia May 2014 [59] The operator trialed LTE-Advanced in Varaždin. Hrvatski Telekom combined 10 MHz of 800 MHz spectrum and 10 MHz of 1.8 GHz spectrum.
Hrvatski Telekom achieved 136 Mbit/s.
Telstra  Australia May 2014 [60][61] The operator trialed LTE-Advanced with Swedish vendor Ericsson and combined 20 MHz of 1.8 GHz spectrum and 40 MHz of 2.6 GHz spectrum.
Telstra achieved 450 Mbit/s.
Orange  Spain May 2014 [62] The operator trialed LTE-Advanced again in Valencia and combined 10 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum.
Orange achieved 225 Mbit/s.
Telecom New Zealand  New Zealand May 2014 [63] The operator trials LTE-Advanced in Auckland with Chinese vendor Huawei.
Telecom New Zealand combined 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum. Telecom New Zealand achieved up to 260 Mbit/s.
SingTel  Singapore May 2014 [64] The operator unveiled an LTE-Advanced network. SingTel combines 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum.
SingTel provides up to 300 Mbit/s which is equal category 6 LTE. A compatible device (Huawei E5786) will be available from mid-July 2014.
LG U+  South Korea June 2014 [65] The operator trialed LTE-Advanced with Chinese vendor Huawei. LG U+ combined 10 MHz of 850 MHz spectrum,
10 MHz of 2.1 GHz spectrum and 20 MHz of 2.6 GHz spectrum. LG U+ achieved 300 Mbit/s which is equal to category 6 LTE.
Elisa  Estonia June 2014 [66] The operator trialed LTE-Advanced and combined 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum.
Elisa achieved 300 Mbit/s which is equal to category 6 LTE. Commercial service is planned in Tallinn for the second half of 2014.
Vodafone  Portugal June 2014 [67] The operator unveiled an LTE-Advanced router (Vodafone B4000) from Huawei (Huawei E5186).
Swisscom   Switzerland June 2014 [68] The operator unveiled an LTE-Advanced network. Swisscom combine 20 MHz of 1.8 GHz spectrum and 20 MHz of 2.6 GHz spectrum.
Swisscom provides up to 300 Mbit/s which is equal to category 6 LTE. A compatible device will be available from autumn 2014.
Bouygues Telecom  France June 2014 [69] The operator unveiled an LTE-Advanced network in Bordeaux, Grenoble, Lyon and the Paris suburbs of Vanves, Issy-les-Moulineaux, Malakoff and Rosny-sous-Bois.
Bouygues Telecom provides up to 220 Mbit/s. Two compatible device from Huawei will be available from 1 July 2014.
KPN  The Netherlands June 2014 [70] The operator announced to launch LTE-Advanced services in July 2014.
Samsung  South Korea June 2014 [71] The vendor unveiled an LTE-Advanced version of the Galaxy S5.
Orange  France June 2014 [72] The operator announced to launch LTE-Advanced services in July 2014. Commercial service is planned in Strasbourg and Toulouse.
Followed by plans to cover all of France's large cities by the end of the year.
Vodafone  The Netherlands June 2014 [73] The operator trialed LTE-Advanced in Amsterdam and combined 10 MHz of 800 MHz spectrum and 20 MHz of 1.8 GHz spectrum. Vodafone achieved 225 Mbit/s.
Commercial service in ten cities, including Amsterdam, Rotterdam, The Hague, Utrecht, Leiden, Eindhoven, Den Bosch and Schiphol,
and reach another 50 medium and small cities is planned around year-end.
T-Mobile  Czech Republic July 2014 [74] The operator unveiled an LTE-Advanced in Mlada Boleslav. T-Mobile combines 10 MHz of 800 MHz spectrum and 20 MHz of 1.8 GHz spectrum.
T-Mobile provides up to 225 Mbit/s.
Vodafone  Czech Republic July 2014 [75] The operator launched LTE-Advanced in Karlovy Vary. Vodafone also combines 10 MHz of 800 MHz spectrum and 20 MHz of 1.800 MHz spectrum.
Vodafone provides up to 225 Mbit/s and expects in the future maximum of 300 Mbit/s.
O2  Czech Republic July 2014 [76] The operator trials LTE-Advanced in the southeastern part of Vysočina Region. O2 achieved 185 Mbit/s.
Telstra  Australia July 2014 [77] The operator announced to launch LTE-Advanced in 2015.
EE  United Kingdom July 2014 [78] The operator announced to launch LTE-Advanced in 2015.
Telecom Italia  Italy July 2014 [79] The operator trialed LTE-Advanced in Turin with Swedish vendor Ericsson, Chinese vendor Huawei and Qualcomm.
Telecom Italia combined 1.8 GHz spectrum and 2.6 GHz spectrum.
Orange  France July 2014 [80] The operator announced the roll out of LTE-Advanced in Strasbourg and Toulouse.
BITE  Lithuania August 2014 [81] The operator announced to roll out LTE-Advanced in early 2015.
SMART  Philippines August 2014 [82] The operator launched LTE-Advanced in Mandaluyong.
O2  Czech Republic August 2014 [83] The operator trials LTE-Advance in Prague.
Vodafone  Spain September 2014 [84] The operator announced the commercial launch of LTE-A services in Madrid, Barcelona, Seville and Valencia in October.
Netgear - September 2014 [85] The vendor unveiled a mobile LTE Cat 6-enabled hotspot (Netgear AirCard 790S).

Bibliography[edit]

References[edit]

  1. ^ Stefan Parkvall, Erik Dahlman, Anders Furuskär et al.; Ericsson, Robert Syputa, Maravedis; ITU global standard for international mobile telecommunications ´IMT-Advanced´; LTE Advanced - Evolving LTE towards IMT-Advanced; Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE 68th 21-24 Sept. 2008 Page(s):1 - 5.
  2. ^ Faster cell phone services planned
  3. ^ a b c "TeliaSonera launches world's first 4G mobile network". swedishwire. Retrieved 25 November 2013. 
  4. ^ "Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced)"
  5. ^ Beyond 3G: “LTE Advanced” Workshop, Shenzhen, China
  6. ^ 3GPP specification: Requirements for further advancements for E-UTRA (LTE Advanced)
  7. ^ Agilent [1], Introducing LTE-Advanced, pg. 6 , March 8, 2011, accessed July 28, 2011.
  8. ^ Nomor Research: White Paper on LTE Advanced
  9. ^ 3GPP Technical Report: Feasibility study for Further Advancements for E-UTRA (LTE Advanced)
  10. ^ Introduction to LTE-Advanced Rel.11
  11. ^ 3GPP News & Events, Dec.12th, 2012 and Apr.8th, 2013 entries
  12. ^ "NTT DoCoMo Achieves World's First 5 Gbit/s Packet Transmission in 4G Field Experiment". NTT DoCoMo. 
  13. ^ "Agilent Technologies Introduces Industry's First LTE-Advanced Signal Generation, Analysis Solutions". Agilent. 
  14. ^ "Yota Networks has launched the world's first mobile communication technology LTE Advanced". YOTA. Retrieved 2012-10-19. [dead link]
  15. ^ "Ericsson demonstrates LTE Advanced in Sweden". Telecompaper. 2011-06-28. Retrieved 2014-08-13. 
  16. ^ "Touch, Huawei trial 250Mbps LTE FDD 800MHz/1800MHz carrier aggregation". TeleGeography. 2013-04-08. Retrieved 2014-08-24. 
  17. ^ "A1 TELEKOM AUSTRIA DEMOS 580MBPS LTE-A SPEEDS WITH ERICSSON, NSN HARDWARE". Mobile Europe. 2013-06-06. Retrieved 2014-04-30. 
  18. ^ "LTE-Advanced 4G network launches in South Korea". BBC News. 26 June 2013. Retrieved 18 July 2013. 
  19. ^ Chloe Albanesius (26 June 2013). "Samsung reveals LTE-Advanced version of Galaxy S4". PC Magazine. Retrieved 18 July 2013. 
  20. ^ "LG U+ launched commercial LTE-Advanced service with Ericsson". Ericsscon. 2013-07-30. Retrieved 2014-04-30. 
  21. ^ "World's first commercial LTE-Advanced call on 1800MHz and 900MHz". Ericsson. 2013-08-12. Retrieved 2014-04-30. 
  22. ^ J.M. Tuazon (21 August 2013). "200MBPS IN DAVAO - Smart tests LTE-Advanced system down south.". Interaksyon. Retrieved 21 August 2013. 
  23. ^ "Softbank’s trial LTE-A in 3.5GHz band achieves 770Mbps". TeleGeography. 2013-09-13. Retrieved 2014-08-13. 
  24. ^ "KT launches LTE-Advanced service". The Korea Herald. 2013-09-15. Retrieved 2014-05-16. 
  25. ^ "Viva announces upgrade to LTE-A". TeleGeography. 2013-09-26. Retrieved 2014-08-13. 
  26. ^ "beCloud to test LTE-A". TeleGeography. 2013-10-10. Retrieved 2014-08-13. 
  27. ^ "SFR completes 'first' LTE Advanced trials in France". FierceWirelessEurope. 2013-10-18. Retrieved 2014-04-30. 
  28. ^ "EE launches 'world’s fastest' LTE-A network in London". Telecoms.com. 2013-11-05. Retrieved 2013-12-27. 
  29. ^ "Zain Kuwait to roll out LTE-A in selected areas". TeleGeography. 2031-11-07. Retrieved 2014-08-13. 
  30. ^ "Now available at Telefónica: The fastest LTE radio cell in Germany and mobile VoLTE in live network". Telefónica. 2013-11-14. Retrieved 2014-04-30. 
  31. ^ "[넓고 빠른 광대역 LTE-A] #1. 3배 빠른 광대역 LTE-A 시대가 열린다!" (in Korean). SK Telecom. 2013-11-28. Retrieved 2014-05-16. 
  32. ^ "Vodafone zeigt in Dresden das schnellste Mobilfunknetz der Republik" (in German). Vodafone. 2013-11-15. Retrieved 2014-04-30. 
  33. ^ "NETGEAR LAUNCHES FIRST 4G ADVANCED MOBILE HOTSPOT DEVICE IN AUSTRALIA". Netgear. 2013-12-04. Retrieved 2014-04-30. 
  34. ^ "Telstra hits 300 Mbps in LTE-A trial". Computerworld. 2013-12-06. Retrieved 2014-03-24. 
  35. ^ "Optus tests TD-LTE carrier aggregation in Melbourne". iTnews. 2013-12-19. Retrieved 2014-03-29. 
  36. ^ "Unitel demonstrates first LTE-A in Africa with Ericsson". TeleGeography. 2014-01-15. Retrieved 2014-08-13. 
  37. ^ "Das Sunrise LTE-Mobilfunknetz wird noch schneller" (PDF) (in German). Sunrise. 2014-01-29. Retrieved 2014-01-30. 
  38. ^ "Ericsson and Qualcomm Technologies demo first LTE CAT6 Carrier Aggregation interoperability for Telstra". Ericsson. 2014-01-31. Retrieved 2014-02-04. 
  39. ^ "NSN breaks new ground with LTE-Advanced for superior performance #MWC14". NSN. 2014-02-04. Retrieved 2014-02-04. 
  40. ^ "Finland's Elisa Gets 300Mbsp Download Speeds Out of an LTE-A Network". cellular-news. 2014-02-11. Retrieved 2014-02-12. 
  41. ^ "DT leads the way to LTE Advanced". Deutsche Telekom. 2014-02-20. Retrieved 2014-02-20. 
  42. ^ "Deutsche Telekom: Ab Sommer bis zu 300 MBit/s über LTE" (in German). teltarif. 2014-03-11. Retrieved 2014-04-30. 
  43. ^ "Huawei unveils the world’s first LTE Cat6-enabled Mobile WiFi at MWC 2014". Huawei. 2014-02-23. Retrieved 2014-04-30. 
  44. ^ "Hong Kong's CSL Offers 300Mbps Download Speeds over LTE-A Network". cellular-news. 2014-02-24. Retrieved 2014-02-26. 
  45. ^ "MegaFon Launches World’s Fastest Mobile Data Network". MegaFon. 2014-02-25. Retrieved 2014-02-26. 
  46. ^ "ZTE Announces New High-Speed LTE Advanced CAT6 Mobile Hotspot Device". ZTE. 2014-02-25. Retrieved 2014-05-19. 
  47. ^ "Vodafone achieves 253.4Mbps speeds in Naples LTE-Advanced trial". TeleGeography. 2014-02-27. Retrieved 2014-04-30. 
  48. ^ "MWC: Vodafone Spain demonstrates 540Mbps using FDD/TDD-LTE CA setup". TeleGeography. 2014-03-01. Retrieved 2014-03-01. 
  49. ^ Buckley, Paul. "Envelope tracking: a game-changer for smartphones?". EE Times. Retrieved 12 March 2014.
  50. ^ "BASE Company confirms LTE-A trials". TeleGeography. 2014-03-03. Retrieved 2014-04-30. 
  51. ^ "AT&T lights up LTE Advanced carrier aggregation in Chicago, other markets". FierceWireless. 2014-03-07. Retrieved 2014-06-17. 
  52. ^ "Orange Spain begins LTE-A trials in Valencia". Telecompaper. 2014-03-21. Retrieved 2014-03-21. 
  53. ^ "Etisalat Tests LTE-A Upgrade in Abu Dhabi". cellular-news. 2014-04-01. Retrieved 2014-04-02. 
  54. ^ "Huawei, China Mobile test TD-LTE Advanced". Telecompaper. 2014-04-21. Retrieved 2014-04-21. 
  55. ^ "MTel and Ericsson demonstrate LTE-A technology; a first for Hungary". TeleGeography. 2014-04-29. Retrieved 2014-04-30. 
  56. ^ "Huawei, Qualcomm show 300 Mbps over LTE-A Cat 6". Telecompaper. 2014-04-29. Retrieved 2014-04-30. 
  57. ^ "Telstra Wi-Fi 4G Advanced Pro X: a world first". Telstra. 2014-04-29. Retrieved 2014-04-30. 
  58. ^ "Mobistar tests LTE Advanced". Telecompaper. 2014-05-06. Retrieved 2014-05-06. 
  59. ^ "Hrvatski Telekom tests LTE carrier aggregation". 2014-05-15. Retrieved 2014-05-15. 
  60. ^ "Ericsson and Telstra achieve world’s first 450Mbps in commercial LTE-A network demonstration". Ericsson. 2014-05-15. Retrieved 2014-05-15. 
  61. ^ "World first from Telstra – 450Mbps achievable with LTE Advanced Carrier Aggregation". Telstra. 2014-05-15. Retrieved 2014-05-15. 
  62. ^ "Orange Spain presents LTE-A technology in Valencia". Telecompaper. 2014-05-22. Retrieved 2014-05-22. 
  63. ^ "Telecom NZ achieves 260Mbps speeds in CA trial". TeleGeography. 2014-06-02. Retrieved 2014-06-02. 
  64. ^ "SingTel Launches 300Mbps Download Speed Service". cellular-news. 2014-05-28. Retrieved 2014-05-28. 
  65. ^ "Huawei and LG Uplus Complete World's First Commercial Trial of 3 Band Carrier Aggregation". cellular-news. 2014-06-09. Retrieved 2014-06-09. 
  66. ^ "Elisa tests LTE-Advanced technology". Telecompaper. 2014-06-10. Retrieved 2014-06-11. 
  67. ^ "Vodafone Portugal launches LTE Advanced-compatible router". Telecompaper. 2014-06-10. Retrieved 2014-06-11. 
  68. ^ "Swisscom speeds up mobile communications even more with the rollout of LTE advanced". Swisscom. 2014-06-16. Retrieved 2014-06-16. 
  69. ^ "Bouygues Telecom launches LTE-A". Telecompaper. 2014-06-17. Retrieved 2014-06-17. 
  70. ^ "KPN raises 4G speeds, increases data bundles". Telecompaper. 2014-06-17. Retrieved 2014-06-18. 
  71. ^ Aloysius Low (2014-06-17). "Samsung unveils new Galaxy S5 with LTE-A capability for Korea". CNet. Retrieved 2014-06-18. 
  72. ^ "Orange to launch LTE-A in Strasbourg, Toulouse in July". Telecompaper. 2014-06-18. Retrieved 2014-06-18. 
  73. ^ "Vodafone demos LTE Advanced in Amsterdam". Telecompaper. 2014-06-19. Retrieved 2014-06-19. 
  74. ^ "Orange Poland covers 50 percent of population with LTE". Telecompaper. 2014-07-01. Retrieved 2014-07-01. 
  75. ^ "Vodafone hlásí: Také máme LTE-A. Kde jinde než v Karlových Varech" (in Czech). Mobilmania. 2014-07-03. Retrieved 2014-07-03. 
  76. ^ "O2 Czech Republic deploys LTE Advanced". Telecompaper. 2014-07-07. Retrieved 2014-07-07. 
  77. ^ "Mobile Update". Telestra. 2014-07-03. Retrieved 2014-07-10. 
  78. ^ "EE set for 2015 LTE-A launch". Mobile World Live. 2014-07-10. Retrieved 2014-07-10. 
  79. ^ "Telecom Italia opens up Turin LTE-A trial to public". Telecompaper. 2014-07-25. Retrieved 2014-07-25. 
  80. ^ "Orange France starts LTE-A rollout in Strasbourg, Toulouse". Telecompaper. 2014-07-24. Retrieved 2014-08-13. 
  81. ^ "Bite to roll out LTE-A in five cities in early 2015". TeleGeography. 2014-08-11. Retrieved 2014-08-13. 
  82. ^ "PLDT’s Smart switches on LTE-A network". TeleGeography. 2014-08-14. Retrieved 2014-08-14. 
  83. ^ "O2 Czech Republic starts testing LTE-A in Prague". Telecompaper. 2014-08-27. Retrieved 2014-08-27. 
  84. ^ "Vodafone Spain to launch LTE-A in 4 cities in October". Telecompaper. 2014-09-02. Retrieved 2014-09-09. 
  85. ^ "Netgear unveils first Category 6-capable LTE-A hotspot". Telecompaper. 2014-09-09. Retrieved 2014-09-09. 

External links[edit]

Resources (white papers, technical papers, application notes)[edit]