Orders of magnitude (energy)
Appearance
This list compares various energies in joules (J), organized by order of magnitude.
Factor (Joules) | SI prefix | Value | Item | |||
---|---|---|---|---|---|---|
10−31 | 3.0×10−31 J | average kinetic energy of a molecule at the lowest temperature reached as of 2003[update][citation needed] | ||||
10−28 | 6.6×10−28 J | energy of a typical AM radio photon (1 MHz) (4×10−9 eV)[1] | ||||
10−24 | yocto- (yJ) | 1.6×10−24 J | energy of a typical microwave oven photon (2.45 GHz) (1×10−5 eV)[2][3] | |||
10−23 | 1.5×10−23 J | average kinetic energy[citation needed] of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin[4] | ||||
10−22 | 2-3000×10−22 J | energy of infrared light photons[5] | ||||
10−21 | zepto- (zJ) | 1.7×10−21 J | 1 kJ/mol, converted to energy per molecule[6] | |||
2.1×10−21 J | thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV)[7] | |||||
3-7×10−21 J | energy of a van der Waals interaction between atoms (0.02-0.04 eV)[8][9] | |||||
4.1×10−21 J | "kT" at 25 °C, a common rough approximation for the total thermal energy of each molecule in a system (0.03 eV)[10] | |||||
7-22×10−21 J | energy of a hydrogen bond (0.04 to 0.13 eV)[8][11] | |||||
10−20 | 4.5×10−20 J | upper bound of the mass-energy of a neutrino in particle physics (0.28 eV)[12][13] | ||||
10−19 | 1.6×10−19 J | ≈1 electronvolt (eV)[14] | ||||
3–5×10−19 J | energy range of photons in visible light[15][16] | |||||
3-14×10−19 J | energy of a covalent bond (2-9 eV)[8][17] | |||||
5-200×10−19 J | energy of ultraviolet light photons[5] | |||||
10−18 | atto- (aJ) | |||||
10−17 | 2-2000×10−17 J | energy range of X-ray photons[5] | ||||
10−16 | ||||||
10−15 | femto- (fJ) | |||||
10−14 | > 2×10−14 J | energy of gamma ray photons[5] | ||||
2.7×10−14 J | upper bound of the mass-energy of a muon neutrino[18][19] | |||||
8.2×10−14 J | rest mass-energy of an electron[20] | |||||
10−13 | 1.6×10−13 J | 1 megaelectronvolt (MeV)[21] | ||||
10−12 | pico- (pJ) | 2.3×10−12 J | kinetic energy of neutrons produced by D-T fusion, used to trigger fission (14.1 MeV)[22][23] | |||
10−11 | 3.4×10−11 J | average total energy released in the nuclear fission of one uranium-235 atom (215 MeV)[24][25] | ||||
10−10 | 1.503×10−10 J | rest mass-energy of a proton[26] | ||||
1.505×10−10 J | rest mass-energy of a neutron[27] | |||||
1.6×10−10 J | 1 gigaelectronvolt (GeV)[28] | |||||
3.0×10−10 J | rest mass-energy of a deuteron[29] | |||||
6.0×10−10 J | rest mass-energy of an alpha particle[30] | |||||
10−9 | nano- (nJ) | 1.6×10−9 J | 10 GeV[31] | |||
8×10−9 J | initial operating energy per beam of the CERN Large Electron Positron Collider in 1989 (50 GeV)[32][33] | |||||
10−8 | 1.3×10−8 J | mass-energy of a W boson (80.4 GeV)[34][35] | ||||
1.5×10−8 J | mass-energy of a Z boson (91.2 GeV)[36][37] | |||||
1.6×10−8 J | 100 GeV[38] | |||||
6.4×10−8 J | operating energy per proton of the CERN Super Proton Synchrotron accelerator in 1976[39][40] | |||||
10−7 | 1×10−7 J | ≡ 1 erg[41] | ||||
1.6×10−7 J | 1 TeV (teraelectronvolt)[42], about the kinetic energy of a flying mosquito[43] | |||||
5.6×10−7 J | energy per proton beam in the CERN Large Hadron Collider in 2011 (3.5 TeV)[44][45] | |||||
10−6 | micro- (µJ) | |||||
10−5 | ||||||
10−4 | ||||||
10−3 | milli- (mJ) | |||||
10−2 | centi- (cJ) | |||||
10−1 | deci- (dJ) | 1×10−1 J | energy of an American half-dollar falling 1 metre[46][47] | |||
100 | J | 1 J | ≡ 1 N·m (newton–metre) | |||
1 J | ≡ 1 W·s (watt-second) | |||||
1 J | kinetic energy produced as an extra small apple (~100 grams[48]) falls 1 meter against Earth's gravity[49] | |||||
1 J | energy required to heat 1 gram of dry, cool air by 1 degree Celsius[50] | |||||
1.4 J | ≈ 1 ft·lbf (foot-pound force)[41] | |||||
4.184 J | ≡ 1 thermochemical calorie (small calorie)[41] | |||||
4.1868 J | ≡ 1 International (Steam) Table calorie[51] | |||||
8 J | Greisen-Zatsepin-Kuzmin theoretical upper limit for the energy of a cosmic ray coming from a distant source[52][53] | |||||
101 | deca- (daJ) | 1×101 J | flash energy of a typical pocket camera photoflash capacitor (100-400 µF @ 330 V)[54] | |||
5×101 J | most energetic cosmic ray ever detected, in 1991[55] | |||||
102 | hecto- (hJ) | 3×102 J | energy of a lethal dose of X-rays[56] | |||
3×102 J | kinetic energy of an average person jumping as high as they can[57][58][59] | |||||
> 3.6×102 J | kinetic energy of 800 g[60] standard men's javelin thrown at > 30 m/s[61] by elite javelin throwers[62] | |||||
5-20×102 J | energy output of a typical photography studio strobe light in a single flash[63] | |||||
6.0×102 J | kinetic energy of 2 kg[64] standard men's discus thrown at 24.4 m/s[citation needed] by the world record holder Jürgen Schult[65] | |||||
6×102 J | use of a 10-watt flashlight for 1 minute | |||||
7.5×102 J | a power of 1 horsepower applied for 1 second[41] | |||||
7.8×102 J | kinetic energy of 7.26 kg[66] standard men's shot thrown at 14.7 m/s[citation needed] by the world record holder Randy Barnes[67] | |||||
103 | kilo- (kJ) | 1.1×103 J | ≈ 1 British thermal unit (BTU), depending on the temperature[41] | |||
1.4×103 J | total solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit per second (solar constant)[68] | |||||
1.8×103 J | kinetic energy of M16 rifle bullet (5.56x45mm NATO M855, 4.1 g fired at 930 m/s)[69] | |||||
3.4×103 J | kinetic energy of world-record men's hammer throw (7.26 kg[70] thrown at 30.7 m/s[71] in 1986)[72] | |||||
3.6×103 J | ≡ 1 W·h (watt-hour)[41] | |||||
4.2×103 J | energy released by explosion of 1 gram of TNT[41][73] | |||||
4.2×103 J | ≈ 1 food Calorie (large calorie) | |||||
~7×103 J | muzzle energy of an elephant gun, e.g. firing a .458 Winchester Magnum[74] | |||||
9×103 J | energy in an alkaline AA battery[75] | |||||
104 | 1.7×104 J | energy released by the metabolism of 1 gram of carbohydrates[76] or protein[77] | ||||
3.8×104 J | energy released by the metabolism of 1 gram of fat[78] | |||||
4-5×104 J | energy released by the combustion of 1 gram of gasoline[79] | |||||
5×104 J | kinetic energy of 1 gram of matter moving at 10 km/s[80] | |||||
105 | 3×105 J—15×105 J | kinetic energy of an automobile at highway speeds (1 to 5 tons[81] at 55 mph)[82] | ||||
5×105 J | kinetic energy of 1 gram of a meteor hitting Earth[83] | |||||
106 | mega- (MJ) | 1×106 J | kinetic energy of a 2 tonne[81] vehicle at 32 metres per second (72 miles per hour)[84] | |||
1.2×106 J | approximate food energy of a snack such as a Snickers bar (280 food calories)[85] | |||||
3.6×106 J | = 1 kW·h (kilowatt-hour) (used for electricity)[41] | |||||
8.4×106 J | recommended food energy intake per day for a moderately active woman (2000 food calories)[86][87] | |||||
107 | 1×107 J | kinetic energy of the armor-piercing round fired by the assault guns of the ISU-152 tank[88][citation needed] | ||||
1.1×107 J | recommended food energy intake per day for a moderately active man (2600 food calories)[86][89] | |||||
3.7×107 J | $1 of electricity at a cost of $0.10/kWh (the US average retail cost in 2009)[90][91][92] | |||||
4×107 J | energy from the combustion of 1 cubic meter of natural gas[93] | |||||
4.2×107 J | caloric energy consumed by Olympian Michael Phelps on a daily basis during Olympic training[94] | |||||
6.3×107 J | theoretical minimum energy required to accelerate 1 kg of matter to escape velocity from Earth's surface (ignoring atmosphere)[95] | |||||
108 | 1×108 J | kinetic energy of a 55 tonne aircraft at typical landing speed (59 m/s or 115 knots)[citation needed] | ||||
1.1×108 J | ≈ 1 therm, depending on the temperature[41] | |||||
1.1×108 J | ≈ 1 Tour de France, or ~90 hours[96] ridden at 5 W/kg[97] by a 65 kg rider[98] | |||||
7.3×108 J | ≈ energy from burning 16 kilograms of oil (using 135 kg per barrel of light crude)[citation needed] | |||||
109 | giga- (GJ) | 1-10×109 J | energy in an average lightning bolt[99] | |||
1.1×109 J | magnetic stored energy in the world's largest toroidal superconducting magnet for the ATLAS experiment at CERN, Geneva[100] | |||||
1.4x109 J | theoretical minimum amount of energy required to melt a tonne of steel (380 kW·h)[101][102] | |||||
2.0x109 J | Energy of an ordinary 61 liter gasoline tank of a car.[79][103][104] | |||||
2.0×109 J | Planck energy, the unit of energy in Planck units[105] | |||||
3.3×109 J | approximate average amount of energy expended by a human heart muscle over an 80-year lifetime[106][107] | |||||
4.5×109 J | average annual energy usage of a standard refrigerator[108][109] | |||||
6.1×109 J | ≈ 1 bboe (barrel of oil equivalent)[110] | |||||
1010 | 2.3×1010 J | kinetic energy of an Airbus A380 at cruising speed (560 tonnes at 562 knots or 289 m/s)[citation needed] | ||||
4.2×1010 J | ≈ 1 toe (ton of oil equivalent)[110] | |||||
5×1010 J | yield energy of a Massive Ordnance Air Blast bomb, the second most powerful non-nuclear weapon ever designed[111][112] | |||||
7.3×1010 J | energy consumed by the average U.S. automobile in the year 2000[113][114][115] | |||||
8.6×1010 J | ≈ 1 MW·d (megawatt-day), used in the context of power plants[116] | |||||
8.8×1010 J | total energy released in the nuclear fission of one gram of uranium-235[117][118][119] | |||||
1011 | ||||||
1012 | tera- (TJ) | 3.4×1012 J | max fuel energy of an Airbus A330-300 (97,530 liters[120] of Jet A-1[121])[122] | |||
3.6×1012 J | 1 GW·h (gigawatt-hour)[123] | |||||
4×1012 J | electricity generated by one 20-kg CANDU fuel bundle assuming ~29%[124] thermal efficiency of reactor[125][126] | |||||
6.4×1012 J | energy contained in jet fuel in a Boeing 747-100B aircraft at max fuel capacity (183,380 liters[127] of Jet A-1[121])[128] | |||||
1013 | 1.1×1013 J | energy of the maximum fuel an Airbus A380 can carry (320,000 liters[129] of Jet A-1[121])[130] | ||||
1.2×1013 J | orbital kinetic energy of the International Space Station (417 tonnes[131] at 7.7 km/s[132])[133] | |||||
8.8×1013 J | yield of the Fat Man atomic bomb used in World War II (21 kilotons)[134][135] | |||||
9.0×1013 J | theoretical total mass-energy of 1 gram of matter[136] | |||||
1014 | 6×1014 J | energy released by an average hurricane in 1 second[137] | ||||
1015 | peta- (PJ) | > 1015 J | energy released by a severe thunderstorm[138] | |||
1.0×1015 J | yearly electricity consumption in Greenland as of 2008[139][140] | |||||
4.2×1015 J | energy released by explosion of 1 megaton of TNT[41][141] | |||||
1016 | 1×1016 J | estimated impact energy released in forming Meteor Crater[citation needed] | ||||
1.1×1016 J | yearly electricity consumption in Mongolia as of 2010[139][142] | |||||
9.0×1016 J | mass-energy in 1 kilogram of antimatter (or matter)[143] | |||||
1017 | 1×1017 J | energy released on the Earth's surface by the magnitude 9.1-9.3 2004 Indian Ocean earthquake[144] | ||||
1.7×1017 J | total energy from the Sun that strikes the face of the Earth each second[145] | |||||
2.1×1017 J | yield of the Tsar Bomba, the largest nuclear weapon ever tested (50 megatons)[146][147] | |||||
4.2×1017 J | yearly electricity consumption of Norway as of 2008[139][148] | |||||
8×1017 J | estimated energy released by the eruption of the Indonesian volcano, Krakatoa, in 1883[149][150] | |||||
1018 | exa- (EJ) | 1.4×1018 J | yearly electricity consumption of South Korea as of 2009[139][151] | |||
1019 | 1.4×1019 J | yearly electricity consumption in the U.S. as of 2009[139][152] | ||||
1.4×1019J | yearly electricity production in the U.S. as of 2009[153][154] | |||||
5×1019 J | energy released in 1 day by an average hurricane in producing rain (400 times greater than the wind energy)[137] | |||||
6.4×1019 J | yearly electricity consumption of the world as of 2008[update][155][156] | |||||
6.8×1019 J | yearly electricity generation of the world as of 2008[update][155][157] | |||||
1020 | 5.0x1020 J | total world annual energy consumption in 2010[158][159] | ||||
8.0×1020 J | estimated global uranium resources for generating electricity 2005[160][161][162][163] | |||||
1021 | zetta- (ZJ) | 6.9×1021 J | estimated energy contained in the world's natural gas reserves as of 2010[158][164] | |||
7.9×1021 J | estimated energy contained in the world's petroleum reserves as of 2010[158][165] | |||||
1022 | 1.5×1022J | total energy from the Sun that strikes the face of the Earth each day[145][166] | ||||
2.4×1022 J | estimated energy contained in the world's coal reserves as of 2010[158][167] | |||||
2.9×1022 J | identified global uranium-238 resources using fast reactor technology[160] | |||||
3.9×1022 J | estimated energy contained in the world's fossil fuel reserves as of 2010[158][168] | |||||
4×1022 J | estimated total energy released by the magnitude 9.1-9.3 2004 Indian Ocean Earthquake[169] | |||||
1023 | 2.2×1023 J | total global uranium-238 resources using fast reactor technology[160] | ||||
5×1023 J | approximate energy released in the formation of the Chicxulub Crater in the Yucatán Peninsula[170] | |||||
1024 | yotta- (YJ) | 5.5×1024 J | total energy from the Sun that strikes the face of the Earth each year[145][171] | |||
1025 | ||||||
1026 | 1.3×1026 J | conservative estimate of the energy released by the impact that created the Caloris basin on Mercury[citation needed] | ||||
3.8×1026 J | total energy output of the Sun each second[172] | |||||
1027 | ||||||
1028 | 3.8×1028 J | kinetic energy of the Moon in its orbit around the Earth (counting only its velocity relative to the Earth)[173][174] | ||||
1029 | 2.1×1029 J | rotational energy of the Earth[175][176][177] | ||||
1030 | 1.8×1030 J | gravitational binding energy of Mercury | ||||
1031 | 3.3×1031 J | total energy output of the Sun each day[172][178] | ||||
1032 | 2×1032 J | gravitational binding energy of the Earth[179] | ||||
1033 | 2.7×1033 J | Earth's kinetic energy in its orbit[180] | ||||
1034 | 1.2×1034 J | total energy output of the Sun each year[172][181] | ||||
1039 | 6.6×1039 J | theoretical total mass-energy of the Moon | ||||
1041 | 5.4×1041 J | theoretical total mass-energy of the Earth[182][183] | ||||
6.9×1041 J | gravitational binding energy of the Sun[184] | 1044 | 1-2×1044 J | estimated energy released in a supernova;[185] sometimes referred to as a foe | ||
1046 | 1×1046 J | estimated energy released in a hypernova[186] | ||||
1047 | 1×1047 J | total energy of a powerful gamma-ray burst | 1.8×1047 J | theoretical total mass-energy of the Sun[187][188] | ||
1058 | 4×1058 J | visible mass-energy in our galaxy, the Milky Way[189][190] | ||||
1059 | 1×1059 J | total mass-energy of the galaxy, including dark matter and dark energy[191][192] | ||||
1062 | 1-2×1062 J | total mass-energy of the Local Supercluster, including dark matter[193] | ||||
1069 | 4×1069 J | estimated total mass-energy of the observable universe[194] |
SI multiples
Submultiples | Multiples | ||||
---|---|---|---|---|---|
Value | SI symbol | Name | Value | SI symbol | Name |
10−1 J | dJ | decijoule | 101 J | daJ | decajoule |
10−2 J | cJ | centijoule | 102 J | hJ | hectojoule |
10−3 J | mJ | millijoule | 103 J | kJ | kilojoule |
10−6 J | μJ | microjoule | 106 J | MJ | megajoule |
10−9 J | nJ | nanojoule | 109 J | GJ | gigajoule |
10−12 J | pJ | picojoule | 1012 J | TJ | terajoule |
10−15 J | fJ | femtojoule | 1015 J | PJ | petajoule |
10−18 J | aJ | attojoule | 1018 J | EJ | exajoule |
10−21 J | zJ | zeptojoule | 1021 J | ZJ | zettajoule |
10−24 J | yJ | yoctojoule | 1024 J | YJ | yottajoule |
10−27 J | rJ | rontojoule | 1027 J | RJ | ronnajoule |
10−30 J | qJ | quectojoule | 1030 J | QJ | quettajoule |
The joule is named after James Prescott Joule. As with every SI unit named for a person, its symbol starts with an upper case letter (J), but when written in full, it follows the rules for capitalisation of a common noun; i.e., joule becomes capitalised at the beginning of a sentence and in titles but is otherwise in lower case.
See also
- Conversion of units of energy
- Energies per unit mass
- List of energy topics
- Metric system
- TNT equivalent
- Scientific notation
- Energy conversion efficiency
Notes
- ^ Calculated: E_photon = hv = 6.626e-34 J-s * 1e6 Hz = 6.6e-28 J. In eV: 6.6e-28 J / 1.6e-19 J/eV = 4.1e-9 eV.
- ^ "Frequency of a Microwave Oven". The Physics Factbook. Retrieved 15 November 2011.
- ^ Calculated: E_photon = hv = 6.626e-34 J-s * 2.45e8 Hz = 1.62e-24 J. In eV: 1.62e-24 J / 1.6e-19 J/eV = 1.0e-5 eV.
- ^ "Boomerang Nebula boasts the coolest spot in the Universe". JPL. Retrieved 13 November 2011.
- ^ a b c d "Wavelength, Frequency, and Energy". Imagine the Universe. NASA. Retrieved 15 November 2011.
- ^ Calculated: 1e3 J / 6.022e23 entities per mole = 1.7e-21 J per entity
- ^ Calculated: 1.381e-23 J/K * 298.15 K / 2 = 2.1e-21 J
- ^ a b c "Bond Lengths and Energies". Chem 125 notes. UCLA. Retrieved 13 November 2011.
- ^ Calculated: 2 to 4 kJ/mol = 2e3 J / 6.022e23 molecules/mol = 3.3e-21 J. In eV: 3.3e-21 J / 1.6e-19 J/eV = 0.02 eV. 4e3 J / 6.022e23 molecules/mol = 6.7e-21 J. In eV: 6.7e-21 J / 1.6e-19 J/eV = 0.04 eV.
- ^ Ansari, Anjum. "Basic Physical Scales Relevant to Cells and Molecules". Physics 450. Retrieved 13 November 2011.
- ^ Calculated: 4 to 13 kJ/mol. 4 kJ/mol = 4e3 J / 6.022e23 molecules/mol = 6.7e-21 J. In eV: 6.7e-21 J / 1.6e-19 eV/J = 0.042 eV. 13 kJ/mol = 13e3 J / 6.022e23 molecules/mol = 2.2e-20 J. In eV: 13e3 J / 6.022e23 molecules/mol / 1.6e-19 eV/J = 0.13 eV.
- ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1103/PhysRevLett.105.031301, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1103/PhysRevLett.105.031301
instead. - ^ Calculated: 0.28 eV * 1.6e-19 J/eV = 4.5e-20 J
- ^ "CODATA Value: electron volt". NIST. Retrieved 4 November 2011.
- ^ "BASIC LAB KNOWLEDGE AND SKILLS". Retrieved 5 November 2011.
Visible wavelengths are roughly from 390 nm to 780 nm
- ^ Calculated: E = h * c / lambda. E_780_nm = 6.6e-34 kg-m^2/s * 3e8 m/s / (780e-9 m) = 2.5e-19 J. E_390 _nm = 6.6e-34 kg-m^2/s * 3e8 m/s / (390e-9 m) = 5.1e-19 J
- ^ Calculated: 50 kcal/mol * 4.184 J/calorie / 6.0e22e23 molecules/mol = 3.47e-19 J. (3.47e-19 J / 1.60e-19 eV/J = 2.2 eV.) and 200 kcal/mol * 4.184 J/calorie / 6.0e22e23 molecules/mol = 1.389e-18 J. (7.64e-19 J / 1.60e-19 eV/J = 8.68 eV.)
- ^ Thomas J Bowles (2000). P. Langacker (ed.). Neutrinos in physics and astrophysics: from 10−33 to 1028 cm: TASI 98 : Boulder, Colorado, USA, 1-26 June 1998. World Scientific. p. 354. ISBN 978-981-02-3887-2. Retrieved 11 November 2011.
an upper limit ov m_v_u < 170 keV
- ^ Calculated: 170e3 eV * 1.6e-19 J/eV = 2.7e-14 J
- ^ "electron mass energy equivalent". NIST. Retrieved 4 November 2011.
- ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ^ Muller, Richard A. (2002). "The Sun, Hydrogen Bombs, and the physics of fusion". Retrieved 5 November 2011.
The neutron comes out with high energy of 14.1 MeV
- ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ^ "Energy From Uranium Fission". HyperPhysics. Retrieved 8 November 2011.
- ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ^ "proton mass energy equivalent". NIST. Retrieved 4 November 2011.
- ^ "neutron mass energy equivalent". NIST. Retrieved 4 November 2011.
- ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ^ "deuteron mass energy equivalent". NIST. Retrieved 4 November 2011.
- ^ "alpha particle mass energy equivalent". NIST. Retrieved 4 November 2011.
- ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ^ Myers, Stephen. "The LEP Collider". CERN. Retrieved 14 November 2011.
the LEP machine energy is about 50 GeV per beam
- ^ Calculated: 50e9 eV * 1.6e-19 J/eV = 8e-9 J
- ^ "W". PDG Live. Particle Data Group. Retrieved 4 November 2011.
- ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1016/j.physletb.2008.07.018 , please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1016/j.physletb.2008.07.018
instead. - ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ^ Adams, John. "400 GeV Proton Synchrotron". Excertp from the CERN Annual Report 1976. CERN. Retrieved 14 November 2011.
A circulating proton beam of 400 GeV energy was first achieved in the SPS on 17 June 1976
- ^ Calculated: 400e9 eV * 1.6e-19 J/eV = 6.4e-8 J
- ^ a b c d e f g h i j "Appendix B8—Factors for Units Listed Alphabetically". NIST Guide for the Use of the International System of Units (SI). NIST. Retrieved 4 November 2011.
1.355818
- ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ^ "Electronvolt (eV)". Glossary. CERN. Retrieved 4 November 2011.
- ^ "LHC will run at 7 TeV in 2012". Physics World. Retrieved 12 November 2011.
3.5 TeV per proton beam
- ^ Calculated: 3.5e12 eV per beam * 1.6e-19 J/eV = 5.6e-7 J
- ^ "Coin specifications". United States Mint. Retrieved 2 November 2011.
11.340 g
- ^ Calculated: m*g*h = 11.34e-3 kg * 9.8 m/s^2 * 1 m = 1.1e-1 J
- ^ "Apples, raw, with skin (NDB No. 09003)". USDA Nutrient Database. USDA. Retrieved 8 December 2011.
- ^ Calculated: m*g*h = 1e-1 kg * 9.8 m/s^2 * 1 m = 1 J
- ^ "Specific Heat of Dry Air". Engineering Toolbox. Retrieved 2 November 2011.
- ^ "Footnotes". NIST Guide to the SI. NIST. Retrieved 4 November 2011.
- ^ "Physical Motivations". ULTRA Home Page (EUSO project). Dipartimento di Fisica di Torino. Retrieved 12 November 2011.
- ^ Calculated: 5e19 eV * 1.6e-19 J/ev = 8 J
- ^ "Notes on the Troubleshooting and Repair of Electronic Flash Units and Strobe Lights and Design Guidelines, Useful Circuits, and Schematics". Retrieved 8 December 2011.
The energy storage capacitor for pocket cameras is typically 100 to 400 uF at 330 V (charged to 300 V) with a typical flash energy of 10 W-s.
- ^ "The Fly's Eye (1981-1993)". HiRes. Retrieved 14 November 2011.
- ^ "Ionizing Radiation". General Chemistry Topic Review: Nuclear Chemistry. Bodner Research Web. Retrieved 5 November 2011.
- ^ "Vertical Jump Test". Topend Sports. Retrieved 12 December 2011.
41-50 cm (males) 31-40 cm (females)
- ^ "Mass of an Adult". The Physics Factbook. Retrieved 13 December 2011.
70 kg
- ^ Kinetic energy at start of jump = potential energy at high point of jump. Using a mass of 70 kg and a high point of 40 cm => energy = m*g*h = 70 kg * 9.8 m/s^2 * 40e-2 m = 274 J
- ^ "Javelin Throw - Introduction". IAAF. Retrieved 12 December 2011.
- ^ Young, Michael. "Developing Event Specific Strength for the Javelin Throw" (PDF). Retrieved 13 December 2011.
For elite athletes, the velocity of a javelin release has been measured in excess of 30m/s
- ^ Calculated: 1/2 * 0.8 kg * (30 m/s)^2 = 360 J
- ^ Greenspun, Philip. "Studio Photography". Retrieved 13 December 2011.
Most serious studio photographers start with about 2000 watts-seconds
- ^ "Discus Throw - Introduction". IAAF. Retrieved 12 December 2011.
- ^ Calculated: 1/2 * 2 kg * (24.4 m/s)^2 = 595.4 J
- ^ "Shot Put - Introduction". IAAF. Retrieved 12 December 2011.
- ^ Calculated: 1/2 * 7.26 kg * (14.7 m/s)^2 = 784 J
- ^ Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1029.2F2010GL045777, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with
|doi=10.1029.2F2010GL045777
instead. - ^ "Intermediate power ammunition for automatic assault rifles". Modern Firearms. World Guns. Retrieved 12 December 2011.
- ^ "Hammer Throw - Introduction". IAAF. Retrieved 12 December 2011.
- ^ Otto, Ralf M. "HAMMER THROW WR PHOTOSEQUENCE - YURIY SEDYKH" (pdf). Retrieved 4 November 2011.
The total release velocity is 30.7 m/sec
- ^ Calculated: 1/2 * 7.26 kg * (30.7 m/s)^2 = 3420 J
- ^ 4.2e9 J/ton of TNT-equivalent * (1 ton/1e6 grams) = 4.2e3 J/gram of TNT-equivalent
- ^ ".458 Winchester Magnum" (pdf). Accurate Powder. Western Powders Inc. Retrieved 7 September 2010.
- ^ "Battery energy storage in various battery sizes". AllAboutBatteries.com. Retrieved 15 December 2011.
- ^ "Energy Density of Carbohydrates". The Physics Factbook. Retrieved 5 November 2011.
- ^ "Energy Density of Protein". The Physics Factbook. Retrieved 5 November 2011.
- ^ "Energy Density of Fats". The Physics Factbook. Retrieved 5 November 2011.
- ^ a b "Energy Density of Gasoline". The Physics Factbook. Retrieved 5 November 2011.
- ^ Calculated: E = 1/2 m*v^2 = 1/2 * (1e-3 kg) * (1e4 m/s)^2 = 5e4 J.
- ^ a b "List of Car Weights". LoveToKnow. Retrieved 13 December 2011.
3000 to 12000 pounds
- ^ Calculated: Using car weights of 1 ton to 5 tons. E = 1/2 m*v^2 = 1/2 * (1e3 kg) * (55 mph * 1600 m/mi / 3600 s/hr) = 3.0e5 J. E = 1/2 * (5e3 kg) * (55 mph * 1600 m/mi / 3600 s/hr) = 15e5 J.
- ^ Muller, Richard A. "Kinetic Energy in a meteor". Old Physics 10 notes.
- ^ Calculated: KE = 1/2 * 2e3 kg * (32 m/s)^2 = 1.0e6 J
- ^ "Candies, MARS SNACKFOOD US, SNICKERS Bar (NDB No. 19155)". USDA Nutrient Database. USDA. Retrieved 14 November 2011.
- ^ a b "How to Balance the Food You Eat and Your Physical Activity and Prevent Obesity". Healthy Weight Basics. National Heart Lung and Blood Institutde. Retrieved 14 November 2011.
- ^ Calculated: 2000 food calories = 2.0e6 cal * 4.184 J/cal = 8.4e6 J
- ^ Calculated: 1/2 * m * v^2 = 1/2 * 48.78 kg * (655 m/s)^2 = 1.0e7 J.
- ^ Calculated: 2600 food calories = 2.6e6 cal * 4.184 J/cal = 1.1e7 J
- ^ "Table 3.3 Consumer Price Estimates for Energy by Source, 1970-2009". Annual Energy Review. US Energy Information Administration. 19 October 2011. Retrieved 17 December 2011.
$28.90 per million BTU
- ^ Calculated J per dollar: 1 million BTU/$28.90 = 1e6 BTU / 28.90 dollars * 1.055e3 J/BTU = 3.65e7 J/dollar
- ^ Calculated cost per kWh: 1 kWh * 3.60e6 J/kWh / 3.65e7 J/dollar = 0.0986 dollar/kWh
- ^ "Energy in a Cubic Meter of Natural Gas". The Physics Factbook. Retrieved 15 December 2011.
- ^ "The Olympic Diet of Michael Phelps". WebMD. Retrieved 28 December 2011.
- ^ Cline, James E. D. "Energy to Space". Retrieved 13 November 2011.
6.27E7 Joules / Kg
- ^ "Tour de France Winners, Podium, Times". Bike Race Info. Retrieved 10 December 2011.
- ^ "Watts/kg". Flamme Rouge. Retrieved 4 November 2011.
- ^ Calculated: 90 hr * 3600 seconds/hr * 5 W/kg * 65 kg = 1.1e8 J
- ^ Smith, Chris. "How do Thunderstorms Work?". The Naked Scientists. Retrieved 15 November 2011.
It discharges about 1-10 billion joules of energy
- ^ "Powering up ATLAS's mega magnet". Spotlight on... CERN. Retrieved 10 December 2011.
magnetic energy of 1.1 Gigajoules
- ^ "ITP Metal Casting: Melting Efficiency Improvement" (PDF). ITP Metal Casting. U.S. Department of Energy. Retrieved 14 November 2011.
377 kWh/mt
- ^ Calculated: 380 kW-h * 3.6e6 J/kW-h = 1.37e9 J
- ^ Bell Fuels. "Lead-Free Gasoline Material Safety Data Sheet". NOAA. Retrieved 6 July 2008.
- ^ thepartsbin.com - Volvo Fuel Tank: Compare at The Parts Bin, 2012-05-06
- ^
- ^ "Power of a Human Heart". The Physics Factbook. Retrieved 10 December 2011.
The mechanical power of the human heart is ~1.3 watts
- ^ Calculated: 1.3 J/s * 80 years * 3.16e7 s/year = 3.3e9 J
- ^ "U.S. Household Electricity Uses: A/C, Heating, Appliances". U.S. HOUSEHOLD ELECTRICITY REPORT. EIA. Retrieved 13 December 2011.
For refrigerators in 2001, the average UEC was 1,239 kWh
- ^ Calculated: 1239 kWh * 3.6e6 J/kWh = 4.5e9 J
- ^ a b Energy Units, by Arthur Smith, 21 January 2005
- ^ "Top 10 Biggest Explosions". Listverse. Retrieved 10 December 2011.
a yield of 11 tons of TNT
- ^ Calculated: 11 tons of TNT-equivalent * 4.184e9 J/ton of TNT-equivalent = 4.6e10 J
- ^ "Emission Facts: Average Annual Emissions and Fuel Consumption for Passenger Cars and Light Trucks". EPA. Retrieved 12 December 2011.
581 gallons of gasoline
- ^ "200 Mile-Per-Gallon Cars?". Retrieved 12 December 2011.
a gallon of gas ... 125 million joules of energy
- ^ Calculated: 581 gallons * 125e6 J/gal = 7.26e10 J
- ^ Calculated: 1e6 Watts * 86400 seconds/day = 8.6e10 J
- ^ "Energy From Uranium Fission". HyperPhysics. Retrieved 8 November 2011.
- ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ^ Calculated: 3.44e-10 J/U-235-fission * 1e-3 kg / (235 amu per U-235-fission * 1.66e-27 amu/kg) = 8.82e-10 J
- ^ "A330-300 Dimensions & key data". Airbus. Retrieved 12 December 2011.
97530 litres
- ^ a b c http://www.bp.com/liveassets/bp_internet/aviation/air_bp/STAGING/local_assets/downloads_pdfs/a/air_bp_products_handbook_04004_1.pdf
- ^ Calculated: 97530 liters * 0.804 kg/L * 43.15 MJ/kg = 3.38e12 J
- ^ Calculated: 1e9 Watts * 3600 seconds/hour
- ^ Weston, Kenneth. "Chapter 10. Nuclear Power Plants" (pdf). Energy Conversion. Retrieved 13 December 2011.
The thermal efficiency of a CANDU plant is only about 29%
- ^ "CANDU and Heavy Water Moderated Reactors". Retrieved 12 December 2011.
fuel burnup in a CANDU is only 6500 to 7500 MWd per metric ton uranium
- ^ Calculated: 7500e6 Watt-days/tonne * (0.020 tonnes per bundle) * 86400 seconds/day = 1.3e13 J of burnup energy. Electricity = burnup * ~29% efficiency = 3.8e12 J
- ^ "747 Classics Technical Specs". Boeing. Retrieved 12 December 2011.
183,380 L
- ^ Calculated: 183380 liters * 0.804 kg/L * 43.15 MJ/kg = 6.36e12 J
- ^ "A380-800 Dimensions & key data". Airbus. Retrieved 12 December 2011.
320,000 L
- ^ Calculated: 320,000 l * 0.804 kg/L * 43.15 MJ/kg = 11.1e12 J
- ^ "International Space Station: The ISS to Date". NASA. Retrieved 23 August 2011.
- ^ "The wizards of orbits". European Space Agency. Retrieved 10 December 2011.
The International Space Station, for example, flies at 7.7 km/s in one of the lowest practicable orbits
- ^ Calculated: E = 1/2 m.v² = 1/2 * 417000 kg * (7700m/s)² = 1.2e13 J
- ^ "What was the yield of the Hiroshima bomb?". Warbird's Forum. Retrieved 4 November 2011.
21 kt
- ^ Calculated: 21 kt = 21e9 grams of TNT-equivalent * 4.2e3 J/gram TNT-equivalent = 8.8e13 J
- ^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- ^ a b "How much energy does a hurricane release?". FAQ : HURRICANES, TYPHOONS, AND TROPICAL CYCLONES. NOAA. Retrieved 12 November 2011.
- ^ "The Gathering Storms". COSMOS. Retrieved 10 December 2011.
- ^ a b c d e "Country Comparison :: Electricity - consumption". The World Factbook. CIA. Retrieved 11 December 2011.
- ^ Calculated: 288.6e6 MWh * 3.60e6 J/MWh = 1.04e15 J
- ^ Calculated: 4.2e9 J/ton of TNT-equivalent * 1e6 tons/megaton = 4.2e15 J/megaton of TNT-equivalent
- ^ Calculated: 3.02e9 MWh * 3.60e6 J/MWh = 1.09e16 J
- ^ Calculated: E = mc^2 = 1 kg * (2.998e8 m/s)^2 = 8.99e16 J
- ^ "USGS Energy and Broadband Solution". National Earthquake Information Center, US Geological Survey. Retrieved 9 December 2011.
- ^ a b c The Earth has a cross section of 1.274×1014 square meters and the solar constant is 1366 watts per square meter.
- ^ "The Soviet Weapons Program - The Tsar Bomba". The Nuclear Weapon Archive. Retrieved 4 November 2011.
- ^ Calculated: 50e6 tons TNT-equivalent * 4.2e9 J/ton TNT-equivalent = 2.1e17 J
- ^ Calculated: 115.6e9 MWh * 3.60e6 J/MWh = 4.16e17 J
- ^ Alexander, R. McNeill (1989). [books.google.com/books?id=0q_1xk3SVKEC Dynamics of Dinosaurs and Other Extinct Giants]. Columbia University Press. p. 144. ISBN 0-231-06667-8.
the explosion of the island volcano Krakatoa in 1883, had about 200 megatonnes energy.
{{cite book}}
: Check|url=
value (help) - ^ Calculated: 200e6 tons of TNT equivalent * 4.2e9 J/ton of TNT equivalent = 8.4e17 J
- ^ Calculated: 402e9 MWh * 3.60e6 J/MWh = 1.45e17 J
- ^ Calculated: 3.741e12 MWh * 3.600e6 J/MWh = 1.347e19 J
- ^ "United States". The World Factbook. USA. Retrieved 11 December 2011.
- ^ Calculated: 3.953e12 MWh * 3.600e6 J/MWh = 1.423e19 J
- ^ a b "World". The World Factbook. CIA. Retrieved 11 December 2011.
- ^ Calculated: 17.8e12 MWh * 3.60e6 J/MWh = 6.41e19 J
- ^ Calculated: 18.95e12 MWh * 3.60e6 J/MWh = 6.82e19 J
- ^ a b c d e "Statistical Review of World Energy 2011" (PDF). BP. Retrieved 9 December 2011.
- ^ Calculated: 12002.4e6 tonnes of oil equivalent * 42e9 J/tonne of oil equivalent = 5.0e20 J
- ^ a b c Global Uranium Resource
- ^ U.S. Energy Information Administration, International Energy Generation
- ^ U.S. EIA International Energy Outlook 2007.
- ^ Final number is computed. Energy Outlook 2007 shows 15.9% of world energy is nuclear. IAEA estimates conventional uranium stock, at today's prices is sufficient for 85 years. Convert billion kilowatt-hours to joules then: 6.25×1019×0.159×85 = 8.01×1020.
- ^ Calculated: "6608.9 trillion cubic feet" => 6608.9e3 billion cubic feet * 0.025 million tonnes of oil equivalent/billion cubic feet * 1e6 tonnes of oil equivalent/million tonnes of oil equivalent * 42e9 J/tonne of oil equivalent = 6.9e21 J
- ^ Calculated: "188.8 thousand million tonnes" => 188.8e9 tonnes of oil * 42e9 J/tonne of oil = 7.9e21 J
- ^ Calculated: 1.27e14 m^2 * 1370 W/m^2 * 86400 s/day = 1.5e22 J
- ^ Calculated: 860938 million tonnes of coal => 860938e6 tonnes of coal * (1/1.5 tonne of oil equivalent / tonne of coal) * 42e9 J/tonne of oil equivalent = 2.4e22 J
- ^ Calculated: natural gas + petroleum + coal = 6.9e21 J + 7.9e21 J + 2.4e22 J = 3.9e22 J
- ^ "USGS, Harvard Moment Tensor Solution". National Earthquake Information Center, US Geological Survey. 26 December 2004. Retrieved 9 December 2011.
- ^ http://www.geosc.psu.edu/people/faculty/personalpages/tbralower/Braloweretal1998.pdf
- ^ Calculated: 1.27e14 m^2 * 1370 W/m^2 * 86400 s/day = 5.5e24 J
- ^ a b c "Ask Us: Sun: Amount of Energy the Earth Gets from the Sun". Cosmicopia. NASA. Retrieved 4 November 2011.
- ^ "Moon Fact Sheet". NASA. Retrieved 16 December 2011.
- ^ Calculated: KE = 1/2 * m * v^2. v = 1.023e3 m/s. m = 7.349e22 kg. KE = 1/2 * (7.349e22 kg) * (1.023e3 m/s)^2 = 3.845e28 J.
- ^ "Moment of Inertia--Earth". Eric Weisstein's World of Physics. Retrieved 5 November 2011.
- ^ Allain, Rhett. "Rotational energy of the Earth as an energy source". .dotphysics. Science Blogs. Retrieved 5 November 2011.
the Earth takes 23.9345 hours to rotate
- ^ Calculated: E_rotational = 1/2 * I * w^2 = 1/2 * (8.0e37 kg m^2) * (2*pi/(23.9345 hour period * 3600 seconds/hour))^2 = 2.1e29 J
- ^ Calculated: 3.8e26 J/s * 86400 s/day = 3.3e31 J
- ^ "Earth's Gravitational Binding Energy". Retrieved 19 March 2012.
Variable Density Method: the Earth's gravitational binding energy is -1.711×10^32 J
- ^ http://www.uwgb.edu/DutchS/pseudosc/flipaxis.htm
- ^ Calculated: 3.8e26 J/s * 86400 s/day * 365.25 days/year = 1.2e34 J
- ^ "Earth: Facts & Figures". Solar System Exploration. NASA. Retrieved 29 September 2011.
- ^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- ^
Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition)
Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272 - ^ Khokhlov, A.; Mueller, E.; Hoeflich, P.; Mueller; Hoeflich (1993). "Light curves of Type IA supernova models with different explosion mechanisms". Astronomy and Astrophysics. 270 (1–2): 223–248. Bibcode:1993A&A...270..223K.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ "A Hypernova: The Super-charged Supernova and its link to Gamma-Ray Bursts". Imagine the Universe!. NASA. Retrieved 9 December 2011.
With a power about 100 times that of the already astonishingly powerful "typical" supernova
- ^ "Sun Fact Sheet". NASA. Retrieved 15 October 2011.
- ^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- ^ Jim Brau. "The Milky Way Galaxy". Retrieved 4 November 2011.
- ^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- ^ Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics 49(1): 3–18. doi:10.1007/s10511-006-0002-6.
- ^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- ^ Einasto, M.; et al. (December 2007). "The richest superclusters. I. Morphology". Astronomy and Astrophysics. 476 (2): 697–711. Bibcode:2007A&A...476..697E. doi:10.1051/0004-6361:20078037.
- ^ http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/980211b.html