Relative effectiveness factor

From Wikipedia, the free encyclopedia
  (Redirected from Relative effectiveness)
Jump to: navigation, search

The relative effectiveness factor, or R.E. factor, relates an explosive's demolition power to that of TNT, in units of the TNT equivalent/kg (TNTe/kg). The R.E. factor is the amount of TNT to which 1 kg of an explosive is equivalent; the higher the R.E., the more powerful the explosive.

This enables engineers to determine the proper masses of different explosives when applying blasting formulas developed specifically for TNT. For example, if a timber-cutting formula calls for a charge of 1 kg of TNT, then based on octanitrocubane's R.E. of 2.38, it would take only 1.0/2.38 (or 0.42) kg of it to do the same job. Using PETN, engineers would need 1.0/1.66 (or 0.60) kg to obtain the same effects as 1 kg of TNT. With ANFO or AN, they would require 1.0/0.74 (or 1.35) kg or 1.0/0.42 (or 2.38) kg, respectively.

R.E. factor examples[edit]

The greater the R.E. number, the more powerful the explosive.

Some R.E. factor examples
Explosive, Grade Density
(g/ml)
Detonation
Vel. (m/s)
R.E.
Ammonium nitrate (AN + <0.5% H2O) 1.12 2550 0.42[1]
Black powder (75% KNO3 + 19% C + 6% S) 1.65 600 0.55
Tanerit Simply® (93% granulated AN + 6% Red P + 1% C) 0.90 2750 0.55
Hexamine dinitrate (HDN) 1.30 5070 0.60
Dinitrobenzene (DNB) 1.50 6025 0.60
HMTD (Hexamine peroxide) 0.88 4520 0.74
ANFO (94% AN + 6% fuel oil) 0.92 5270 0.74
TATP (Acetone peroxide) 1.18 5300 0.80
Tovex® Extra (AN water gel) commercial product 1.33 5690 0.80
Hydromite® 600 (AN water emulsion) commercial product 1.24 5550 0.80
ANNMAL (66% AN + 25% NM + 5% Al + 3% C + 1% TETA) 1.16 5360 0.87
Amatol (50% TNT + 50% AN) 1.50 6290 0.91
Nitroguanidine 1.32 6750 0.95
Trinitrotoluene (TNT) 1.60 6900 1.00
Hexanitrostilbene (HNS) 1.70 7080 1.05
Nitrourea 1.54 6860 1.05
Tritonal (80% TNT + 20% Aluminium)* 1.70 6650 1.05
Amatol (80% TNT + 20% AN) 1.55 6790 1.10
Nitrocellulose (13.5% N, NC) 1.40 6400 1.10
Nitromethane (NM) 1.13 6360 1.10
PBXW-126 (22% NTO, 20% RDX, 20% AP, 26% Al, 12% PU’s system)* 1.80 6450 1.10
Diethylene glycol dinitrate (DEGDN) 1.38 6610 1.17
PBXIH-135 EB (42% HMX, 33% Al, 25% PCP-TMETN’s system)* 1.81 7060 1.17
PBXN-109 (64% RDX, 20% Al, 16% HTPB’s system)* 1.68 7450 1.17
Triaminotrinitrobenzene (TATB) 1.80 7550 1.17
Picric acid (TNP) 1.71 7350 1.20
Trinitrobenzene (TNB) 1.60 7300 1.20
Tetrytol (70% Tetryl + 30% TNT) 1.60 7370 1.20
Nobel's Dynamite (75% NG + 23% Diatomite) 1.48 7200 1.25
Tetryl 1.71 7770 1.25
Torpex (aka HBX, 41% RDX + 40% TNT + 18% Al + 1% Wax)* 1.80 7440 1.30
Composition B (63% RDX + 36% TNT + 1% Wax) 1.72 7840 1.33
Composition C-3 (78% RDX) 1.60 7630 1.33
Composition C-4 (91% RDX) 1.59 8040 1.34
Pentolite (56% PETN + 44% TNT) 1.66 7520 1.33
Semtex 1A (76% PETN + 6% RDX) 1.55 7670 1.35
Hydrazine mononitrate 1.59 8500 1.42
RISAL P (50%IPN + 28%RDX + 15%Al + 4%Mg + 1%Zr + 2%NC)* 1.39 5980 1.42
Mixture: 24% Nitrobenzene + 76% TNM 1.48 8060 1.50
Mixture: 30% Nitrobenzene + 70% Nitrogen tetroxide 1.39 8290 1.50
Nitroglycerin (NG) 1.59 8100 1.54
Octol (80% HMX + 19% TNT + 1% DNT) 1.83 8690 1.54
NTO (Nitrotriazolon) 1.87 8120 1.60
DADNE (1,1-Diamino-2,2-dinitroethene, FOX-7) 1.77 8330 1.60
Gelatine (92% NG + 7% Nitrocellulose) 1.60 7970 1.60
Plastics Gel® (in toothpaste tube: 45% PETN + 45% NG + 5% DEGDN + 4% NC) 1.51 7940 1.60
Composition A-5 (98% RDX + 2% Stearic acid) 1.65 8470 1.60
Erythritol tetranitrate (ETN) 1.60 8100 1.60
Chopin's Composition (10% PETN+ 15% RDX + 72% ETN) 1.65 8220 1.60
Hexogen (RDX) 1.78 8700 1.60
PBXW-11 (96% HMX, 1% HyTemp, 3% DOA) 1.81 8720 1.60
Penthrite (PETN) 1.71 8400 1.66
Ethylene glycol dinitrate (EGDN) 1.49 8300 1.66
TNAZ (Trinitroazetidine) 1.85 8640 1.70
Octogen (HMX grade B) 1.86 9100 1.70
HNIW (CL-20) 1.97 9380 1.80
Hexanitrobenzene (HNB) 1.97 9400 1.85
MEDINA (Methylene dinitroamine) 1.65 8700 1.93
DDF (4,4'-Dinitro-3,3'-diazenofuroxan) 1.98 10,000 1.95
Heptanitrocubane (HNC) 1.92 9200 N/A
Octanitrocubane (ONC) 1.95 10,600 2.38

*: TBX (thermobaric explosives) or EBX (enhanced blast explosives), in a small, confined space, may have over twice the power of destruction. The total power of aluminized mixtures strictly depends on the condition of elaboration.

Nuclear weapons and the most powerful non-nuclear weapon examples
Weapon Total yield
(tons of TNT)
Weight
(kg)
R.E. ~
Davy Crockett (nuclear device) 22 23 1,000
Fat Man (first tested A-bomb) 20k 4600 4,500
Classic (one-stage) fission A-bomb 22k 420 50,000
Russian suitcase nuke (in service of GRU) 2.5k 31 80,000
Typical (two-stage) nuclear bomb 0.5M-1M 650-1120 900,000
W88 modern thermonuclear warhead (MIRV) 470k 355 1,300,000
B53 nuclear bomb (two-stage) 9M 4050 2,200,000
B41 nuclear bomb (three-stage) 25M 4850 5,100,000
Tsar nuclear bomb (three-stage) 50M-56M 26,500 2,100,000
GBU-57 bomb (Massive Ordnance Penetrator, MOP) 3.5 13,600 0.26
Grand Slam (Earthquake bomb, M110) 6.5 9,900 0.66
Timothy McVeigh bomb (ANFO base on racing fuel) 1.8 2,300 0.78
BLU-82 (Daisy Cutter) 7.5 6,800 1.10
MOAB (non-nuclear bomb, GBU-47) 11 9,800 1.13
FOAB (advanced thermobaric bomb, ATBIP) 44 9,100 4.83

See also[edit]

References[edit]

  • Cooper, Paul W. (1996), Explosives Engineering, New York: Wiley-VCH, ISBN 0-471-18636-8 
  • HQ Department of the Army (2004) [1967], Field Manual 5-25: Explosives and Demolitions, Washington, D.C.: Pentagon Publishing, pp. 83–84, ISBN 0-9759009-5-1 
  • Explosives - Compositions, Alexandria, VA: GlobalSecurity.org, retrieved September 1, 2010 
  • Urbański, Tadeusz (1985) [1984], Chemistry and Technology of Explosives, Volumes I–IV (second ed.), Oxford: Pergamon 
  • Jörg Mathieu and Hans Stucki (2004) [ISSN 0009–4293], Military High Explosives, CHIMIA EXPLOSIVES (58, No 6 ed.), Schweizerische Chemische Gesellschaft, pp. 383–389 
  • 3. Thermobaric Explosives, Advanced Energetic Materials, 2004., THE NATIONAL ACADEMIES PRESS, nap.edu, retrieved September 2004 
  1. ^ US Army Field Manual 5-250: Explosives and Demolition, pages 1–2.