Schwarz triangle

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In geometry, a Schwarz triangle, named after Hermann Schwarz, is a spherical triangle that can be used to tile a sphere, possibly overlapping, through reflections in its edges. They were classified in (Schwarz 1873).

These can be defined more generally as tessellations of the sphere, the Euclidean plane, or the hyperbolic plane. Each Schwarz triangle on a sphere defines a finite group, while on the Euclidean or hyperbolic plane they define an infinite group.

A Schwarz triangle is represented by three rational numbers (p q r) each representing the angle at a vertex. The value n/d means the vertex angle is d/n of the half-circle. "2" means a right triangle. In case these are whole numbers, the triangle is called a Möbius triangle, and corresponds to a non-overlapping tiling, and the symmetry group is called a triangle group. In the sphere there are 3 Möbius triangles plus one one-parameter family; in the plane there are three Möbius triangles, while in hyperbolic space there is a three-parameter family of Möbius triangles, and no exceptional objects.

Solution space[edit]

A fundamental domain triangle, (p q r), can exist in different space depending on this constraint:


\begin{align}
\frac 1 p + \frac 1 q + \frac 1 r & > 1 \text{ : Sphere} \\[8pt]
\frac 1 p + \frac 1 q + \frac 1 r & = 1 \text{ : Euclidean plane} \\[8pt]
\frac 1 p + \frac 1 q + \frac 1 r & < 1 \text{ : Hyperbolic plane.}
\end{align}

Graphical representation[edit]

A Schwarz triangle is represented graphically by a triangular graph. Each node represents an edge (mirror) of the Schwarz triangle. Each edge is labeled by a rational value corresponding to the reflection order, being π/vertex angle.

Schwarz triangle on sphere.png
Schwarz triangle (p q r) on sphere
Schwarz triangle graph.png
Schwarz triangle graph

Order-2 edges represent perpendicular mirrors that can be ignored in this diagram. The Coxeter-Dynkin diagram represents this triangular graph with order-2 edges hidden.

A Coxeter group can be used for a simpler notation, as (p q r) for cyclic graphs, and (p q 2) = [p,q] for (right triangles), and (p 2 2) = [p]×[].

A list of Schwarz triangles[edit]

Möbius triangles for the sphere[edit]

Sphere symmetry group d2h.png
(2 2 2) or [2,2]
Sphere symmetry group d3h.png
(3 2 2) or [3,2]
...
Sphere symmetry group td.png
(3 3 2) or [3,3]
Sphere symmetry group oh.png
(4 3 2) or [4,3]
Sphere symmetry group ih.png
(5 3 2) or [5,3]

Schwarz triangles with whole numbers, also called Möbius triangles, include one 1-parameter family and three exceptional cases:

  1. [p,2] or (p 2 2) – Dihedral symmetry, CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.png
  2. [3,3] or (3 3 2) – Tetrahedral symmetry, CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
  3. [4,3] or (4 3 2) – Octahedral symmetry, CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
  4. [5,3] or (5 3 2) – Icosahedral symmetry, CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png

Schwarz triangles for the sphere by density[edit]

The Schwarz triangles (p q r), grouped by density:

Density Schwarz triangle
1 (2 3 3), (2 3 4), (2 3 5), (2 2 n)
d (2 2 n/d)
2 (3/2 3 3), (3/2 4 4), (3/2 5 5), (5/2 3 3)
3 (2 3/2 3), (2 5/2 5)
4 (3 4/3 4), (3 5/3 5)
5 (2 3/2 3/2), (2 3/2 4)
6 (3/2 3/2 3/2), (5/2 5/2 5/2), (3/2 3 5), (5/4 5 5)
7 (2 3 4/3), (2 3 5/2)
8 (3/2 5/2 5)
9 (2 5/3 5)
10 (3 5/3 5/2), (3 5/4 5)
11 (2 3/2 4/3), (2 3/2 5)
13 (2 3 5/3)
14 (3/2 4/3 4/3), (3/2 5/2 5/2), (3 3 5/4)
16 (3 5/4 5/2)
17 (2 3/2 5/2)
18 (3/2 3 5/3), (5/3 5/3 5/2)
19 (2 3 5/4)
21 (2 5/4 5/2)
22 (3/2 3/2 5/2)
23 (2 3/2 5/3)
26 (3/2 5/3 5/3)
27 (2 5/4 5/3)
29 (2 3/2 5/4)
32 (3/2 5/45/3)
34 (3/2 3/2 5/4)
38 (3/2 5/4 5/4)
42 (5/4 5/4 5/4)

Triangles for the Euclidean plane[edit]

Tile 3,6.svg
(3 3 3)
Tile V488 bicolor.svg
(4 4 2)
Tile V46b.svg
(6 3 2)

Density 1:

  1. (3 3 3) – 60-60-60 (equilateral)
  2. (4 4 2) – 45-45-90 (isosceles right)
  3. (6 3 2) – 30-60-90
  4. (2 2 ∞) - 90-90-0 "triangle"

Density 2:

  1. (6 6 3/2) - 120-30-30 triangle

Density ∞:

  1. (4 4/3 ∞)
  2. (3 3/2 ∞)
  3. (6 6/5 ∞)

Triangles for the hyperbolic plane[edit]

Order-3 heptakis heptagonal tiling.png
(7 3 2)
Order-3 octakis octagonal tiling.png
(8 3 2)
Order-4 bisected pentagonal tiling.png
(5 4 2)
Uniform dual tiling 433-t012.png
(4 3 3)
Uniform dual tiling 443-t012.png
(4 4 3)
H2checkers iii.png
(∞ ∞ ∞)
Fundamental domains of (p q r) triangles

Density 1:

  • (2 3 7), (2 3 8), (2 3 9) ... (2 3 ∞)
  • (2 4 5), (2 4 6), (2 4 7) ... (2 4 ∞)
  • (2 5 5), (2 5 6), (2 5 7) ... (2 5 ∞)
  • (2 6 6), (2 6 7), (2 6 8) ... (2 6 ∞)
  • (3 3 4), (3 3 5), (3 3 6) ... (3 3 ∞)
  • (3 4 4), (3 4 5), (3 4 6) ... (3 4 ∞)
  • (3 5 5), (3 5 6), (3 5 7) ... (3 5 ∞)
  • (3 6 6), (3 6 7), (3 6 8) ... (3 6 ∞)
  • ...
  • (∞ ∞ ∞)

Density 2:

  • (3/2 7 7), (3/2 8 8), (3/2 9 9) ... (3/2 ∞ ∞)
  • (5/2 4 4), (5/2 5 5), (5/2 6 6) ... (5/2 ∞ ∞)
  • (7/2 3 3), (7/2 4 4), (7/2 5 5) ... (7/2 ∞ ∞)
  • (9/2 3 3), (9/2 4 4), (9/2 5 5) ... (9/2 ∞ ∞)
  • ...

Density 3:

  • (2 7/2 7), (2 9/2 9), (2 11/2 11) ...

Density 4:

  • (7/3 3 7), (8/3 3 8), (3 10/3 10), (3 11/3 11) ...

Density 6:

  • (7/4 7 7), (9/4 9 9), (11/4 11 11) ...

Density 10:

  • (3 7/2 7)

The (2 3 7) Schwarz triangle is the smallest hyperbolic Schwarz triangle, and as such is of particular interest. Its triangle group (or more precisely the index 2 von Dyck group of orientation-preserving isometries) is the (2,3,7) triangle group, which is the universal group for all Hurwitz groups – maximal groups of isometries of Riemann surfaces. All Hurwitz groups are quotients of the (2,3,7) triangle group, and all Hurwitz surfaces are tiled by the (2,3,7) Schwarz triangle. The smallest Hurwitz group is the simple group of order 168, the second smallest non-abelian simple group, which is isomorphic to PSL(2,7), and the associated Hurwitz surface (of genus 3) is the Klein quartic.

The (2 3 8) triangle tiles the Bolza surface, a highly symmetric (but not Hurwitz) surface of genus 2.

The triangles with one noninteger angle, listed above, were first classified by Anthony W. Knapp in.[1] A list of triangles with multiple noninteger angles is given in.[2]

See also[edit]

References[edit]

  1. ^ A. W. Knapp, Doubly generated Fuchsian groups, Michigan Mathematics Journal 15 (1968), no. 3, 289–304
  2. ^ Klimenko and Sakuma, Two-generator discrete subgroups of Isom( H 2 ) containing orientation-reversing elements, Geometriae Dedicata October 1998, Volume 72, Issue 3, pp 247-282

External links[edit]