PGM-17 Thor

From Wikipedia, the free encyclopedia
  (Redirected from Thor missile)
Jump to: navigation, search
SM-75/PGM-17A Thor
Thor IRBM.jpg
A Thor intermediate-range ballistic missile.
Type Intermediate Range Ballistic Missile (IRBM)
Place of origin United States
Service history
Used by United States Air Force (testing)
Royal Air Force (operational deployment)
Production history
Designed 1957
Manufacturer Douglas Aircraft
Produced 1959-1960
Number built About 225; peak deployment was 60
Variants Delta rockets
Thor rocket family
Specifications
Weight 49,590 kilograms (109,330 lb) at launch.
Length 19.76 metres (64 ft 10 in).
Diameter 2.4 metres (8 ft).

Thor was the first operational ballistic missile deployed by the U.S. Air Force (USAF). Named after the Norse god of thunder, it was deployed in the United Kingdom between 1959 and September 1963 as an intermediate range ballistic missile (IRBM) with thermonuclear warheads. Thor was 65 feet (20 m) in height and 8 feet (2.4 m) in diameter. It was later augmented in the U.S. IRBM arsenal by the Jupiter.

A large family of space launch vehicles—the Thor and Delta rockets—were derived from the Thor design. A modified version is still in use as the first stage of the Delta II.

Design and development[edit]

Fearful that the Soviet Union would deploy a long-range ballistic missile before the U.S., in January 1956 the USAF began developing the Thor, a 1,500 miles (2,400 km) intermediate-range ballistic missile. The program proceeded quickly, and within three years of inception the first of 20 Royal Air Force Thor squadrons became operational in the UK. The UK deployment carried the codename 'Project Emily'. One of the advantages of the design was that, unlike the Jupiter IRBM, the Thor could be carried by the USAF's cargo aircraft of the time, which made its deployment more rapid; although the launch facilities were not transportable, and had to be built on site. The Thor was a stop-gap measure, however, and once the first generation of ICBMs based in the U.S. became operational, Thor missiles were quickly retired. The last of the missiles was withdrawn from operational alert in 1963.

A small number of Thors, converted to "Thrust Augumented Delta" launchers, remained operational in the anti-satellite missile role as Program 437 until April 1975. These missiles were based on Johnston Island in the Pacific Ocean and had the ability to destroy satellites in low Earth orbit. With prior warning of an impending launch, they could destroy a Soviet spy satellite soon after orbital insertion. These missiles remain in storage, and could be reactivated, though the W-49 Mod 6 warheads were all dismantled by June 1976.

Initial development as an IRBM[edit]

Development of the Thor was initiated by the USAF in 1954 as a tactical ballistic missile. The goal was a missile system that could deliver a nuclear warhead over a distance of 1,150 to 2,300 miles (1,850 to 3,700 km) with a CEP of 2 miles (3.2 km). This range would allow Moscow to be hit from a launch site in the UK.

The initial design studies were headed by Cmdr. Robert Truax (US Navy) and Dr. Adolph K. Thiel (Ramo-Wooldridge Corporation, formerly of Redstone Arsenal). They refined the specs to an IRBM with:

  • A 1,750 miles (2,820 km) range
  • 8 ft (2.4 m) diameter, 65 ft (20 m) long (so it could be carried by Douglas C-124 Globemaster)
  • A gross takeoff weight of 110,000 lb (50,000 kg)
  • Propulsion provided by half of the Navaho-derived Atlas booster engine (due, largely, to the lack of any alternatives at this early date)
  • 10,000 mph (4.5 km/s) maximum speed during warhead reentry
  • Inertial guidance system with radio backup (for low susceptibility to enemy disruption)

On November 30, 1955 three companies were given one week to bid on the project: Douglas, Lockheed, and North American Aviation. They were asked to create "a management team that could pull together existing technology, skills, abilities, and techniques in 'an unprecedented time.'" On December 27, 1955 Douglas was awarded the prime contract for the airframe and integration. The Rocketdyne division of North American Aviation was awarded the engine contract, AC Spark Plug the primary inertial guidance system, Bell Labs the backup radio guidance system, and General Electric the nose cone/reentry vehicle.

Douglas further refined the design by choosing bolted tank bulkheads (as opposed to the initially suggested welded ones) and a tapered fuel tank for improved aerodynamics. The engine was developed as a direct descendant of the Atlas MA-3 booster engine. Changes involved removal of one thrust chamber and a rerouting of the plumbing to allow the engine to fit within the smaller Thor boat-tail. Engine tests were being performed as of March 1956. The first engineering model engine was available in June, followed by the first flight engine in September. Engine development was complicated by serious turbopump problems. Early Thor engines suffered from what was known as "bearing walking", whereby the turbopump bearings shift axially within their housing, causing rapid wear and the bearings to seize.

First launches[edit]

Thor test launches were to be from LC-17 at Cape Canaveral Missile Annex. The development schedule was so compressed that plans for the Atlas bunker were used to allow the completion of the facility in time. Nevertheless pad LC-17B was just ready for the first test flight.

The first flight of the Thor IRBM was on January 25, 1957. The first airframe, number 101, was delivered in October of the previous year. The vehicle reached an apogee of 6 inches (150 mm) whereupon contamination destroyed a LOX supply valve causing the engine to lose thrust. The Thor slid backwards through the launch ring and exploded on contact with the thrust deflector. Serious pad damage occurred.

The second Thor flight (102) lasted 35 seconds after an April 1957 launch. It was ended by a range safety officer who destroyed the missile after seeing faulty data on a readout which indicated that the missile was heading inland over Florida.

Thor vehicle 103 (May 1957) exploded on the pad during tanking due to a faulty main fuel valve resulting in tank over-pressurization leading to tank rupture.

Thor vehicle 104 (August 1957) broke up after 92 seconds due to a loss of guidance.

Thor vehicle 105 (20 September 1957), 21 months after the start of construction, flew 1,100 miles (1,800 km) downrange. Estimated range without the extra load of the R and D instrumentation was 1,500 miles (2,400 km).

1957 saw five more flights, including a flight of 1645 miles (2647 km) by a stripped down Thor on 24 October. Phase II testing with the AC Spark Plug inertial guidance system began 7 December with the first successful flight on 19 December 1957.[1]

Deployment[edit]

RAF operational training launch of a PGM-17 Thor IRBM From Vandenberg AFB, 3 August 1959.

Thor was deployed to the UK starting in August 1958, operated by 20 squadrons of RAF Bomber Command under US-UK dual key control.[2] The first active unit was No. 77 Squadron RAF at RAF Feltwell in 1958, with the remaining units becoming active in 1959. All were deactivated by September 1963.

All 60 of the Thor missiles deployed in the UK were based at above-ground launch sites. The missiles were stored horizontally on transporter-erector trailers and covered by a retractable missile shelter. To fire the weapon, the crew used an electric motor to roll back the missile shelter (essentially a long shed mounted on steel rails), then used a powerful hydraulic launcher-erector to lift the missile to an upright position for launch. Once it was standing on the launch mount, the missile was fueled and could be fired. The entire launch sequence (from starting to roll back the missile shelter through to ignition of the rocket engine and lift-off) took approximately 15 minutes. Main engine burn time was almost 2.5 minutes, boosting the missile to a speed of 14,400 ft/s (4,400 m/s). Ten minutes into its flight the missile reached an altitude of 280 miles (450 km), close to the apogee of its elliptical flight path. At that point the reentry vehicle separated from the missile fuselage and began its descent toward the target. Total flight time from launch to target impact was approximately 18 minutes.

The Thor was initially deployed with a very blunt conical G.E. Mk 2 'heat sink' re-entry vehicle. They were later converted to the slender G.E. Mk 3 ablative RV. Both RVs contained a W-49 thermonuclear warhead with an explosive yield of 1.44 megatons.

Noteworthy Thor IRBM flights[edit]

Johnston Island Launch Emplacement One (LE1) after a Thor missile launch failure and explosion contaminated the island with Plutonium during the Operation "Bluegill Prime" nuclear test, July, 1962. The retractable missile shelter (on rails) can be seen at the rear
  • 4 June 1962, failed Starfish flight, Thor destroyed, nuclear device lost.
  • 20 June 1962, failed Bluegill Prime flight, Thor destroyed, nuclear device lost.
  • 9 July 1962, Thor missile 195 launched a Mk4 reentry vehicle containing a W49 thermonuclear warhead to an altitude of 250 miles (400 km). The warhead detonated with a yield of 1.45 Mt of TNT (6.07 PJ). This was the Starfish Prime event of nuclear test operation Dominic-Fishbowl.

Launch vehicle[edit]

The Thor rocket was also used as a space launch vehicle. It was the first in a large family of space launch vehicles—the Delta rockets. Thor's descendants fly to this day as the Delta II and Delta IV.

Operators[edit]

 United States
United States Air Force
705th Strategic Missile Wing (1958-1960)
 United Kingdom
Royal Air Force
  • RAF Bomber Command

see Project Emily Stations and Squadrons

Specifications (PGM-17A)[edit]

  • Family: Thor IRBM, Thor DM-18 (single stage LV); Thor DM-19 (rocket 1st stage), Thor DM-21 (rocket 1st stage), Thor DSV-2D,E,F,G (suborbital LV), Thor DSV-2J (anti-ballistic missile), Thor DSV-2U (orbital launch vehicle).
  • Overall length: 19.82 m (65.0 ft)
  • Span: 2.74 m (9.0 ft)
  • Weight: 49,800 kg (109,800 lb)
  • Empty weight: 3,125 kg (6,889 lb)
  • Thrust (vac): 760 kN
  • Liftoff Thrust (sl): 670 kN (150,000 lbf)
  • Isp: 282 s (2.77 kN·s/kg)
  • Isp(sl): 248 s (2.43 kN·s/kg)
  • Burn time: 165 s
  • Core Diameter: 2.44 m
  • Maximum range: 2,400 km (1,500 mi)
  • Ceiling: 480 km (300 mi)
Warhead
  • One W49 warhead on Mk. 2 reentry vehicle
  • warhead mass: 1,000 kg (2,200 lb)
  • Yield: equivalent to 1,440 kilotons of TNT (6.02 PJ)
  • CEP: 1 km (0.62 mi)
  • Boost Propulsion: Liquid fuelled rocket, LOX and Kerosene.
  • Engines:
    • Rocketdyne LR79-NA-9 (Model S-3D); 666 kN (150000 lbf)
    • Vernier: 2x Rocketdyne LR101-NA; 4.5 kN (1000 lbf) each
    • Propellants: LOX/Kerosene (Thor kerosene propellant was referred to as 'RP1' by RAF users)
    • Thrust (vac): 760 kN
    • Isp: 282 s (2.77 kN·s/kg)
    • Isp (sea level): 248 s (2.43 kN·s/kg)
    • Burn time: 165 s
    • Mass Engine: 643 kg
    • Diameter: 2.44 m
    • Chambers: 1
    • Chamber Pressure: 4.1 MPa
    • Area Ratio: 8.00
    • Thrust to Weight Ratio: 120.32
    • Country: USA
    • First Flight: 1958
    • Last Flight: 1980
    • Flown: 145.
    • Comments: Designed for booster applications. Gas generator, pump-fed
  • Guidance: Inertial
  • Maximum speed: 17,740 km/h (11,020 mph)
  • Development Cost US dollars: $500 million
  • Recurring Price US dollars: $6.25 million
  • Total Number Built: 224
  • Total Development Built: 64
  • Total Production Built: 160
  • Flyaway Unit Cost: US$750,000 in 1958 dollars
  • Launches: 59
  • Failures: 14
  • Success Rate: 76.27%
  • First Launch Date: 25 January 1957
  • Last Launch Date: 5 November 1975

See also[edit]


Related lists

References[edit]

  1. ^ James N. Gibson, Nuclear Weapons of the United States, An Illustrated History, pp. 167-168, Schiffer Publishing Ltd., Atglen, PA, 1996
  2. ^ Sam Marsden (1 August 2013). "Locks on nuclear missiles changed after launch key blunder". Daily Telegraph. Retrieved 6 August 2013. 
  • Boyes, John. Project Emily: The Thor IRBM and the Royal Air Force 1959–1963. Prospero, Journal of the British Rocketry Oral History Programme (BROHP) No 4, Spring 2007.
  • Boyes, John. Project Emily: Thor IRBM and the RAF. Tempus Publishing, 2008. ISBN 978-0-7524-4611-0.
  • Boyes, John. The Thor IRBM: The Cuban Missile Crisis and the subsequent run-down of the Thor Force. pub: Royal Air Force Historical Society. Journal 42, May 2008. ISSN 1361 4231.
  • Forsyth, Kevin S. Delta: The Ultimate Thor. In Roger Launius and Dennis Jenkins (Eds.), To Reach The High Frontier: A History of U.S. Launch Vehicles. Lexington: University Press of Kentucky, 2002. ISBN 0-8131-2245-7.
  • Hartt, Julian. The Mighty Thor: Missile in Readiness. New York: Duell, Sloan, and Pearce, 1961.

For RAF Squadrons list:

  • Jefford, Wing Commander C.G., MBE, BA, RAF(Retd.). RAF Squadrons, a Comprehensive record of the Movement and Equipment of all RAF Squadrons and their Antecedents since 1912. Shrewsbury, Shropshire, UK: Airlife Publishing, 1988 (second edition 2001). ISBN 1-85310-053-6. p. 178.
  • Wynn, Humphrey. RAF Strategic Nuclear Deterrent Forces, their Origins, Roles and Deployment 1946-69. London: HMSO, 1994. ISBN 0-11-772833-0. p. 449.

External links[edit]