Jump to content

Avicenna: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Line 1: Line 1:
{{about||the lunar crater|Avicenna (crater)|the mountain peak|Avicenna Peak}}
<!--Beginning of the [[Template:Infobox Muslim scholars]]-->
{{Infobox Muslim scholars |
<!-- Scroll down to edit this page -->
<!-- Philosopher Category -->
notability = [[Persian scholar]]|
era = [[Islamic golden age]]|
color = #cef2e0 |

<!-- Images -->
image_name = Avicenna Persian Physician.jpg|
image_caption = |
signature = |
<!-- Information -->
name = {{transl|ar|Abū ʿAlī al-Ḥusayn ibn ʿAbd Allāh ibn Sīnā Balkhi (Avicenna)}}|
title= Sharaf al-Mulk, Hujjat al-Haq, Sheikh al-Rayees|
birth = approximately 980 CE / [[370 AH]]|
death = 1037 CE / [[428 AH]]|
Ethnicity = [[Persian peoples|Persian]]<ref name="Britannica"/>
|Region = [[Central Asia]] and [[Persia]]|
Maddhab = [[Twelvers|Twelver]] [[Shi'a Muslim]]<ref>Corbin, (1993) p.170</ref>
|school tradition= [[Avicennism]]<ref>Corbin,(1993) p. 174</ref>|
main_interests = [[Islamic medicine]], [[alchemy and chemistry in Islam]], [[Islamic astronomy]], [[Islamic ethics]], [[early Islamic philosophy]], [[Islamic studies]], [[logic in Islamic philosophy]], [[Islamic geography]], [[Islamic mathematics]], [[Islamic psychological thought]], [[Islamic physics]], [[Arabic poetry]], [[Persian poetry]], [[Islamic science]], [[Kalam]], [[Paleontologist]]|
notable idea= Father of modern [[medicine]] and the concept of [[momentum]], founder of [[Avicennism]] and [[Avicennism#Avicennian logic|Avicennian logic]], forerunner of [[psychoanalysis]], pioneer of [[aromatherapy]] and [[neuropsychiatry]], and important contributor to [[geology]].
|works = ''[[The Canon of Medicine]]'' <br> ''[[The Book of Healing]]''
|influences = [[Hippocrates]], [[Sushruta]], [[Charaka]], [[Aristotle]], [[Galen]], [[Plotinus]], [[Neoplatonism]], [[Indian mathematics]], [[Muhammad]], [[Ja'far al-Sadiq]], [[Wasil ibn Ata]], [[al-Kindi]], [[al-Farabi]], [[al-Razi]], [[al-Biruni]], [[Islamic medicine|Muslim physicians]]|
influenced = [[Abū Rayhān al-Bīrūnī]], [[Omar Khayyám]], [[Algazel]], [[Abubacer]], [[Averroes]], [[Nasīr al-Dīn al-Tūsī]], [[Ibn al-Nafis]], [[Averroism]], [[Scholasticism]], [[Albertus Magnus]], [[Duns Scotus]], [[Thomas Aquinas]], [[Jean Buridan]], [[Giambattista Benedetti]], [[Galileo Galilei]], [[William Harvey]], [[René Descartes]], [[Spinoza]]
}}
<!--End of the template-->
'''{{transl|ar|ALA|Abū ʿAlī al-Ḥusayn ibn ʿAbd Allāh ibn Sīnā}}''' ([[Persian]]/{{lang-ar|ابو علی الحسین ابن عبدالله ابن سینا}}); (born c. 980 near [[Bukhara]],<ref>[http://www.britannica.com/eb/article-9011433 Avicenna], [[Encyclopaedia Britannica]]</ref><ref>{{cite book |last=Von Dehsen |first=Christian D. |authorlink= |coauthors=Scott L. Harris |editor= |others= |title=Philosophers and Religious Leaders|publisher=Greenwood Press |isbn=1-5735-6152-5|pages=p. 19}}</ref> [[Greater Khorasan|Khorasan]], died 1037 in [[Hamedan]]<ref name="almashriq">[http://almashriq.hiof.no/ddc/projects/saab/avicenna/introduction.html] [http://www.amazon.com/dp/906022485X]</ref>), also known as '''Ibn Seena'''<ref name="pharmacorner">{{cite web
|url=http://www.pharmacorner.com/default.asp?action=article&ID=121
|title=Extracts from the history of Islamic pharmacy
|accessdate=2007-11-11
|work=Pharmacy History
|publisher=Pharma Corner}}</ref> and commonly known in English by his Latinized name '''Avicenna''' (Greek ''{{Polytonic| Aβιτζιανός}}''),<ref>{{Citation
|last=Greenhill
|first=William Alexander
|contribution=Abitianus
|editor-last=Smith
|editor-first=William
|title=[[Dictionary of Greek and Roman Biography and Mythology]]
|volume=1
|pages=3
|publisher=
|place=
|year=1867
|contribution-url = http://www.ancientlibrary.com/smith-bio/0012.html }}</ref> was a [[Persian peoples|Persian]]<ref>''"Avicenna"'', in [[Encyclopaedia Britannica]], Concise Online Version, 2006 ([http://www.britannica.com/eb/article-9011433/Avicenna]); D. Gutas, ''"Avicenna"'', in [[Encyclopaedia Iranica]], Online Version 2006, ([http://www.iranica.com/newsite/articles/v3f1/v3f1a046.html LINK]); Avicenna in (Encyclopedia of Islam: © 1999 Koninklijke Brill NV, Leiden, The Netherlands)</ref> [[polymath]] and the foremost [[Islamic medicine|physician]] and [[Early Islamic philosophy|philosopher]] of his time. He was also an [[Islamic astronomy|astronomer]], [[Alchemy and chemistry in Islam|chemist]], [[Islamic geography|geologist]], [[Hafiz (Quran)|Hafiz]], [[Logic in Islamic philosophy|logician]], [[paleontologist]], [[Islamic mathematics|mathematician]], [[Islamic physics|physicist]], [[Islamic poetry|poet]], [[Muslim psychology|psychologist]], [[Islamic science|scientist]], [[Sheikh]], [[Muslim conquests|soldier]], [[statesman]], [[teacher]] and [[Islamic theology|Islamic theologian]].<ref>Charles F. Horne (1917), ed., ''The Sacred Books and Early Literature of the East Vol. VI: Medieval Arabia'', p. 90-91. Parke, Austin, & Lipscomb, New York. ([[cf.]] [http://www.fordham.edu/halsall/source/1020Avicenna-Medicine.html Ibn Sina (Avicenna) (973-1037): On Medicine, c. 1020 CE], Medieval Sourcebook.)
{{quote|"Avicenna (973-1037) was a sort of universal genius, known first as a physician. To his works on medicine he afterward added religious tracts, poems, works on philosophy, on logic, as physics, on mathematics, and on astronomy.}}</ref>

Ibn Sīnā wrote almost 450 treatises on a wide range of subjects, of which around 240 have survived. In particular, 150 of his surviving treatises concentrate on [[Early Islamic philosophy|philosophy]] and 40 of them concentrate on [[Islamic medicine|medicine]].<ref>{{MacTutor Biography|id=Avicenna}}</ref><ref>[http://www.sjsu.edu/depts/Museum/avicen.html Avicenna (Abu Ali Sina)]</ref> His most famous works are ''[[The Book of Healing]]'', a vast philosophical and scientific [[encyclopaedia]], and ''[[The Canon of Medicine]]'',<ref name="Britannica">{{cite encyclopedia|last=Nasr |first=Seyyed Hossein | authorlink=Seyyed Hossein Nasr |title=Avicenna |year=2007| encyclopedia=Encyclopedia Britannica Online |accessdate=2007-11-05|location=|publisher=|http://www.britannica.com/eb/article-9011433/Avicenna}}
</ref> which is a standard medical text at many Islamic and European universities.<ref>[http://hcs.osu.edu/hort/history/023.html Avicenna 980-1037]</ref> The ''Canon of Medicine'' was used as a text-book in the universities of [[University of Montpellier|Montpellier]] and [[Université catholique de Louvain|Louvain]] as late as 1650.<ref>[http://www.indiana.edu/~liblilly/etexts/medicine/#MD02007 Medicine : an exhibition of books relating to medicine and surgery from the collection formed by J.K. Lilly.]</ref> Ibn Sīnā developed a medical system that combined his own personal experience with that of [[Islamic medicine]], the medical system of the [[Greeks|Greek]] physician [[Galen]],<ref>[http://www.nlm.nih.gov/hmd/arabic/galen.html Islamic Medical Manuscripts: Catalogue - Galen]</ref> [[Aristotelianism|Aristotelian]] [[metaphysics]]<ref>[http://faculty.salisbury.edu/~jdhatley/MedArabPhil.htm ARTICLES ON AVICENNA, AVERROES and MAIMONIDES]</ref> (Avicenna was one of the main interpreters of [[Aristotle]])<ref>[http://www.sjsu.edu/depts/Museum/avicen.html Avicenna (Abu Ali Sina)]</ref>, and [[Ancient Iranian Medicine|ancient Persian]], [[Mesopotamia]]n and [[Ayurveda|Indian medicine]]. He was also the founder of [[Avicennism#Avicennian logic|Avicennian logic]] and the philosophical school of [[Avicennism]], which were influential among both Muslim and [[Scholasticism|Scholastic]] thinkers.

Ibn Sīnā is regarded as a father of early modern [[medicine]],<ref>Cas Lek Cesk (1980). "The father of medicine, Avicenna, in our science and culture: Abu Ali ibn Sina (980-1037)", ''Becka J.'' '''119''' (1), p. 17-23.</ref><ref>[https://eee.uci.edu/clients/bjbecker/PlaguesandPeople/lecture5.html Medical Practitioners]</ref> and [[clinical pharmacology]]<ref>D. Craig Brater and Walter J. Daly (2000), "Clinical pharmacology in the Middle Ages: Principles that presage the 21st century", ''Clinical Pharmacology & Therapeutics'' '''67''' (5), p. 447-450 [448-449].</ref> particularly for his introduction of systematic [[experiment]]ation and [[quantification]] into the study of [[physiology]],<ref name=Park>Katharine Park (March 1990). "''Avicenna in Renaissance Italy: The Canon and Medical Teaching in Italian Universities after 1500'' by Nancy G. Siraisi", ''The Journal of Modern History'' '''62''' (1), p. 169-170.
{{quote|"Students of the history of medicine know him for his attempts to introduce systematic experimentation and quantification into the study of physiology".}}</ref> his discovery of the contagious nature of [[infectious disease]]s,<ref name=Zahoor/> the introduction of [[quarantine]] to limit the spread of contagious [[disease]]s, the introduction of [[experimental medicine]], [[evidence-based medicine]], [[clinical trial]]s,<ref name=Tschanz>David W. Tschanz, MSPH, PhD (August 2003). "Arab Roots of European Medicine", ''Heart Views'' '''4''' (2).</ref>
[[randomized controlled trial]]s,<ref name=Eldredge>Jonathan D. Eldredge (2003), "The Randomised Controlled Trial design: unrecognized opportunities for health sciences librarianship", ''Health Information and Libraries Journal'' '''20''', p. 34–44 [36].</ref><ref name=Bloom>Bernard S. Bloom, Aurelia Retbi, Sandrine Dahan, Egon Jonsson (2000), "Evaluation Of Randomized Controlled Trials On Complementary And Alternative Medicine", ''International Journal of Technology Assessment in Health Care'' '''16''' (1), p. 13–21 [19].</ref>
[[efficacy]] tests,<ref name=Brater-449>D. Craig Brater and Walter J. Daly (2000), "Clinical pharmacology in the Middle Ages: Principles that presage the 21st century", ''Clinical Pharmacology & Therapeutics'' '''67''' (5), p. 447-450 [449].</ref><ref name=Daly>Walter J. Daly and D. Craig Brater (2000), "Medieval contributions to the search for truth in clinical medicine", ''Perspectives in Biology and Medicine'' '''43''' (4), p. 530–540 [536], [[Johns Hopkins University Press]].</ref>
[[clinical pharmacology]],<ref name=Brater-448>D. Craig Brater and Walter J. Daly (2000), "Clinical pharmacology in the Middle Ages: Principles that presage the 21st century", ''Clinical Pharmacology & Therapeutics'' '''67''' (5), p. 447-450 [448].</ref> [[neuropsychiatry]],<ref name=Workman/> [[risk factor]] analysis, and the idea of a [[syndrome]],<ref name=Goodman/>
and the importance of [[dietetics]] and the influence of climate and environment on health.<ref name=Unani>[http://www.unani.com/avicenna%20story%203.htm The Canon of Medicine], The American Institute of Unani Medicine, 2003.</ref> He is also considered the father of the fundamental concept of [[momentum]] in [[Islamic physics|physics]],<ref name=Nasr>[[Hossein Nasr|Seyyed Hossein Nasr]], "Islamic Conception Of Intellectual Life", in Philip P. Wiener (ed.), ''Dictionary of the History of Ideas'', Vol. 2, p. 65, Charles Scribner's Sons, New York, 1973-1974.</ref> and regarded as a pioneer of [[aromatherapy]] for his invention of [[steam distillation]] and extraction of [[essential oil]]s.<ref name=Marlene>Marlene Ericksen (2000). ''Healing with Aromatherapy'', p. 9. McGraw-Hill Professional. ISBN 0658003828.</ref> He also developed the concept of [[Uniformitarianism (science)|uniformitarianism]] and [[law of superposition]] in [[Islamic geography|geology]].<ref name=Hassani/>

[[George Sarton]], an author of the [[history of science]], wrote in the ''Introduction to the History of Science'':
{{quote|"One of the most famous exponents of Muslim [[universalism]] and an eminent figure in [[Islamic science|Islamic learning]] was Ibn Sina, known in the West as Avicenna (981-1037). For a thousand years he has retained his original renown as one of the greatest thinkers and [[Islamic medicine|medical scholars]] in history. His most important medical works are the [[The Canon of Medicine|Qanun (Canon)]] and a treatise on [[Heart|Cardiac]] [[drug]]s. The '[[The Canon of Medicine|Qanun fi-l-Tibb]]' is an immense encyclopedia of medicine. It contains some of the most illuminating thoughts pertaining to distinction of [[mediastinitis]] from [[pleurisy]]; [[Infectious disease|contagious nature]] of [[Tuberculosis|phthisis]]; distribution of diseases by water and soil; careful description of skin troubles; of [[sexual disease]]s and [[perversion]]s; of [[Anxiety|nervous ailments]]."<ref name=Zahoor>[[George Sarton]], ''Introduction to the History of Science''.<br>([[cf.]] Dr. A. Zahoor and Dr. Z. Haq (1997). [http://www.cyberistan.org/islamic/Introl1.html Quotations From Famous Historians of Science], Cyberistan.)</ref>}}

==Circumstances==
==Circumstances==
Avicenna created an extensive corpus of works during what is commonly known as Islam's Golden Age (ca 10-11 century CE), in which the translations of Graeco-Roman, Neo- and Mid-Platonic, and Aristotelian texts by the Kindi schools were commented, redacted and developed substantially by Islamic intellectuals, as well as building upon Persian and Indian mathematical systems, astronomy, algebra, trigonometry, and medicine.<ref>{{cite encyclopedia|last= |first= | authorlink= |title=Major periods of Muslim education and learning |year=2007| encyclopedia=Encyclopedia Britannica Online |accessdate=2007-12-16|location=|publisher=|url=http://www.britannica.com/eb/article-47496/education}}</ref>
Avicenna created an extensive corpus of works during what is commonly known as Islam's Golden Age (ca 10-11 century CE), in which the translations of Graeco-Roman, Neo- and Mid-Platonic, and Aristotelian texts by the Kindi schools were commented, redacted and developed substantially by Islamic intellectuals, as well as building upon Persian and Indian mathematical systems, astronomy, algebra, trigonometry, and medicine.<ref>{{cite encyclopedia|last= |first= | authorlink= |title=Major periods of Muslim education and learning |year=2007| encyclopedia=Encyclopedia Britannica Online |accessdate=2007-12-16|location=|publisher=|url=http://www.britannica.com/eb/article-47496/education}}</ref>

Revision as of 15:57, 24 September 2008

Circumstances

Avicenna created an extensive corpus of works during what is commonly known as Islam's Golden Age (ca 10-11 century CE), in which the translations of Graeco-Roman, Neo- and Mid-Platonic, and Aristotelian texts by the Kindi schools were commented, redacted and developed substantially by Islamic intellectuals, as well as building upon Persian and Indian mathematical systems, astronomy, algebra, trigonometry, and medicine.[1] Samanid dynasty in Greater Khorasan and central Asia as well as Buwayhid on in western part of Persia and Iraq could provide a thriving atmosphere for scholarly and cultural development. Under the Samanids, Bukhara rivalled Baghdad as a cultural capital of Islam.[2]

The study of Quran and Hadith throve in such a scholarly atmosphere. Philosophy Fiqh and theology kalam were further developed, most noticeably by Avicenna and his opponents. al-Razi and Al-Farabi had provided methodology and knowledge in medicine and philosophy. Avicenna could use the great libraries of Balkh, Khwarezm, Gorgan, Rey, Isfahan and Hamedan. As various texts, such as the 'Ahd with Bahmanyar show, he debated philosophical points with the greatest scholars of the time. As Aruzi Samarqandi describes in his four articles before Avicenna left Khwarezm he had met al-Biruni (a noted scientist and astronomer), Abu Nasr Iraqi (a renowned mathematician), Abu Sahl Masihi (a respected philosopher) and Abu al-Khayr Khammar (a great physician).

Biography

Early life

He was born in Persia around 980 in Afshana, in Bukhara province, his mother's home, a small city now part of Uzbekistan. His father, a respected Ismaili[3] [4] scholar of Balkh, an important town of the Persian state of Khorasan a part of Afghanistan, was at the time of his son's birth the governor in one of the Samanid Nuh ibn Mansur's estates. He had his son very carefully educated at Bukhara. Ibn Sina himself was a Twelver Shia[5]. Ibn Sina's independent thought was served by an extraordinary intelligence and memory, which allowed him to overtake his teachers at the age of fourteen. As he said in his autobiography there wasn't anything which he hadn't learned when he reached eighteen.

Ibn Sīnā was put under the charge of a tutor, and his precocity soon made him the marvel of his neighbours; he displayed exceptional intellectual behaviour and was a child prodigy who had memorized the Qur'an by the age of 10 and a great deal of Persian poetry as well.[6] He learned Indian arithmetic from an Indian greengrocer, and he began to learn more from a wandering scholar who gained a livelihood by curing the sick and teaching the young. He also studied Fiqh (Islamic jurisprudence) under the Hanafi scholar Ismail al-Zahid.[7][8]

As a teenager, he was greatly troubled by the Metaphysics of Aristotle, which he could not understand until he read al-Farabi's commentary on the work.[9] For the next year and a half, he studied philosophy, in which he encountered greater obstacles. In such moments of baffled inquiry, he would leave his books, perform the requisite ablutions (wudu), then go to the mosque, and continue in prayer (salah) till light broke on his difficulties. Deep into the night he would continue his studies, and even in his dreams problems would pursue him and work out their solution. Forty times, it is said, he read through the Metaphysics of Aristotle, till the words were imprinted on his memory; but their meaning was hopelessly obscure, until one day they found illumination, from the little commentary by Farabi, which he bought at a bookstall for the small sum of three dirhams. So great was his joy at the discovery, thus made by help of a work from which he had expected only mystery, that he hastened to return thanks to God, and bestowed alms upon the poor.

He turned to medicine at 16, and not only learned medical theory, but also by gratuitous attendance of the sick had, according to his own account, discovered new methods of treatment. The teenager achieved full status as a qualified physician at age 18,[6] and found that "Medicine is no hard and thorny science, like mathematics and metaphysics, so I soon made great progress; I became an excellent doctor and began to treat patients, using approved remedies." The youthful physician's fame spread quickly, and he treated many patients without asking for payment.

Adulthood

His first appointment was that of physician to the emir, who owed him his recovery from a dangerous illness (997). Ibn Sina's chief reward for this service was access to the royal library of the Samanids, well-known patrons of scholarship and scholars. When the library was destroyed by fire not long after, the enemies of Ibn Sina accused him of burning it, in order for ever to conceal the sources of his knowledge. Meanwhile, he assisted his father in his financial labours, but still found time to write some of his earliest works.

When Ibn Sina was 22 years old, he lost his father. The Samanid dynasty came to its end in December 1004. Ibn Sina seems to have declined the offers of Mahmud of Ghazni, and proceeded westwards to Urgench in the modern Uzbekistan, where the vizier, regarded as a friend of scholars, gave him a small monthly stipend. The pay was small, however, so Ibn Sina wandered from place to place through the districts of Nishapur and Merv to the borders of Khorasan, seeking an opening for his talents. Shams al-Ma'äli Kavuus, the generous ruler of Dailam and central Persia, himself a poet and a scholar, with whom Ibn Sina had expected to find an asylum, was about that date (1052) starved to death by his troops who had revolted. Ibn Sina himself was at this season stricken down by a severe illness. Finally, at Gorgan, near the Caspian Sea, Ibn Sina met with a friend, who bought a dwelling near his own house in which Ibn Sina lectured on logic and astronomy. Several of Ibn Sina's treatises were written for this patron; and the commencement of his Canon of Medicine also dates from his stay in Hyrcania.

Ibn Sina subsequently settled at Rai, in the vicinity of modern Tehran, (present day capital of Iran), the home town of Rhazes; where Majd Addaula, a son of the last Buwayhid emir, was nominal ruler under the regency of his mother (Seyyedeh Khatun). About thirty of Ibn Sina's shorter works are said to have been composed in Rai. Constant feuds which raged between the regent and her second son, Shams al-Daula, however, compelled the scholar to quit the place. After a brief sojourn at Qazvin he passed southwards to Hamadãn where Shams al-Daula, another Buwayhid emir, had established himself. At first, Ibn Sina entered into the service of a high-born lady; but the emir, hearing of his arrival, called him in as medical attendant, and sent him back with presents to his dwelling. Ibn Sina was even raised to the office of vizier. The emir consented that he should be banished from the country. Ibn Sina, however, remained hidden for forty days in a sheikh Ahmed Fadhel's house, until a fresh attack of illness induced the emir to restore him to his post. Even during this perturbed time, Ibn Sina persevered with his studies and teaching. Every evening, extracts from his great works, the Canon and the Sanatio, were dictated and explained to his pupils. On the death of the emir, Ibn Sina ceased to be vizier and hid himself in the house of an apothecary, where, with intense assiduity, he continued the composition of his works.

Meanwhile, he had written to Abu Ya'far, the prefect of the dynamic city of Isfahan, offering his services. The new emir of Hamadan, hearing of this correspondence and discovering where Ibn Sina was hidden, incarcerated him in a fortress. War meanwhile continued between the rulers of Isfahan and Hamadãn; in 1024 the former captured Hamadan and its towns, expelling the Tajik mercenaries. When the storm had passed, Ibn Sina returned with the emir to Hamadan, and carried on his literary labours. Later, however, accompanied by his brother, a favourite pupil, and two slaves, Ibn Sina escaped out of the city in the dress of a Sufi ascetic. After a perilous journey, they reached Isfahan, receiving an honourable welcome from the prince.

Later life and Death

File:Hamadan1.jpg
Avicenna's tomb in Hamedan, Iran
Avicenna's tomb from the inside

The remaining ten or twelve years of Ibn Sīnā's life were spent in the service of Abu Ja'far 'Ala Addaula, whom he accompanied as physician and general literary and scientific adviser, even in his numerous campaigns.

During these years he began to study literary matters and philology, instigated, it is asserted, by criticisms on his style. He contrasts with the nobler and more intellectual character of Averroes. A severe colic, which seized him on the march of the army against Hamadan, was checked by remedies so violent that Ibn Sina could scarcely stand. On a similar occasion the disease returned; with difficulty he reached Hamadan, where, finding the disease gaining ground, he refused to keep up the regimen imposed, and resigned himself to his fate.

His friends advised him to slow down and take life moderately. He refused, however, stating that: "I prefer a short life with width to a narrow one with length". On his deathbed remorse seized him; he bestowed his goods on the poor, restored unjust gains, freed his slaves, and every third day till his death listened to the reading of the Qur'an. He died in June 1037, in his fifty-eighth year, and was buried in Hamedan, Iran.

Avicennian science

Medicine and pharmacology

Though the threads which comprise Unani healing can be traced all the way back to Claudius Galenus of Pergamum, who lived in the second century of the Christian Era, the basic knowledge of Unani medicine as a healing system was developed by Hakim Ibn Sina in his medical encyclopedia The Canon of Medicine. The time of origin is thus dated at circa 1025 AD, when Avicenna wrote The Canon of Medicine in Persia. While he was primarily influenced by Greek and Islamic medicine, he was also influenced by the Indian medical teachings of Sushruta and Charaka.[10]

The Canon of Medicine

A Latin copy of the Canon of Medicine, dated 1484, located at the P.I. Nixon Medical Historical Library of The University of Texas Health Science Center at San Antonio.

About 100 treatises were ascribed to Ibn Sina. Some of them are tracts of a few pages, others are works extending through several volumes. The best-known amongst them, and that to which Ibn Sina owed his European reputation, is his 14-volume The Canon of Medicine, which was a standard medical text in Europe and the Islamic world up until the 18th century.[11] The book is known for its introduction of systematic experimentation and quantification into the study of physiology,[12] the discovery of contagious diseases and sexually transmitted diseases,[13] the introduction of quarantine to limit the spread of infectious diseases, the introduction of experimental medicine, clinical trials,[14] neuropsychiatry,[15] risk factor analysis, and the idea of a syndrome in the diagnosis of specific diseases,[16] and hypothesized the existence of microrganisms.[17] It classifies and describes diseases, and outlines their assumed causes. Hygiene, simple and complex medicines, and functions of parts of the body are also covered. In this, Ibn Sīnā is credited as being the first to correctly document the anatomy of the human eye, along with descriptions of eye afflictions such as cataracts. It asserts that tuberculosis was contagious, which was later disputed by Europeans, but turned out to be true. It also describes the symptoms and complications of diabetes. Both forms of facial paralysis were described in-depth. In addition, the workings of the heart as a valve are described. [citation needed]

The Canon of Medicine was the first book dealing with experimental medicine, evidence-based medicine, randomized controlled trials,[18][19] and efficacy tests,[20][21] and it laid out the following rules and principles for testing the effectiveness of new drugs and medications, which still form the basis of clinical pharmacology[22] and modern clinical trials:[14]

  1. "The drug must be free from any extraneous accidental quality."
  2. "It must be used on a simple, not a composite, disease."
  3. "The drug must be tested with two contrary types of diseases, because sometimes a drug cures one disease by Its essential qualities and another by its accidental ones."
  4. "The quality of the drug must correspond to the strength of the disease. For example, there are some drugs whose heat is less than the coldness of certain diseases, so that they would have no effect on them."
  5. "The time of action must be observed, so that essence and accident are not confused."
  6. "The effect of the drug must be seen to occur constantly or in many cases, for if this did not happen, it was an accidental effect."
  7. "The experimentation must be done with the human body, for testing a drug on a lion or a horse might not prove anything about its effect on man."
A copy of the Canon of Medicine, dated 1593

An Arabic edition of the Canon appeared at Rome in 1593, and a Hebrew version at Naples in 1491. Of the Latin version there were about thirty editions, founded on the original translation by Gerard de Sabloneta. In the 15th century a commentary on the text of the Canon was composed. Other medical works translated into Latin are the Medicamenta Cordialia, Canticum de Medicina, and the Tractatus de Syrupo Acetoso.

It was mainly accident which determined that from the 12th to the 18th century, Ibn Sīnā should be the guide of medical study in European universities, and eclipse the names of Rhazes, Ali ibn al-Abbas and Averroes. His work is not essentially different from that of his predecessor Rhazes, because he presented the doctrine of Galen, and through Galen the doctrine of Hippocrates, modified by the system of Aristotle, as well as the Indian doctrines of Sushruta and Charaka.[23] But the Canon of Ibn Sīnā is distinguished from the Al-Hawi (Continens) or Summary of Rhazes by its greater method, due perhaps to the logical studies of the former.

The work has been variously appreciated in subsequent ages, some regarding it as a treasury of wisdom, and others, like Averroes, holding it useful only as waste paper. In modern times it has been mainly of historic interest as most of its tenets have been disproved or expanded upon by scientific medicine. The vice of the book is excessive classification of bodily faculties, and over-subtlety in the discrimination of diseases. It includes five books; of which the first and second discuss physiology, pathology and hygiene, the third and fourth deal with the methods of treating disease, and the fifth describes the composition and preparation of remedies. This last part contains some personal observations.

He is ample in the enumeration of symptoms, and is said to be inferior in practical medicine and surgery. He introduced into medical theory the four causes of the Peripatetic system. Of natural history and botany he pretended to no special knowledge. Up to the year 1650, or thereabouts, the Canon was still used as a textbook in the universities of Leuven and Montpellier.

In the museum at Bukhara, there are displays showing many of his writings, surgical instruments from the period and paintings of patients undergoing treatment. Ibn Sīnā was interested in the effect of the mind on the body, and wrote a great deal on psychology, likely influencing Ibn Tufayl and Ibn Bajjah. He also introduced medical herbs.

Avicenna extended the theory of temperaments in The Canon of Medicine to encompass "emotional aspects, mental capacity, moral attitudes, self-awareness, movements and dreams." He summarized his version of the four humours and temperaments in a table as follows:[24]

Avicenna's four humours and temperaments
Evidence Hot Cold Moist Dry
Morbid states inflammations become febrile fevers related to serious humour, rheumatism lassitude loss of vigour
Functional power deficient energy deficient digestive power difficult digestion
Subjective sensations bitter taste, excessive thirst, burning at cardia Lack of desire for fluids mucoid salivation, sleepiness insomnia, wakefulness
Physical signs high pulse rate, lassitude flaccid joints diarrhea, swollen eyelids, rough skin, acquired habit rough skin, acquired habit
Foods & medicines calefacients harmful, infrigidants beneficial infrigidants harmful, calefacients beneficial moist articles harmful dry regimen harmful, humectants beneficial
Relation to weather worse in summer worse in winter bad in autumn

Avicennian psychology

In Muslim psychology and the neurosciences, Avicenna was a pioneer of neuropsychiatry. He first described numerous neuropsychiatric conditions, including hallucination, insomnia, mania, nightmare, melancholia, dementia, epilepsy, paralysis, stroke, vertigo and tremor.[15]

Avicenna was also a pioneer in psychophysiology and psychosomatic medicine. He recognized 'physiological psychology' in the treatment of illnesses involving emotions, and developed a system for associating changes in the pulse rate with inner feelings, which is seen as an anticipation of the word association test attributed to Carl Jung. Avicenna is reported to have treated a very ill patient by "feeling the patient's pulse and reciting aloud to him the names of provinces, districts, towns, streets, and people." He noticed how the patient's pulse increased when certain names were mentioned, from which Avicenna deduced that the patient was in love with a girl whose home Avicenna was "able to locate by the digital examination." Avicenna advised the patient to marry the girl he is in love with, and the patient soon recovered from his illness after his marriage.[25]

Avicenna's legacy in classical psychology is primarily embodied in the Kitab al-nafs parts of his Kitab al-shifa' (The Book of Healing) and Kitab al-najat (The Book of Deliverance). These were known in Latin under the title De Anima (treatises "on the soul"). The main thesis of these tracts is represented in his so-called "flying man" argument, which resonates with what was centuries later entailed by Descartes's cogito argument (or what phenomenology designates as a form of an "epoche").[26][27]

In the The Canon of Medicine, Avicenna dealt with neuropsychiatry and described a number of neuropsychiatric conditions, including melancholia.[28] He described melancholia as a depressive type of mood disorder in which the person may become suspicious and develop certain types of phobias.[29]

Astronomy and astrology

In 1070, Abu Ubayd al-Juzjani, a pupil of Ibn Sīnā, claimed that his teacher Ibn Sīnā had solved the equant problem in Ptolemy's planetary model.[30]

The study of astrology was refuted by Avicenna. His reasons were both due to the methods used by astrologers being conjectural rather than empirical and also due to the views of astrologers conflicting with orthodox Islam. He also cited passages from the Qur'an in order to justify his refutation of astrology on both scientific and religious grounds.[31]

Chemistry

In chemistry, steam distillation was described by Ibn Sīnā. The technique was used to produce alcohol and essential oils. The latter was fundamental to aromatherapy.[32]

As a chemist, Avicenna was one of the first to write refutations on alchemy, after al-Kindi. Four of his works on the refutation of alchemy were translated into Latin as:[33]

  • Liber Aboali Abincine de Anima in arte Alchemiae
  • Declaratio Lapis physici Avicennae filio sui Aboali
  • Avicennae de congelatione et conglutinatione lapifum
  • Avicennae ad Hasan Regem epistola de Re recta

In one of these works, Ibn Sīnā discredited the theory of the transmutation of substances commonly believed by alchemists:

"Those of the chemical craft know well that no change can be effected in the different species of substances, though they can produce the appearance of such change."[34]

Among his works refuting alchemy, Liber Aboali Abincine de Anima in arte Alchemiae was the most influential, having influenced later medieval chemists and alchemists such as Vincent of Beauvais.[33]

In another work, translated into Latin as De congelatione et conglutinatione lapidum, Ibn Sina proposed a four-part classification of inorganic bodies, which was a significant improvement over the two-part classification of Aristotle (into orycta and metals) and three-part classification of Galen (into terrae, lapides and metals). The four parts of Ibn Sina's classification were: lapides, sulfur, salts and metals.[35]

Earth sciences

Ibn Sīnā wrote on Earth sciences such as geology in The Book of Healing, in which he developed the concept of uniformitarianism and law of superposition in geology.[36][37] While discussing the formation of mountains, he explained:

"Either they are the effects of upheavals of the crust of the earth, such as might occur during a violent earthquake, or they are the effect of water, which, cutting itself a new route, has denuded the valleys, the strata being of different kinds, some soft, some hard... It would require a long period of time for all such changes to be accomplished, during which the mountains themselves might be somewhat diminished in size."[37]

Physics

In physics, Ibn Sīnā was the first to employ an air thermometer to measure air temperature in his scientific experiments.[38]

In mechanics, Ibn Sīnā developed an elaborate theory of motion, in which he made a distinction between the inclination (tendency to motion) and force of a projectile, and concluded that motion was a result of an inclination (mayl) transferred to the projectile by the thrower, and that projectile motion in a vacuum would not cease.[39] He viewed inclination as a permanent force whose effect is dissipated by external forces such as air resistance.[40] His theory of motion was thus consistent with the concept of inertia in Newton's first law of motion.[39] Ibn Sīnā also referred to mayl to as being proportional to weight times velocity, a precursor to the concept of momentum in Newton's second law of motion.[41] Ibn Sīnā's theory of mayl was further developed by Jean Buridan in his theory of impetus.

In optics, Ibn Sina reasoned that the speed of light is finite, as he "observed that if the perception of light is due to the emission of some sort of particles by a luminous source, the speed of light must be finite."[42] He also provided a sophisticated explanation for the rainbow phenomenon. Carl Benjamin Boyer described Ibn Sīnā's theory on the rainbow as follows:

"Independent observation had demonstrated to him that the bow is not formed in the dark cloud but rather in the very thin mist lying between the cloud and the sun or observer. The cloud, he thought, serves simply as the background of this thin substance, much as a quicksilver lining is placed upon the rear surface of the glass in a mirror. Ibn Sīnā would change the place not only of the bow, but also of the color formation, holding the iridescence to be merely a subjective sensation in the eye."[43]

Avicennian philosophy

Ibn Sīnā wrote extensively on early Islamic philosophy, especially the subjects logic, ethics, and metaphysics, including treatises named Logic and Metaphysics. Most of his works were written in Arabic - which was the de facto scientific language of that time, and some were written in the Persian language. Of linguistic significance even to this day are a few books that he wrote in nearly pure Persian language (particularly the Danishnamah-yi 'Ala', Philosophy for Ala' ad-Dawla'). Ibn Sīnā's commentaries on Aristotle often corrected the philosopher, encouraging a lively debate in the spirit of ijtihad.

In the medieval Islamic world, due to Avicenna's successful reconciliation between Aristotelianism and Neoplatonism along with Kalam, Avicennism eventually became the leading school of Islamic philosophy by the 12th century, with Avicenna becoming a central authority on philosophy.[44]

Avicennism was also influential in medieval Europe, particular his doctrines on the nature of the soul and his existence-essence distinction, along with the debates and censure that they raised in scholastic Europe. This was particularly the case in Paris, where Avicennism was later proscribed in 1210. Nevertheless, his psychology and theory of knowledge influenced William of Auvergne and Albertus Magnus, while his metaphysics had an impact on the thought of Thomas Aquinas.[45]

Metaphysical doctrine

Early Islamic philosophy, imbued as it is with Islamic theology, distinguishes more clearly than Aristotelianism the difference between essence and existence. Whereas existence is the domain of the contingent and the accidental, essence endures within a being beyond the accidental. The philosophy of Ibn Sīnā, particularly that part relating to metaphysics, owes much to al-Farabi. The search for a truly definitive Islamic philosophy can be seen in what is left to us of his work.

Following al-Farabi's lead, Avicenna initiated a full-fledged inquiry into the question of being, in which he distinguished between essence (Mahiat) and existence (Wujud). He argued that the fact of existence can not be inferred from or accounted for by the essence of existing things and that form and matter by themselves cannot interact and originate the movement of the universe or the progressive actualization of existing things. Existence must, therefore, be due to an agent-cause that necessitates, imparts, gives, or adds existence to an essence. To do so, the cause must be an existing thing and coexist with its effect. [46]

Avicenna’s consideration of the essence-attributes question may be elucidated in terms of his ontological analysis of the modalities of being; namely impossibility, contingency, and necessity. Avicenna argued that the impossible being is that which cannot exist, while the contingent in itself (mumkin bi-dhatihi) has the potentiality to be or not to be without entailing a contradiction. When actualized, the contingent becomes a ‘necessary existent due to what is other than itself’ (wajib al-wujud bi-ghayrihi). Thus, contingency-in-itself is potential beingness that could eventually be actualized by an external cause other than itself. The metaphysical structures of necessity and contingency are different. Necessary being due to itself (wajib al-wujud bi-dhatihi) is true in itself, while the contingent being is ‘false in itself’ and ‘true due to something else other than itself’. The necessary is the source of its own being without borrowed existence. It is what always exists. [47][48] The Necessary exists ‘due-to-Its-Self’, and has no quiddity/essence (mahiyya) other than existence (wujud). Furthermore, It is ‘One’ (wahid ahad) [49] since there cannot be more than one ‘Necessary-Existent-due-to-Itself’ without differentia (fasl) to distinguish them from each other. Yet, to require differentia entails that they exist ‘due-to-themselves’ as well as ‘due to what is other than themselves’; and this is contradictory. However, if no differentia distinguishes them from each other, then there is no sense in which these ‘Existents’ are not one and the same. [50] Avicenna adds that the ‘Necessary-Existent-due-to-Itself’ has no genus (jins), nor a definition (hadd), nor a counterpart (nadd), nor an opposite (did), and is detached (bari’) from matter (madda), quality (kayf), quantity (kam), place (ayn), situation (wad’), and time (waqt). [51][52][53]

Avicennian logic

Avicenna discussed the topic of logic in Islamic philosophy extensively in his works, and developed his own system of logic known as "Avicennian logic" as an alternative to Aristotelian logic. By the 12th century, Avicennian logic had replaced Aristotelian logic as the dominant system of logic in the Islamic world.[54] After the Latin translations of the 12th century, Avicennian logic was also influential in Europe.

Ibn Sina developed an early theory on hypothetical syllogism, which formed the basis of his early risk factor analysis.[16] He also developed an early theory on propositional calculus, which was an area of logic not covered in the Aristotelian tradition.[55] The first criticisms of Aristotelian logic were also written by Ibn Sina, who developed an original theory on temporal modal syllogism.[56] Ibn Sina also contributed inventively to the development of inductive logic, being the first to describe the methods of agreement, difference and concomitant variation which are critical to inductive logic and the scientific method.[16]

Natural philosophy

Ibn Sina and Abū Rayhān al-Bīrūnī engaged in a written debate, with al-Biruni mostly criticizing Aristotelian natural philosophy and the Peripatetic school, while Avicenna and his student Ahmad ibn 'Ali al-Ma'sumi respond to al-Biruni's criticisms in writing. Al-Biruni began by asking Avicenna eighteen questions, ten of which were criticisms of Aristotle's On the Heavens.[57]

Philosophy of science

In the Al-Burhan (On Demonstration) section of The Book of Healing, Avicenna discussed the philosophy of science and described an early scientific method of inquiry. He discusses Aristotle's Posterior Analytics and significantly diverged from it on several points. Avicenna discussed the issue of a proper methodology for scientific inquiry and the question of "How does one acquire the first principles of a science?" He asked how a scientist would arrive at "the initial axioms or hypotheses of a deductive science without inferring them from some more basic premises?" He explains that the ideal situation is when one grasps that a "relation holds between the terms, which would allow for absolute, universal certainty." Avicenna then adds two further methods for arriving at the first principles: the ancient Aristotelian method of induction (istiqra), and the method of examination and experimentation (tajriba). Avicenna criticized Aristotelian induction, arguing that "it does not lead to the absolute, universal, and certain premises that it purports to provide." In its place, he develops a "method of experimentation as a means for scientific inquiry."[58]

Theology

Ibn Sīnā was a devout Muslim and sought to reconcile rational philosophy with Islamic theology. His aim was to prove the existence of God and his creation of the world scientifically and through reason and logic.[59] Avicenna wrote a number of treatises dealing with Islamic theology. These included treatises on the Islamic prophets, whom he viewed as "inspired philosophers", and on various scientific and philosophical interpretations of the Qur'an, such as how Quranic cosmology corresponds to his own philosophical system.[60]

Ibn Sīnā memorized the Qur'an by the age of seven, and as an adult, he wrote five treatises commenting on suras from the Qur'an. One of these texts included the Proof of Prophecies, in which he comments on several Quranic verses and holds the Qur'an in high esteem. Avicenna argued that the Islamic prophets should be considered higher than philosophers.[61]

Thought experiments

While he was imprisoned in the castle of Fardajan near Hamadhan, Avicenna wrote his famous "Floating Man" thought experiment to demonstrate human self-awareness and the substantiality of the soul. He referred to the living human intelligence, particularly the active intellect, which he believed to be the hypostasis by which God communicates truth to the human mind and imparts order and intelligibility to nature. His "Floating Man" thought experiment tells its readers to imagine themselves suspended in the air, isolated from all sensations, which includes no sensory contact with even their own bodies. He argues that, in this scenario, one would still have self-consciousness. He thus concludes that the idea of the self is not logically dependent on any physical thing, and that the soul should not be seen in relative terms, but as a primary given, a substance.[62][63][64]

Other contributions

Engineering

In the chapters on mechanics and engineering in his encyclopedia Mi'yar al-'aql (The Measure of the Mind), Avicenna writes an analysis on the ilm al-hiyal (science of ingenious devices) and makes the first successful attempt to classify simple machines and their combinations. He first describes and illustrates the five constituent simple machines: the lever, pulley, screw, wedge, and windlass. He then analyzes all the combinations of these simple machines, such as the windlass-screw, windlass-pulley and windlass-lever for example. He is also the first to describe a mechanism which is essentially a combination of all of these simple machines (except for the wedge).[65]

Poetry

Almost half of Ibn Sīnā's works are versified.[66] His poems appear in both Arabic and Persian. As an example, Edward Granville Browne claims that the following verses are incorrectly attributed to Omar Khayyám, and were originally written by Ibn Sīnā:[67]

Up from Earth's Centre through the Seventh Gate

I rose, and on the Throne of Saturn sate,

And many Knots unravel'd by the Road;

But not the Master-Knot of Human Fate.

When some of his opponents blame him for blasphemy, he says Cite error: A <ref> tag is missing the closing </ref> (see the help page).

In March 2008, it was announced [68] that Avicenna’s name would be used for new Directories of education institutions for health care professionals, worldwide. The Avicenna Directories will list universities and schools where doctors, public health practitioners, pharmacists and others, are educated. The project team stated “Why Avicenna? Avicenna … was … noted for his synthesis of knowledge from both east and west. He has had a lasting influence on the development of medicine and health sciences. The use of Avicenna’s name symbolises the worldwide partnership that is needed for the promotion of health services of high quality.”

Works

Avicenna celebrated on a stamp printed in Dubai.

Scarcely any member of the Muslim circle of the sciences, including theology, philology, mathematics, astronomy, physics, and music, was left untouched by the treatises of Ibn Sīnā. This vast quantity of works - be they full-blown treatises or opuscula - vary so much in style and content (if one were to compare between the 'ahd made with his disciple Bahmanyar to uphold philosophical integrity with the Provenance and Direction, for example) that Yahya (formerly Jean) Michot has accused him of "neurological bipolarity".

Ibn Sīnā's works numbered almost 450 volumes on a wide range of subjects, of which around 240 have survived. In particular, 150 volumes of his surviving works concentrate on philosophy and 40 of them concentrate on medicine.[69] His most famous works are The Book of Healing, a vast philosophical and scientific encyclopaedia, and The Canon of Medicine,[6]

Ibn Sīnā wrote at least one treatise on alchemy, but several others have been falsely attributed to him. His book on animals was translated by Michael Scot. His Logic, Metaphysics, Physics, and De Caelo, are treatises giving a synoptic view of Aristotelian doctrine, though the Metaphysics demonstrates a significant departure from the brand of Neoplatonism known as Aristotelianism in Ibn Sīnā's world; Arabic philosophers have hinted at the idea that Ibn Sīnā was attempting to "re-Aristotelianise" Muslim philosophy in its entirety, unlike his predecessors, who accepted the conflation of Platonic, Aristotelian, Neo- and Middle-Platonic works transmitted into the Muslim world.

The Logic and Metaphysics have been printed more than once, the latter, e.g., at Venice in 1493, 1495, and 1546. Some of his shorter essays on medicine, logic, etc., take a poetical form (the poem on logic was published by Schmoelders in 1836). Two encyclopaedic treatises, dealing with philosophy, are often mentioned. The larger, Al-Shifa' (Sanatio), exists nearly complete in manuscript in the Bodleian Library and elsewhere; part of it on the De Anima appeared at Pavia (1490) as the Liber Sextus Naturalium, and the long account of Ibn Sina's philosophy given by Muhammad al-Shahrastani seems to be mainly an analysis, and in many places a reproduction, of the Al-Shifa'. A shorter form of the work is known as the An-najat (Liberatio). The Latin editions of part of these works have been modified by the corrections which the monastic editors confess that they applied. There is also a حكمت مشرقيه (hikmat-al-mashriqqiyya, in Latin Philosophia Orientalis), mentioned by Roger Bacon, the majority of which is lost in antiquity, which according to Averroes was pantheistic in tone.

  1. ^ "Major periods of Muslim education and learning". Encyclopedia Britannica Online. 2007. Retrieved 2007-12-16.
  2. ^ Afary, Janet (2007). "Iran". Encyclopedia Britannica Online. Retrieved 2007-12-16.
  3. ^ Corbin, (1993) p. 170
  4. ^ Avicenna (Ibn Sina): Muslim Physician And Philosopher of the Eleventh Century, p. 38, Rosen Publishing, ISBN 1404205098.
  5. ^ Corbin, (1993) p.170
  6. ^ a b c ""The Canon of Medicine" (work by Avicenna)". Encyclopædia Britannica. 2008. Retrieved 2008-06-11. {{cite web}}: Italic or bold markup not allowed in: |publisher= (help)
  7. ^ Khan, Aisha (2006), Avicenna (Ibn Sina): Muslim Physician And Philosopher of the Eleventh Century, p. 38, Rosen Publishing, ISBN 1404205098.
  8. ^ Jorge J. E. Gracia and Timothy B. Noone (2003), A Companion to Philosophy in the Middle Ages, p. 196, Blackwell Publishing, ISBN 0631216731.
  9. ^ Corbin, (1993) p. 168
  10. ^ Hakeem Abdul Hameed, Exchanges between India and Central Asia in the field of Medicine
  11. ^ Ziauddin Sardar, Science in Islamic philosophy
  12. ^ Cite error: The named reference Park was invoked but never defined (see the help page).
  13. ^ Cite error: The named reference Zahoor was invoked but never defined (see the help page).
  14. ^ a b Cite error: The named reference Tschanz was invoked but never defined (see the help page).
  15. ^ a b S Safavi-Abbasi, LBC Brasiliense, RK Workman (2007), "The fate of medical knowledge and the neurosciences during the time of Genghis Khan and the Mongolian Empire", Neurosurg Focus 23 (1), E13, p. 3.
  16. ^ a b c Lenn Evan Goodman (2003), Islamic Humanism, p. 155, Oxford University Press, ISBN 0195135806.
  17. ^ Cite error: The named reference Unani was invoked but never defined (see the help page).
  18. ^ Cite error: The named reference Eldredge was invoked but never defined (see the help page).
  19. ^ Cite error: The named reference Bloom was invoked but never defined (see the help page).
  20. ^ Cite error: The named reference Brater-449 was invoked but never defined (see the help page).
  21. ^ Cite error: The named reference Daly was invoked but never defined (see the help page).
  22. ^ Cite error: The named reference Brater-448 was invoked but never defined (see the help page).
  23. ^ Hakeem Abdul Hameed, Exchanges between India and Central Asia in the field of Medicine
  24. ^ Lutz, Peter L. (2002), The Rise of Experimental Biology: An Illustrated History, Humana Press, p. 60, ISBN 0896038351
  25. ^ Ibrahim B. Syed PhD, "Islamic Medicine: 1000 years ahead of its times", Journal of the Islamic Medical Association, 2002 (2), p. 2-9 [7].
  26. ^ Nader El-Bizri, The Phenomenological Quest between Avicenna and Heidegger (Binghamton, N.Y.: Global Publications SUNY, 2000), pp. 149-171.
  27. ^ Nader El-Bizri, "Avicenna’s De Anima between Aristotle and Husserl," in The Passions of the Soul in the Metamorphosis of Becoming, ed. Anna-Teresa Tymieniecka (Dordrecht: Kluwer Academic Publishers, 2003), pp. 67-89.
  28. ^ S Safavi-Abbasi, LBC Brasiliense, RK Workman (2007), "The fate of medical knowledge and the neurosciences during the time of Genghis Khan and the Mongolian Empire", Neurosurgical Focus 23 (1), E13, p. 3.
  29. ^ Amber Haque (2004), "Psychology from Islamic Perspective: Contributions of Early Muslim Scholars and Challenges to Contemporary Muslim Psychologists", Journal of Religion and Health 43 (4): 357-377 [366].
  30. ^ A. I. Sabra (1998). "Configuring the Universe: Aporetic, Problem Solving, and Kinematic Modeling as Themes of Arabic Astronomy", Perspectives on Science 6 (3), p. 288-330 [305-306].
  31. ^ George Saliba (1994), A History of Arabic Astronomy: Planetary Theories During the Golden Age of Islam, p. 60, 67-69. New York University Press, ISBN 0814780237.
  32. ^ Cite error: The named reference Marlene was invoked but never defined (see the help page).
  33. ^ a b Georges C. Anawati (1996), "Arabic alchemy", in Roshdi Rashed, ed., Encyclopedia of the History of Arabic Science, Vol. 3, p. 853-885 [875]. Routledge, London and New York.
  34. ^ Robert Briffault (1938). The Making of Humanity, p. 196-197.
  35. ^ Vai, Gian Battista; Caldwell, W. G. E. (2006), The origins of geology in Italy: [in memory of Nicoletta Morello, 1946-2006], Geological Society of America, p. 26, ISBN 0813724112
  36. ^ Munim M. Al-Rawi and Salim Al-Hassani (November 2002). "The Contribution of Ibn Sina (Avicenna) to the development of Earth sciences" (pdf). FSTC. Retrieved 2008-07-01.
  37. ^ a b Stephen Toulmin and June Goodfield (1965), The Ancestry of Science: The Discovery of Time, p. 64, University of Chicago Press (cf. The Contribution of Ibn Sina to the development of Earth sciences)
  38. ^ Robert Briffault (1938). The Making of Humanity, p. 191.
  39. ^ a b Fernando Espinoza (2005). "An analysis of the historical development of ideas about motion and its implications for teaching", Physics Education 40 (2), p. 141.
  40. ^ A. Sayili (1987), "Ibn Sīnā and Buridan on the Motion of the Projectile", Annals of the New York Academy of Sciences 500 (1), p. 477 – 482:

    "It was a permanent force whose effect got dissipated only as a result of external agents such as air resistance. He is apparently the first to conceive such a permanent type of impressed virtue for non-natural motion."

  41. ^ A. Sayili (1987), "Ibn Sīnā and Buridan on the Motion of the Projectile", Annals of the New York Academy of Sciences 500 (1), p. 477 – 482:

    "Thus he considered impetus as proportional to weight times velocity. In other words, his conception of impetus comes very close to the concept of momentum of Newtonian mechanics."

  42. ^ George Sarton, Introduction to the History of Science, Vol. 1, p. 710.
  43. ^ Carl Benjamin Boyer (1954). "Robert Grosseteste on the Rainbow", Osiris 11, p. 247-258 [248].
  44. ^ Nahyan A. G. Fancy (2006), p. 80-81, "Pulmonary Transit and Bodily Resurrection: The Interaction of Medicine, Philosophy and Religion in the Works of Ibn al-Nafīs (d. 1288)", Electronic Theses and Dissertations, University of Notre Dame.[1]
  45. ^ The Internet Encyclopedia of Philosophy, Avicenna/Ibn Sina (CA. 980-1037)
  46. ^ "Islam". Encyclopedia Britannica Online. 2007. Retrieved 2007-11-27.
  47. ^ Avicenna, Kitab al-shifa’, Metaphysics II, (eds.) G. C. Anawati, Ibrahim Madkour, Sa’id Zayed (Cairo, 1975), p. 36
  48. ^ Nader El-Bizri, "Avicenna and Essentialism," Review of Metaphysics, Vol. 54 (2001), pp. 753-778
  49. ^ Avicenna, Metaphysica of Avicenna, trans. Parviz Morewedge (New York, 1973), p. 43.
  50. ^ Nader El-Bizri, The Phenomenological Quest between Avicenna and Heidegger (Binghamton, N.Y.: Global Publications SUNY, 2000)
  51. ^ Avicenna, Kitab al-Hidaya, ed. Muhammad ‘Abdu (Cairo, 1874), pp. 262-3
  52. ^ Salem Mashran, al-Janib al-ilahi ‘ind Ibn Sina (Damascus, 1992), p. 99
  53. ^ Nader El-Bizri, "Being and Necessity: A Phenomenological Investigation of Avicenna’s Metaphysics and Cosmology," in Islamic Philosophy and Occidental Phenomenology on the Perennial Issue of Microcosm and Macrocosm, ed. Anna-Teresa Tymieniecka (Dordrecht: Kluwer Academic Publishers, 2006), pp. 243-261
  54. ^ I. M. Bochenski (1961), "On the history of the history of logic", A history of formal logic, p. 4-10. Translated by I. Thomas, Notre Dame, Indiana University Press. (cf. Ancient Islamic (Arabic and Persian) Logic and Ontology)
  55. ^ Lenn Evan Goodman (1992), Avicenna, p. 188, Routledge, ISBN 041501929X.
  56. ^ History of logic: Arabic logic, Encyclopædia Britannica.
  57. ^ Rafik Berjak and Muzaffar Iqbal, "Ibn Sina--Al-Biruni correspondence", Islam & Science, June 2003.
  58. ^ McGinnis, Jon (July 2003), "Scientific Methodologies in Medieval Islam", Journal of the History of Philosophy, 41 (3): 307–327
  59. ^ Lenn Evan Goodman (2003), Islamic Humanism, p. 8-9, Oxford University Press, ISBN 0195135806.
  60. ^ James W. Morris (1992), "The Philosopher-Prophet in Avicenna's Political Philosophy", in C. Butterworth (ed.), The Political Aspects of Islamic PhIlosophy, Chapter 4, Cambridge Harvard University Press, p. 142-188 [159-161].
  61. ^ Jules Janssens (2004), "Avicenna and the Qur'an: A Survey of his Qur'anic commentaries", MIDEO 25, p. 177-192.
  62. ^ Nasr (1996), pp. 315, 1022 and 1023
  63. ^ Nader El-Bizri, The Phenomenological Quest between Avicenna and Heidegger (Binghamton, N.Y.: Global Publications SUNY, 2000), pp. 149-171.
  64. ^ Nader El-Bizri, "Avicenna’s De Anima between Aristotle and Husserl," in The Passions of the Soul in the Metamorphosis of Becoming, ed. Anna-Teresa Tymieniecka (Dordrecht: Kluwer Academic Publishers, 2003), pp. 67-89.
  65. ^ Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", in Roshdi Rashed, ed., Encyclopedia of the History of Arabic Science, Vol. 2, p. 614-642 [633]. Routledge, London and New York.
  66. ^ E.G. Browne, Islamic Medicine (sometimes also printed under the title Arabian medicine), 2002, Goodword Pub., ISBN 81-87570-19-9, p61
  67. ^ E.G. Browne, Islamic Medicine (sometimes also printed under the title Arabian medicine), 2002, Goodword Pub., ISBN 81-87570-19-9, p60-61)
  68. ^ Educating health professionals: the Avicenna project The Lancet, Volume 371 pp 966 – 967
  69. ^ O'Connor, John J.; Robertson, Edmund F., "Avicenna", MacTutor History of Mathematics Archive, University of St Andrews