List of prime numbers: Difference between revisions
Revert vandalism |
|||
Line 3: | Line 3: | ||
==The first 500 prime numbers== |
==The first 500 prime numbers== |
||
There are 20 consecutive primes in each of the 25 rows. |
There are 20 consecutive primes in each of the 25 rows. |
||
{| class="wikitable" |
|||
[[139 (number)|139]] || [[149 (number)|149]] || [[151 (number)|151]] || [[157 (number)|157]] || [[163 (number)|163]] || [[167 (number)|167]] || [[173 (number)|173]] |
|||
! |
|||
|- r |
|||
! 1 !! 2 !! 3 !! 4 !! 5 !! 6 !! 7 !! 8 !! 9 !! 10 !! 11 !! 12 !! 13 !! 14 !! 15 !! 16 !! 17 !! 18 !! 19 !! 20 |
|||
|- align=center |
|||
! 1-20 |
|||
| [[2 (number)|2]] || [[3 (number)|3]] || [[5 (number)|5]] || [[7 (number)|7]] || [[11 (number)|11]] || [[13 (number)|13]] || [[17 (number)|17]]|| [[19 (number)|19]]|| [[23 (number)|23]] || [[29 (number)|29]] || [[31 (number)|31]] || [[37 (number)|37]]|| [[41 (number)|41]] || [[43 (number)|43]] || [[47 (number)|47]] || [[53 (number)|53]] || [[59 (number)|59]] || [[61 (number)|61]] || [[67 (number)|67]] || [[71 (number)|71]] |
|||
|- align=center |
|||
! 21-40 |
|||
| [[73 (number)|73]] || [[79 (number)|79]] || [[83 (number)|83]] || [[89 (number)|89]] || [[97 (number)|97]] || [[101 (number)|101]]|| [[103 (number)|103]] || [[107 (number)|107]] || [[109 (number)|109]] || [[113 (number)|113]]|| [[127 (number)|127]] || [[131 (number)|131]] || [[137 (number)|137]] || [[139 (number)|139]] || [[149 (number)|149]] || [[151 (number)|151]] || [[157 (number)|157]] || [[163 (number)|163]] || [[167 (number)|167]] || [[173 (number)|173]] |
|||
|- align=center |
|||
! 41-60 |
! 41-60 |
||
| [[179 (number)|179]] || [[181 (number)|181]] || [[191 (number)|191]] || [[193 (number)|193]] || [[197 (number)|197]] || [[199 (number)|199]] || [[211 (number)|211]] || [[223 (number)|223]] || [[227 (number)|227]] || [[229 (number)|229]]|| [[233 (number)|233]] || [[239 (number)|239]] || [[241 (number)|241]] || [[251 (number)|251]] || [[257 (number)|257]] || [[263 (number)|263]] || [[269 (number)|269]] || [[271 (number)|271]] || [[277 (number)|277]] || [[281 (number)|281]] |
| [[179 (number)|179]] || [[181 (number)|181]] || [[191 (number)|191]] || [[193 (number)|193]] || [[197 (number)|197]] || [[199 (number)|199]] || [[211 (number)|211]] || [[223 (number)|223]] || [[227 (number)|227]] || [[229 (number)|229]]|| [[233 (number)|233]] || [[239 (number)|239]] || [[241 (number)|241]] || [[251 (number)|251]] || [[257 (number)|257]] || [[263 (number)|263]] || [[269 (number)|269]] || [[271 (number)|271]] || [[277 (number)|277]] || [[281 (number)|281]] |
||
|- align=center |
|||
|- |
|||
! 61-80 |
! 61-80 |
||
| [[283 (number)|283]] || [[293 (number)|293]] || [[307 (number)|307]] || [[311 (number)|311]] || [[313 (number)|313]] || [[317 (number)|317]] || [[331 (number)|331]] || [[337 (number)|337]] || [[347 (number)|347]] || [[349 (number)|349]]|| [[353 (number)|353]] || [[359 (number)|359]] || [[367 (number)|367]] || [[373 (number)|373]] || [[379 (number)|379]] || [[383 (number)|383]] || [[389 (number)|389]] || [[397 (number)|397]] || [[401 (number)|401]] || [[409 (number)|409]] |
| [[283 (number)|283]] || [[293 (number)|293]] || [[307 (number)|307]] || [[311 (number)|311]] || [[313 (number)|313]] || [[317 (number)|317]] || [[331 (number)|331]] || [[337 (number)|337]] || [[347 (number)|347]] || [[349 (number)|349]]|| [[353 (number)|353]] || [[359 (number)|359]] || [[367 (number)|367]] || [[373 (number)|373]] || [[379 (number)|379]] || [[383 (number)|383]] || [[389 (number)|389]] || [[397 (number)|397]] || [[401 (number)|401]] || [[409 (number)|409]] |
||
|- align=center |
|||
|- |
|||
! 81-100 |
! 81-100 |
||
| [[419 (number)|419]] || [[421 (number)|421]] || [[431 (number)|431]] || [[433 (number)|433]] || [[439 (number)|439]] || [[443 (number)|443]] || [[449 (number)|449]] || [[457 (number)|457]] || [[461 (number)|461]] || [[463 (number)|463]]|| [[467 (number)|467]] || [[479 (number)|479]] || [[487 (number)|487]] || [[491 (number)|491]] || [[499 (number)|499]] || [[503 (number)|503]] || [[509 (number)|509]] || [[521 (number)|521]] || [[523 (number)|523]] || [[541 (number)|541]] |
| [[419 (number)|419]] || [[421 (number)|421]] || [[431 (number)|431]] || [[433 (number)|433]] || [[439 (number)|439]] || [[443 (number)|443]] || [[449 (number)|449]] || [[457 (number)|457]] || [[461 (number)|461]] || [[463 (number)|463]]|| [[467 (number)|467]] || [[479 (number)|479]] || [[487 (number)|487]] || [[491 (number)|491]] || [[499 (number)|499]] || [[503 (number)|503]] || [[509 (number)|509]] || [[521 (number)|521]] || [[523 (number)|523]] || [[541 (number)|541]] |
||
|- align=center |
|||
|- |
|||
! 101-120 |
! 101-120 |
||
| [[547 (number)|547]] || [[557 (number)|557]] || [[563 (number)|563]] || [[569 (number)|569]] || [[571 (number)|571]] || [[577 (number)|577]] || [[587 (number)|587]] || [[593 (number)|593]] || [[599 (number)|599]] || [[601 (number)|601]]|| [[607 (number)|607]] || [[613 (number)|613]] || [[617 (number)|617]] || [[619 (number)|619]] || [[631 (number)|631]] || [[641 (number)|641]] || [[643 (number)|643]] || [[647 (number)|647]] |
| [[547 (number)|547]] || [[557 (number)|557]] || [[563 (number)|563]] || [[569 (number)|569]] || [[571 (number)|571]] || [[577 (number)|577]] || [[587 (number)|587]] || [[593 (number)|593]] || [[599 (number)|599]] || [[601 (number)|601]]|| [[607 (number)|607]] || [[613 (number)|613]] || [[617 (number)|617]] || [[619 (number)|619]] || [[631 (number)|631]] || [[641 (number)|641]] || [[643 (number)|643]] || [[647 (number)|647]] |
Revision as of 20:06, 27 January 2011
There are infinitely many prime numbers. Prime numbers may be generated with various formulas for primes. The first 500 primes are listed below, followed by lists of the first prime numbers of various types in alphabetical order.
The first 500 prime numbers
There are 20 consecutive primes in each of the 25 rows.
(sequence A000040 in the OEIS).
The Goldbach conjecture verification project reports that it has computed all primes below 1018.[1] That means 24,739,954,287,740,860 primes, but they were not stored. There are known formulas to evaluate the prime-counting function (the number of primes below a given value) faster than computing the primes. This has been used to compute that there are 1,925,320,391,606,803,968,923 primes (roughly 2×1021) below 1023.
Lists of primes by type
Below are listed the first prime numbers of many named forms and types. More details are in the article for the name. n is a natural number (including 0) in the definitions. A prime number is a number that cannot be divided by a number other than 1 and itself.
Primes which are the average of the previous prime and the following prime, meaning that the previous prime, the prime itself, and the following prime are in arithmetic progression.
5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393 (OEIS: A006562)
Bell number primes
Primes that are the number of partitions of a set with n members.
2, 5, 877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837. The next term has 6539 digits. (OEIS: A051131)
Carol primes
Of the form .
7, 47, 223, 3967, 16127, 1046527, 16769023, 1073676287, 68718952447, 274876858367, 4398042316799, 1125899839733759, 18014398241046527, 1298074214633706835075030044377087 (OEIS: A091516)
Centered decagonal primes
Of the form .
11, 31, 61, 101, 151, 211, 281, 661, 911, 1051, 1201, 1361, 1531, 1901, 2311, 2531, 3001, 3251, 3511, 4651, 5281, 6301, 6661, 7411, 9461, 9901, 12251, 13781, 14851, 15401, 18301, 18911, 19531, 20161, 22111, 24151, 24851, 25561, 27011, 27751 (OEIS: A090562)
Centered heptagonal primes
Of the form (7n2 − 7n + 2) / 2.
43, 71, 197, 463, 547, 953, 1471, 1933, 2647, 2843, 3697, 4663, 5741, 8233, 9283, 10781, 11173, 12391, 14561, 18397, 20483, 29303, 29947, 34651, 37493, 41203, 46691, 50821, 54251, 56897, 57793, 65213, 68111, 72073, 76147, 84631, 89041, 93563 (primes in OEIS: A069099)
Centered square primes
Of the form .
5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, 4513, 5101, 7321, 8581, 9661, 9941, 10513, 12641, 13613, 14281, 14621, 15313, 16381, 19013, 19801, 20201, 21013, 21841, 23981, 24421, 26681 (OEIS: A027862)
Centered triangular primes
Of the form (3n2 + 3n + 2) / 2.
19, 31, 109, 199, 409, 571, 631, 829, 1489, 1999, 2341, 2971, 3529, 4621, 4789, 7039, 7669, 8779, 9721, 10459, 10711, 13681, 14851, 16069, 16381, 17659, 20011, 20359, 23251, 25939, 27541, 29191, 29611, 31321, 34429, 36739, 40099, 40591, 42589 (OEIS: A125602)
p is prime and p + 2 is either a prime or semiprime.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409 (OEIS: A109611)
A circular prime number is a number that remains prime on any cyclic rotation of its digits (in base 10).
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 197, 199, 311, 337, 373, 719, 733, 919, 971, 991, 1193, 1931, 3119, 3779, 7793, 7937, 9311, 9377, 11939, 19391, 19937, 37199, 39119, 71993, 91193, 93719, 93911, 99371, 193939, 199933, 319993, 331999, 391939, 393919, 919393, 933199, 939193, 939391, 993319, 999331 (OEIS: A068652)
Some sources only list the smallest prime in each cycle, for example listing 13 but omitting 31:
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933, 1111111111111111111, 11111111111111111111111 (OEIS: A016114)
All repunit primes are circular.
(p, p + 4) are both prime.
(3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47), (67, 71), (79, 83), (97, 101), (103, 107), (109, 113), (127, 131), (163, 167), (193, 197), (223, 227), (229, 233), (277, 281) (OEIS: A023200, OEIS: A046132)
Of the form
7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391, 35317 (OEIS: A002407)
Of the form
13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249 (OEIS: A002648)
Cullen primes
Of the form n · 2n + 1.
3, 393050634124102232869567034555427371542904833 (OEIS: A050920)
Primes that remain prime when read upside down or mirrored in a seven-segment display.
2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081 (OEIS: A134996)
Double factorial primes
Of the form . Values of n:
1, 2, 518, 33416, 37310, 52608 (OEIS: A080778)
Note that n = 0 and n = 1 produce the same prime, namely 2.
Of the form . Values of n:
3, 4, 6, 8, 16, 26, 64, 82, 90, 118, 194, 214, 728, 842, 888, 2328, 3326, 6404, 8670, 9682, 27056, 44318 (OEIS: A007749)
Of the form for prime p.
7, 127, 2147483647, 170141183460469231731687303715884105727 (primes in OEIS: A077586)
As of January 2008[update], these are the only known double Mersenne primes (subset of Mersenne primes.)
Eisenstein primes without imaginary part
Eisenstein integers that are irreducible and real numbers (primes of form 3n − 1).
2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401 (OEIS: A003627)
Primes which become a different prime when their decimal digits are reversed.
13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389, 701, 709, 733, 739, 743, 751, 761, 769, 907, 937, 941, 953, 967, 971, 983, 991 (OEIS: A006567)
Euclid primes
Of the form pn# + 1 (a subset of primorial primes).
3, 7, 31, 211, 2311, 200560490131 (OEIS: A018239[2])
Even prime
Of the form 2n; n = 1, 2, 3, 4, ...
The only even prime is 2.
2 is therefore sometimes called "the oddest prime" as a pun on the non-mathematical meaning of "odd".[3]
Of the form n! − 1 or n! + 1.
2, 3, 5, 7,11, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999 (OEIS: A088054)
Of the form .
3, 5, 17, 257, 65537 (OEIS: A019434)
As of April 2009[update] these are the only known Fermat primes.
Primes in the Fibonacci sequence F0 = 0, F1 = 1, Fn = Fn-1 + Fn-2.
2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917 (OEIS: A005478)
Fortunate numbers that are prime (it has been conjectured they all are).
3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, 101, 103, 107, 109, 127, 151, 157, 163, 167, 191, 197, 199, 223, 229, 233, 239, 271, 277, 283, 293, 307, 311, 313, 331, 353, 373, 379, 383, 397 (OEIS: A046066)
Prime elements of the Gaussian integers (primes of form 4n + 3).
3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503 (OEIS: A002145)
Genocchi number primes
The only positive prime Genocchi number is 17.[4]
Primes pn for which pn2 > pn−i × pn+i for all 1 ≤ i ≤ n−1, where pn is the nth prime.
5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149, 179, 191, 223, 227, 251, 257, 269, 307 (OEIS: A028388)
Happy numbers that are prime.
7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487, 563, 617, 653, 673, 683, 709, 739, 761, 863, 881, 907, 937, 1009, 1033, 1039, 1093 (OEIS: A035497)
Higgs primes for squares
Primes p for which p − 1 divides the square of the product of all earlier terms.
2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 79, 101, 107, 127, 131, 139, 149, 151, 157, 173, 181, 191, 197, 199, 211, 223, 229, 263, 269, 277, 283, 311, 317, 331, 347, 349 (OEIS: A007459)
Highly cototient number primes
Primes that are a cototient more often than any integer below it except 1.
2, 23, 47, 59, 83, 89, 113, 167, 269, 389, 419, 509, 659, 839, 1049, 1259, 1889 (OEIS: A105440)
Odd primes p which divide the class number of the p-th cyclotomic field.
37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, 607, 613, 617, 619 (OEIS: A000928)
Of the form .
7, 23, 79, 1087, 66047, 263167, 16785407, 1073807359, 17180131327, 68720001023, 4398050705407, 70368760954879, 18014398777917439, 18446744082299486207 (OEIS: A091514)
Primes that remain prime when the leading decimal digit is successively removed.
2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 113, 137, 167, 173, 197, 223, 283, 313, 317, 337, 347, 353, 367, 373, 383, 397, 443, 467, 523, 547, 613, 617, 643, 647, 653, 673, 683 (OEIS: A024785)
Leyland primes
Of the form xy + yx with 1 < x ≤ y.
17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193 (OEIS: A094133)
Primes p for which, in a given base b, gives a cyclic number. They are also called full reptend primes. Primes p for base 10:
7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593 (OEIS: A001913)
Primes in the Lucas number sequence L0 = 2, L1 = 1, Ln = Ln-1 + Ln-2.
2,[5] 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149 (OEIS: A005479)
Lucky numbers that are prime.
3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193, 211, 223, 241, 283, 307, 331, 349, 367, 409, 421, 433, 463, 487, 541, 577, 601, 613, 619, 631, 643, 673, 727, 739, 769, 787, 823, 883, 937, 991, 997 (OEIS: A031157)
Markov primes
Primes p for which there exist integers x and y such that .
2, 5, 13, 29, 89, 233, 433, 1597, 2897, 5741, 7561, 28657, 33461, 43261, 96557, 426389, 514229, 1686049, 2922509, 3276509, 94418953, 321534781, 433494437, 780291637, 1405695061, 2971215073, 19577194573, 25209506681 (primes in OEIS: A002559)
Of the form 2n − 1.
3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727 (OEIS: A000668)
As of June 2009[update], there are 47 known Mersenne primes (The 47th discovered is actually the 46th in size). The 13th, 14th, and 47th (based upon size), respectively, have 157, 183, and 12,978,189 digits.
Of the form , where θ is Mills' constant. This form is prime for all positive integers n.
2, 11, 1361, 2521008887, 16022236204009818131831320183 (OEIS: A051254)
Primes for which there is no shorter sub-sequence of the decimal digits that form a prime. There are exactly 26 minimal primes:
2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 (OEIS: A071062)
Primes p for which p2 divides 3p − 1 − 1
As of January 2011[update], these are the only known Mirimanoff primes.[6][7][8]
Motzkin primes
Primes that are the number of different ways of drawing non-intersecting chords on a circle between n points.
2, 127, 15511, 953467954114363 (OEIS: A092832)
Newman–Shanks–Williams numbers that are prime.
7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599 (OEIS: A088165)
Odd primes
Of the form 2n - 1.
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199... (OEIS: A065091)
All prime numbers except the prime 2 are odd.
Padovan primes
Primes in the Padovan sequence , .
2, 3, 5, 7, 37, 151, 3329, 23833, 13091204281, 3093215881333057, 1363005552434666078217421284621279933627102780881053358473 (OEIS: A100891)
Primes that remain the same when their decimal digits are read backwards.
2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741 (OEIS: A002385)
Partition primes
Partition numbers that are prime.
2, 3, 5, 7, 11, 101, 17977, 10619863, 6620830889, 80630964769, 228204732751, 1171432692373, 1398341745571, 10963707205259, 15285151248481, 10657331232548839, 790738119649411319, 18987964267331664557 (OEIS: A049575)
Pell primes
Primes in the Pell number sequence P0 = 0, P1 = 1, Pn = 2Pn-1 + Pn-2.
2, 5, 29, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 4125636888562548868221559797461449 (OEIS: A086383)
Any permutation of the decimal digits is a prime.
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, 1111111111111111111, 11111111111111111111111 (OEIS: A003459)
It seems likely that all further permutable primes are repunits, i.e. contain only the digit 1.
Perrin primes
Primes in the Perrin number sequence P(0) = 3, P(1) = 0, P(2) = 2, P(n) = P(n − 2) + P(n − 3).
2, 3, 5, 7, 17, 29, 277, 367, 853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 66241160488780141071579864797 (OEIS: A074788)
Of the form for some integers u,v ≥ 0.
These are also class 1- primes.
2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 65537, 139969, 147457 (OEIS: A005109)
Primes p for which there exist n > 0 such that p divides n! + 1 and n does not divide p − 1.
23, 29, 59, 61, 67, 71, 79, 83, 109, 137, 139, 149, 193, 227, 233, 239, 251, 257, 269, 271, 277, 293, 307, 311, 317, 359, 379, 383, 389, 397, 401, 419, 431, 449, 461, 463, 467, 479, 499 (OEIS: A063980)
Primes for which there are more prime permutations of some or all the decimal digits than for any smaller number.
2, 13, 37, 107, 113, 137, 1013, 1237, 1367, 10079 (OEIS: A119535)
Of the form pn# − 1 or pn# + 1.
3, 5, 7, 29, 31, 211, 2309, 2311, 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309 (union of OEIS: A057705 and OEIS: A018239[2])
Of the form k · 2n + 1 with odd k and k < 2n.
3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857 (OEIS: A080076)
Of the form 4n + 1.
5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449 (OEIS: A002144)
(p, p+2, p+6, p+8) are all prime.
(5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197, 199), (821, 823, 827, 829), (1481, 1483, 1487, 1489), (1871, 1873, 1877, 1879), (2081, 2083, 2087, 2089), (3251, 3253, 3257, 3259), (3461, 3463, 3467, 3469), (5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439) (OEIS: A007530, OEIS: A136720, OEIS: A136721, OEIS: A090258)
Integers Rn that are the smallest to give at least n primes from x/2 to x for all x ≥ Rn (all such integers are primes).
2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 181, 227, 229, 233, 239, 241, 263, 269, 281, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491 (OEIS: A104272)
Primes p which do not divide the class number of the p-th cyclotomic field.
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 269, 277, 281 (OEIS: A007703)
Repunit primes
Primes containing only the decimal digit 1.
11, 1111111111111111111, 11111111111111111111111 (OEIS: A004022)
The next have 317 and 1031 digits.
Of form a · n + d for fixed a and d. Also called primes congruent to d modulo a.
Three cases have their own entry: 2n+1 are the odd primes, 4n+1 are Pythagorean primes, 4n+3 are the integer Gaussian primes.
2n+1: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53 (OEIS: A065091)
4n+1: 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137 (OEIS: A002144)
4n+3: 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107 (OEIS: A002145)
6n+1: 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139 (OEIS: A002476)
6n+5: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113 (OEIS: A007528)
8n+1: 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353 (OEIS: A007519)
8n+3: 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251 (OEIS: A007520)
8n+5: 5, 13, 29, 37, 53, 61, 101, 109, 149, 157, 173, 181, 197, 229, 269 (OEIS: A007521)
8n+7: 7, 23, 31, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263 (OEIS: A007522)
10n+1: 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281 (OEIS: A030430)
10n+3: 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263 (OEIS: A030431)
10n+7: 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277 (OEIS: A030432)
10n+9: 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349, 359 (OEIS: A030433)
...
10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digit d.
Primes that remain prime when the last decimal digit is successively removed.
2, 3, 5, 7, 23, 29, 31, 37, 53, 59, 71, 73, 79, 233, 239, 293, 311, 313, 317, 373, 379, 593, 599, 719, 733, 739, 797, 2333, 2339, 2393, 2399, 2939, 3119, 3137, 3733, 3739, 3793, 3797 (OEIS: A024770)
p and (p-1) / 2 are both prime.
5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907 (OEIS: A005385)
Self primes in base 10
Primes that cannot be generated by any integer added to the sum of its decimal digits.
3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 457, 479, 547, 569, 613, 659, 727, 839, 883, 929, 1021, 1087, 1109, 1223, 1289, 1447, 1559, 1627, 1693, 1783, 1873 (OEIS: A006378)
(p, p + 6) are both prime.
(5, 11), (7, 13), (11, 17), (13, 19), (17, 23), (23, 29), (31, 37), (37, 43), (41, 47), (47, 53), (53, 59), (61, 67), (67, 73), (73, 79), (83, 89), (97, 103), (101, 107), (103, 109), (107, 113), (131, 137), (151, 157), (157, 163), (167, 173), (173, 179), (191, 197), (193, 199) (OEIS: A023201, OEIS: A046117)
Smarandache–Wellin primes
Primes which are the concatenation of the first n primes written in decimal.
The fourth Smarandache-Wellin prime is the 355-digit concatenation of the first 128 primes which end with 719.
Of the form 2a ± 2b ± 1, where 0 < b < a.
3, 5, 7, 11, 13 (OEIS: A165255)
p and 2p + 1 are both prime.
2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 454, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953 (OEIS: A005384)
Star primes
Of the form 6n(n - 1) + 1.
13, 37, 73, 181, 337, 433, 541, 661, 937, 1093, 2053, 2281, 2521, 3037, 3313, 5581, 5953, 6337, 6733, 7561, 7993, 8893, 10333, 10837, 11353, 12421, 12973, 13537, 15913, 18481 (OEIS: A083577)
Primes that are not the sum of a smaller prime and twice the square of a nonzero integer.
2, 3, 17, 137, 227, 977, 1187, 1493 (OEIS: A042978)
As of January 2008[update], these are the only known Stern primes, and possibly the only existing.
Primes with a prime index in the sequence of prime numbers (the 2nd, 3rd, 5th, ... prime).
3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991 (OEIS: A006450)
There are exactly fifteen supersingular primes:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71 (OEIS: A002267)
Thabit number primes
Of the form 3 · 2n - 1.
2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, 26388279066623, 108086391056891903, 55340232221128654847, 226673591177742970257407 (OEIS: A007505)
(p, p+2, p+6) or (p, p+4, p+6) are all prime.
(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353) (OEIS: A007529, OEIS: A098414, OEIS: A098415)
(p, p + 2) are both prime.
(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463) (OEIS: A001359, OEIS: A006512)
Primes which are both left-truncatable and right-truncatable. There are exactly fifteen two-sided primes:
2, 3, 5, 7, 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397 (OEIS: A020994)
Ulam number primes
Ulam numbers that are prime.
2, 3, 11, 13, 47, 53, 97, 131, 197, 241, 409, 431, 607, 673, 739, 751, 983, 991, 1103, 1433, 1489, 1531, 1553, 1709, 1721, 2371, 2393, 2447, 2633, 2789, 2833, 2897 (OEIS: A068820)
Primes p for which the period length of 1/p is unique (no other prime gives the same).
3, 11, 37, 101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991 (OEIS: A040017)
Of the form (2n + 1) / 3.
3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243 (OEIS: A000979)
n values:
3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321 (OEIS: A000978)
A prime p > 5 is called a Wall-Sun-Sun prime if p² divides the Fibonacci number , where the Legendre symbol is defined as
As of February 2010[update], no Wall-Sun-Sun primes are known.
Wedderburn-Etherington numbers that are prime.
2, 3, 11, 23, 983, 2179, 24631, 3626149, 253450711, 596572387 (primes in OEIS: A001190)
Primes p for which p2 divides 2p − 1 − 1
As of January 2008[update], these are the only known Wieferich primes.
Primes p for which p2 divides (p − 1)! + 1
As of January 2008[update], these are the only known Wilson primes.
Primes p for which the binomial coefficient .
16843, 2124679 (OEIS: A088164)
As of January 2008[update], these are the only known Wolstenholme primes.
Woodall primes
Of the form n · 2n − 1.
7, 23, 383, 32212254719, 2833419889721787128217599, 195845982777569926302400511, 4776913109852041418248056622882488319 (OEIS: A050918)
See also
- Illegal prime
- Largest known prime
- List of numbers
- Prime gap
- Probable prime
- Pseudoprime
- Strobogrammatic prime
- Strong prime
- Wall-Sun-Sun prime
- Wieferich pair
Notes
- ^ Tomás Oliveira e Silva, Goldbach conjecture verification.
- ^ a b OEIS: A018239 includes 2 = empty product of first 0 primes plus 1, but 2 is excluded in this list.
- ^ http://mathworld.wolfram.com/OddPrime.html
- ^ Weisstein, Eric W. "Genocchi Number". MathWorld.
- ^ It varies whether L0 = 2 is included in the Lucas numbers.
- ^ Ribenboim, P. The new book of prime number records. New York: Springer-Verlag. p. 347. ISBN 0387944575.
- ^ "Mirimanoff's Congruence: Other Congruences". Retrieved 26 January 2011.
- ^ Gallot, Y.; Moree, P.; Zudilin, W. (2011). "The Erdös-Moser equation 1k + 2k +...+ (m-1)k = mk revisited using continued fractions". Mathematics of Computation. 80. American Mathematical Society: 1221–1237. doi:10.1090/S0025-5718-2010-02439-1. arXiv:0907.1356.
External links
- Lists of Primes at the Prime Pages.
- Interface to a list of the first 98 million primes (primes less than 2,000,000,000)
- Weisstein, Eric W. "Prime Number Sequences". MathWorld.
- Selected prime related sequences in OEIS.