Jump to content

Aircraft flight control system: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Copy Editing
Undid revision 595677845 by Duxwing (talk) Previous version had better grammar and spelling
Line 33: Line 33:
===Mechanical===
===Mechanical===
[[Image:Tiger cables.JPG|thumb|right|[[de Havilland Tiger Moth]] elevator and rudder cables]]
[[Image:Tiger cables.JPG|thumb|right|[[de Havilland Tiger Moth]] elevator and rudder cables]]
Mechanical or manually operated flight control systems are the most basic method of controlling an aircraft. They were used in early aircraft and are used where the aerodynamic forces are small. Such very early aircraft as the [[Wright Flyer|Wright Flyer I]], [[Blériot XI]] and [[Fokker Eindecker]] used a system of [[wing warping]] that lacked conventionally hinged control surfaces; these systems sometimes also lacked pitch control like on the Wright Flyer I and original versions of the 1909 [[Etrich Taube]], which only had a hinged/pivoting rudder alongside the warping-operated pitch and roll controls.<ref>Taylor, 1990. p. 116.</ref> A manual flight control system via a collection of such mechanical parts as pushrods, tension cables, pulleys, counterweights, and sometimes chains transmits the forces on the cockpit controls directly to the control surfaces. [[Turnbuckle]]s are often used to adjust control cable tension. The [[Cessna Skyhawk]] is a typical to use this type of system. [[Gust lock]]s are often used on parked aircraft with mechanical systems lest wind damage the control surfaces and linkages. Some aircrafts' control systems have gust locks.<ref>Thom,1988. p. 153.</ref>
Mechanical or manually operated flight control systems are the most basic method of controlling an aircraft. They were used in early aircraft and are currently used in small aircraft where the aerodynamic forces are not excessive. Very early aircraft, such as the [[Wright Flyer|Wright Flyer I]], [[Blériot XI]] and [[Fokker Eindecker]] used a system of [[wing warping]] where no conventionally hinged control surfaces were used on the wing, and sometimes not even for pitch control as on the Wright Flyer I and original versions of the 1909 [[Etrich Taube]], which only had a hinged/pivoting rudder in addition to the warping-operated pitch and roll controls.<ref>Taylor, 1990. p. 116.</ref> A manual flight control system uses a collection of mechanical parts such as pushrods, tension cables, pulleys, counterweights, and sometimes chains to transmit the forces applied to the cockpit controls directly to the control surfaces. [[Turnbuckle]]s are often used to adjust control cable tension. The [[Cessna Skyhawk]] is a typical example of an aircraft that uses this type of system. [[Gust lock]]s are often used on parked aircraft with mechanical systems to protect the control surfaces and linkages from damage from wind. Some aircraft have gust locks fitted as part of the control system.<ref>Thom,1988. p. 153.</ref>
Increases in the control surface area required by large aircraft or higher loads caused by high [[airspeed]]s in small aircraft lead to a large increase in the forces needed to move them, consequently complicated mechanical [[gear]]ing arrangements were developed to extract maximum [[mechanical advantage]] in order to reduce the forces required from the pilots.<ref name="Taylor118">Taylor, 1990. p. 118.</ref> This arrangement can be found on bigger or higher performance [[Propeller (aircraft)|propeller]] aircraft such as the [[Fokker 50]].
Increases in the control surface area required by large aircraft or higher loads caused by high [[airspeed]]s in small aircraft lead to a large increase in the forces needed to move them, consequently complicated mechanical [[gear]]ing arrangements were developed to extract maximum [[mechanical advantage]] in order to reduce the forces required from the pilots.<ref name="Taylor118">Taylor, 1990. p. 118.</ref> This arrangement can be found on bigger or higher performance [[Propeller (aircraft)|propeller]] aircraft such as the [[Fokker 50]].
Line 40: Line 40:


===Hydro-mechanical===
===Hydro-mechanical===
[[hydraulic machinery|Hydraulically powered control surface]]s in large and high-performance aircraft are simpler and lighter than mechanical flight control systems would be and allow economics rather than pilot strength to limit aircrafts' size and performance. Hydraulic systems were initially so partially boosted that control surfaces' aerodynamic loads would feed back to the pilot.<ref name="Taylor118">Taylor, 1990. p. 118.</ref>
The complexity and weight of mechanical flight control systems increase considerably with the size and performance of the aircraft. [[hydraulic machinery|Hydraulically powered control surface]]s help to overcome these limitations. With hydraulic flight control systems, the aircraft's size and performance are limited by economics rather than a pilot's muscular strength. At first, only-partially boosted systems were used in which the pilot could still feel some of the aerodynamic loads on the control surfaces (feedback).<ref name="Taylor118">Taylor, 1990. p. 118.</ref>


A hydro-mechanical flight control system comprises two parts:
A hydro-mechanical flight control system has two parts:
*The ''mechanical circuit'', which links the cockpit controls with the hydraulic circuits. Like the mechanical flight control system, it consists of rods, cables, pulleys, and sometimes chains.
*The ''mechanical circuit'', which links the cockpit controls with the hydraulic circuits. Like the mechanical flight control system, it consists of rods, cables, pulleys, and sometimes chains.


*The ''hydraulic circuit'', which has hydraulic pumps, reservoirs, filters, pipes, valves and actuators. Hydraulic pressure generated by the hydraulic circuit's pumps power the actuators, which move the control surfaces. The [[electro-hydraulic servo valve]]s control the the actuators' movement.
*The ''hydraulic circuit'', which has hydraulic pumps, reservoirs, filters, pipes, valves and actuators. The actuators are powered by the hydraulic pressure generated by the pumps in the hydraulic circuit. The actuators convert hydraulic pressure into control surface movements. The [[electro-hydraulic servo valve]]s control the movement of the actuators.


The pilot's control movement causes the mechanical circuit to in the hydraulic circuit open the matching [[electro-hydraulic servo valve|servo valve]], which a mechanical [[feedback]] linkage closes when the control surface is at the desired position.
The pilot's movement of a control causes the mechanical circuit to open the matching servo valve in the hydraulic circuit. The hydraulic circuit powers the actuators which then move the control surfaces. As the actuator moves, the [[electro-hydraulic servo valve|servo valve]] is closed by a mechanical [[feedback]] linkage - one that stops movement of the control surface at the desired position.


This arrangement existed in old jet transports and some high-performance aircraft, among them the [[Antonov An-225]] and the [[Lockheed SR-71]].
This arrangement was found in the older-designed jet transports and in some high-performance aircraft. Examples include the [[Antonov An-225]] and the [[Lockheed SR-71]].


====Artificial feel devices====
====Artificial feel devices====
Aerodynamic forces on purely mechanical flight control systems' control surfaces pass through the mechanisms and to the pilot, tactilely feeding back airspeed. Whereas hydromechanical flight control systems' control surfaces' load cannot be felt, allowing excessive control movement to overstress the aircraft through. Artificial feel systems can be therefore used; e.g., a spring device in the [[RAF]]'s [[Avro Vulcan]] jet [[bomber]] and the [[RCAF]]'s [[Avro Canada CF-105 Arrow]] supersonic interceptor (both 1950s-era designs) provided the required force feedback.<ref>The Arrowheads, pages 57-58, 83-85 (for CF-105 Arrow only).</ref> The [[Fulcrum (mechanics)|fulcrum]] of this device was so moved with the square of the air speed (for the elevators) as to at higher speeds increase resistance. A 'bob-weight' in the American [[Vought]] [[F-8 Crusader]] and the LTV [[A-7 Corsair II]] warplanes' sticks' pitch axes fed back force proportional to the airplane's normal acceleration.{{Citation needed|date=July 2010}}
With purely mechanical flight control systems, the aerodynamic forces on the control surfaces are transmitted through the mechanisms and are felt directly by the pilot, allowing tactile feedback of airspeed. With hydromechanical flight control systems, however, the load on the surfaces cannot be felt and there is a risk of overstressing the aircraft through excessive control surface movement. To overcome this problem, artificial feel systems can be used. For example, for the controls of the [[RAF]]'s [[Avro Vulcan]] jet [[bomber]] and the [[RCAF]]'s [[Avro Canada CF-105 Arrow]] supersonic interceptor (both 1950s-era designs), the required force feedback was achieved by a spring device.<ref>The Arrowheads, pages 57-58, 83-85 (for CF-105 Arrow only).</ref> The [[Fulcrum (mechanics)|fulcrum]] of this device was moved in proportion to the square of the air speed (for the elevators) to give increased resistance at higher speeds. For the controls of the American [[Vought]] [[F-8 Crusader]] and the LTV [[A-7 Corsair II]] warplanes, a 'bob-weight' was used in the pitch axis of the control stick, giving force feedback that was proportional to the airplane's normal acceleration.{{Citation needed|date=July 2010}}


====Stick shaker====
====Stick shaker====
{{Main|Stick shaker}}
{{Main|Stick shaker}}
A [[stick shaker]] is a device (available in some hydraulic aircraft) that is attached to the control column and shakes it when the aircraft soon will stall. Such aircraft as the [[McDonnell Douglas DC-10]] had a backup electrical power supply whereby the pilot could re-activate the stick shaker were the hydraulic connection to the stick shaker lost.{{Citation needed|date=May 2010}}
A [[stick shaker]] is a device (available in some hydraulic aircraft) that is attached to the control column, which shakes the control column when the aircraft is about to stall. Also in some aircraft like the [[McDonnell Douglas DC-10]] there is/was a back-up electrical power supply that the pilot can turn on to re-activate the stick shaker in case the hydraulic connection to the stick shaker is lost.{{Citation needed|date=May 2010}}


===Fly-by-wire control systems===
===Fly-by-wire control systems===

Revision as of 21:44, 16 February 2014

Template:Infobox aviation

A conventional fixed-wing aircraft flight control system consists of flight control surfaces, the respective cockpit controls, connecting linkages, and the necessary operating mechanisms to control an aircraft's direction in flight. Aircraft engine controls are also considered as flight controls as they change speed.

The fundamentals of aircraft controls are explained in flight dynamics. This article centers on the operating mechanisms of the flight controls. The basic system in use on aircraft first appeared in a readily recognizable form as early as April 1908, on Louis Blériot's Blériot VIII pioneer-era monoplane design.[1]

Cockpit controls

Primary controls

Generally, the primary cockpit flight controls are arranged as follows:[2]

  • a control yoke (also known as a control column), centre stick or side-stick (the latter two also colloquially known as a control or joystick), governs the aircraft's roll and pitch by moving the ailerons (or activating wing warping on some very early aircraft designs) when turned or deflected left and right, and moves the elevators when moved backwards or forwards
  • rudder pedals, or the earlier, pre-1919 "rudder bar", to control yaw, which move the rudder; left foot forward will move the rudder left for instance.
  • throttle controls to control engine speed or thrust for powered aircraft.

The control yokes also vary greatly amongst aircraft. There are yokes where roll is controlled by rotating the yoke clockwise/counterclockwise (like steering a car) and pitch is controlled by tilting the control column towards you or away from you, but in others the pitch is controlled by sliding the yoke into and out of the instrument panel (like most Cessnas, such as the 152 and 172), and in some the roll is controlled by sliding the whole yoke to the left and right (like the Cessna 162). Centre sticks also vary between aircraft. Some are directly connected to the control surfaces using cables,[3] others (fly-by-wire airplanes) have a computer in between which then controls the electrical actuators.

Even when an aircraft uses variant flight control surfaces such as a V-tail ruddervator, flaperons, or elevons, to avoid pilot confusion the aircraft's flight control system will still be designed so that the stick or yoke controls pitch and roll conventionally, as will the rudder pedals for yaw.[2] The basic pattern for modern flight controls was pioneered by French aviation figure Robert Esnault-Pelterie, with fellow French aviator Louis Blériot popularizing Esnault-Pelterie's control format initially on Louis' Blériot VIII monoplane in April 1908, and standardizing the format on the July 1909 Channel-crossing Blériot XI. Flight control has long been taught in such fashion for many decades, as popularized in ab initio instructional books such as the 1944 work Stick and Rudder.

In some aircraft, the control surfaces are not manipulated with a linkage. In ultralight aircraft and motorized hang gliders, for example, there is no mechanism at all. Instead, the pilot just grabs the lifting surface by hand (using a rigid frame that hangs from its underside) and moves it.[citation needed]

Secondary controls

In addition to the primary flight controls for roll, pitch, and yaw, there are often secondary controls available to give the pilot finer control over flight or to ease the workload. The most commonly available control is a wheel or other device to control elevator trim, so that the pilot does not have to maintain constant backward or forward pressure to hold a specific pitch attitude[4] (other types of trim, for rudder and ailerons, are common on larger aircraft but may also appear on smaller ones). Many aircraft have wing flaps, controlled by a switch or a mechanical lever or in some cases are fully automatic by computer control, which alter the shape of the wing for improved control at the slower speeds used for takeoff and landing. Other secondary flight control systems may be available, including slats, spoilers, air brakes and variable-sweep wings.

Flight control systems

Mechanical

de Havilland Tiger Moth elevator and rudder cables

Mechanical or manually operated flight control systems are the most basic method of controlling an aircraft. They were used in early aircraft and are currently used in small aircraft where the aerodynamic forces are not excessive. Very early aircraft, such as the Wright Flyer I, Blériot XI and Fokker Eindecker used a system of wing warping where no conventionally hinged control surfaces were used on the wing, and sometimes not even for pitch control as on the Wright Flyer I and original versions of the 1909 Etrich Taube, which only had a hinged/pivoting rudder in addition to the warping-operated pitch and roll controls.[5] A manual flight control system uses a collection of mechanical parts such as pushrods, tension cables, pulleys, counterweights, and sometimes chains to transmit the forces applied to the cockpit controls directly to the control surfaces. Turnbuckles are often used to adjust control cable tension. The Cessna Skyhawk is a typical example of an aircraft that uses this type of system. Gust locks are often used on parked aircraft with mechanical systems to protect the control surfaces and linkages from damage from wind. Some aircraft have gust locks fitted as part of the control system.[6]

Increases in the control surface area required by large aircraft or higher loads caused by high airspeeds in small aircraft lead to a large increase in the forces needed to move them, consequently complicated mechanical gearing arrangements were developed to extract maximum mechanical advantage in order to reduce the forces required from the pilots.[7] This arrangement can be found on bigger or higher performance propeller aircraft such as the Fokker 50.

Some mechanical flight control systems use servo tabs that provide aerodynamic assistance. Servo tabs are small surfaces hinged to the control surfaces. The flight control mechanisms move these tabs, aerodynamic forces in turn move, or assist the movement of the control surfaces reducing the amount of mechanical forces needed. This arrangement was used in early piston-engined transport aircraft and in early jet transports.[8] The Boeing 737 incorporates a system, whereby in the unlikely event of total hydraulic system failure, it automatically and seamlessly reverts to being controlled via servo-tab.

Hydro-mechanical

The complexity and weight of mechanical flight control systems increase considerably with the size and performance of the aircraft. Hydraulically powered control surfaces help to overcome these limitations. With hydraulic flight control systems, the aircraft's size and performance are limited by economics rather than a pilot's muscular strength. At first, only-partially boosted systems were used in which the pilot could still feel some of the aerodynamic loads on the control surfaces (feedback).[7]

A hydro-mechanical flight control system has two parts:

  • The mechanical circuit, which links the cockpit controls with the hydraulic circuits. Like the mechanical flight control system, it consists of rods, cables, pulleys, and sometimes chains.
  • The hydraulic circuit, which has hydraulic pumps, reservoirs, filters, pipes, valves and actuators. The actuators are powered by the hydraulic pressure generated by the pumps in the hydraulic circuit. The actuators convert hydraulic pressure into control surface movements. The electro-hydraulic servo valves control the movement of the actuators.

The pilot's movement of a control causes the mechanical circuit to open the matching servo valve in the hydraulic circuit. The hydraulic circuit powers the actuators which then move the control surfaces. As the actuator moves, the servo valve is closed by a mechanical feedback linkage - one that stops movement of the control surface at the desired position.

This arrangement was found in the older-designed jet transports and in some high-performance aircraft. Examples include the Antonov An-225 and the Lockheed SR-71.

Artificial feel devices

With purely mechanical flight control systems, the aerodynamic forces on the control surfaces are transmitted through the mechanisms and are felt directly by the pilot, allowing tactile feedback of airspeed. With hydromechanical flight control systems, however, the load on the surfaces cannot be felt and there is a risk of overstressing the aircraft through excessive control surface movement. To overcome this problem, artificial feel systems can be used. For example, for the controls of the RAF's Avro Vulcan jet bomber and the RCAF's Avro Canada CF-105 Arrow supersonic interceptor (both 1950s-era designs), the required force feedback was achieved by a spring device.[9] The fulcrum of this device was moved in proportion to the square of the air speed (for the elevators) to give increased resistance at higher speeds. For the controls of the American Vought F-8 Crusader and the LTV A-7 Corsair II warplanes, a 'bob-weight' was used in the pitch axis of the control stick, giving force feedback that was proportional to the airplane's normal acceleration.[citation needed]

Stick shaker

A stick shaker is a device (available in some hydraulic aircraft) that is attached to the control column, which shakes the control column when the aircraft is about to stall. Also in some aircraft like the McDonnell Douglas DC-10 there is/was a back-up electrical power supply that the pilot can turn on to re-activate the stick shaker in case the hydraulic connection to the stick shaker is lost.[citation needed]

Fly-by-wire control systems

A fly-by-wire (FBW) system replaces manual flight control of an aircraft with an electronic interface. The movements of flight controls are converted to electronic signals transmitted by wires (hence the fly-by-wire term), and flight control computers determine how to move the actuators at each control surface to provide the expected response. Commands from the computers are also input without the pilot's knowledge to stabilize the aircraft and perform other tasks. Electronics for aircraft flight control systems are part of the field known as avionics.

Fly-by-optics, also known as fly-by-light, is a further development using fiber optic cables.

Research

Several technology research and development efforts exist to integrate the functions of flight control systems such as ailerons, elevators, elevons, flaps, and flaperons into wings to perform the aerodynamic purpose with the advantages of less: mass, cost, drag, inertia (for faster, stronger control response), complexity (mechanically simpler, fewer moving parts or surfaces, less maintenance), and radar cross section for stealth. These may be used in many unmanned aerial vehicles (UAVs) and 6th generation fighter aircraft. Two promising approaches are flexible wings, and fluidics.

Flexible wings

In flexible wings, much or all of a wing surface can change shape in flight to deflect air flow much like an ornithopter. Adaptive compliant wings are a military and commercial effort.[10][11][12] The X-53 Active Aeroelastic Wing was a US Air Force, NASA, and Boeing effort.

Fluidics

In fluidics, forces in vehicles occur via circulation control, in which larger more complex mechanical parts are replaced by smaller simpler fluidic systems (slots which emit air flows) where larger forces in fluids are diverted by smaller jets or flows of fluid intermittently, to change the direction of vehicles.[13][14] In this use, fluidics promises lower mass, costs (up to 50% less), and very low inertia and response times, and simplicity. This was demonstrated in the Demon UAV, which flew for the first time, in the UK, in September 2010.[15]

See also

References

Notes

  1. ^ Crouch, Tom (1982). Blériot XI, The Story of a Classic Aircraft. Smithsonian Institution Press. pp. 21 & 22. ISBN 0-87474-345-1. {{cite book}}: |access-date= requires |url= (help); Cite has empty unknown parameter: |coauthors= (help)
  2. ^ a b Langewiesche, Wolfgang. Stick and Rudder: An Explanation of the Art of Flying, McGraw-Hill Professional, 1990, ISBN 0-07-036240-8, ISBN 978-0-07-036240-6.
  3. ^ Control surfaces directly controlled using cables
  4. ^ Thom,1988. p. 87.
  5. ^ Taylor, 1990. p. 116.
  6. ^ Thom,1988. p. 153.
  7. ^ a b Taylor, 1990. p. 118.
  8. ^ Thom,1988. p. 86.
  9. ^ The Arrowheads, pages 57-58, 83-85 (for CF-105 Arrow only).
  10. ^ Scott, William B. (27 November 2006), "Morphing Wings", Aviation Week & Space Technology
  11. ^ "FlexSys Inc.: Aerospace". Retrieved 26 April 2011.
  12. ^ Kota, Sridhar; Osborn, Russell; Ervin, Gregory; Maric, Dragan; Flick, Peter; Paul, Donald. "Mission Adaptive Compliant Wing – Design, Fabrication and Flight Test" (PDF). Ann Arbor, MI; Dayton, OH, U.S.A.: FlexSys Inc., Air Force Research Laboratory. Retrieved 26 April 2011.
  13. ^ P John (2010). "The flapless air vehicle integrated industrial research (FLAVIIR) programme in aeronautical engineering". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 224 (4). London: Mechanical Engineering Publications: 355–363. doi:10.1243/09544100JAERO580. ISSN 0954-4100.
  14. ^ "Showcase UAV Demonstrates Flapless Flight". BAE Systems. 2010. Retrieved 2010-12-22.
  15. ^ "Demon UAV jets into history by flying without flaps". Metro.co.uk. London: Associated Newspapers Limited. 28 September 2010. Retrieved 29 September 2010.

Bibliography

  • Spitzer, Cary R. The Avionics Handbook, CRC Press, ISBN 0-8493-8348-X
  • Stengel, R. F. Toward Intelligent Flight Control, IEEE Trans. Systems, Man, and Cybernetics, Vol. 23, No. 6, November–December 1993, pp. 1699–1717.
  • Taylor, John W.R. The Lore of Flight, London: Universal Books Ltd., 1990. ISBN 0-9509620-1-5.
  • The Arrowheads (Richard Organ, Ron Page, Don Watson, Les Wilkinson). Avro Arrow: the story of the Avro Arrow from its evolution to its extinction, Erin, Ontario, Canada: Boston Mills Press 1980 (revised edition 2004). ISBN 1-55046-047-1.
  • Thom, Trevor. The Air Pilot's Manual 4-The Aeroplane-Technical. 1988. Shrewsbury, Shropshire, England. Airlife Publishing Ltd. ISBN 1-85310-017-X
  • USAF & NATO Report RTO-TR-015 AC/323/(HFM-015)/TP-1 (2001).