Jump to content

Talk:Plutonium

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 75.104.128.56 (talk) at 00:44, 10 April 2009 (→‎Taste of Plutonium). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Featured articlePlutonium is a featured article; it (or a previous version of it) has been identified as one of the best articles produced by the Wikipedia community. Even so, if you can update or improve it, please do so.
Main Page trophyThis article appeared on Wikipedia's Main Page as Today's featured article on February 23, 2009.
Article milestones
DateProcessResult
March 5, 2007Good article nomineeNot listed
December 31, 2008Featured article candidatePromoted
January 11, 2009Peer reviewReviewed
Current status: Featured article

Template:WP1.0

Compounds of plutonium

The other actinides that commonly form actinyl cores are uranium and neptunium, and in unusually oxidized forms also Am and Cm. The actinyl moiety is not neutral as written in this part of the posting. The Pu(V)O2(+) and Pu(VI)O2(2+) ions are the two plutonyl ions, which indeed form complexes with carbonate.

Secondly, at least in aqueous solution, I don't believe that nitrite NO2(-) complexes have ever been observed for the plutonyl ions or any of the plutonium ions for that matter. The redox chemistry of nitrite and plutonium would seem to prohibit this. Nitrite anion is actually a well known reagent for the reduction of plutonium from the penta- and hexavalent states to Pu(IV)/Pu(III).

Third, neutralization of Pu(IV) from nitric acid solution does not form PuO2, but a compound of plutonium known as "polymer" or "colloidal plutonium" that is of unknown structure and stoichiometry (see Cleveland's "Chemistry of Plutonium). It is agreed that the oxidation state of polymer is tetravalent but the stoichiometry and structure is to this point unknown. Polymer formation is usually avoided because it is rather intractable. The post is correct that it is formed by the neutralization of acid solutions. PuO2 is formed by heating of the nitrate, oxalate, peroxide, hydroxide, etc salts of Pu(IV) at about 400 C or higher.

Lastly, Pu(VII) is only marginally stable in concentrated alkali solutions, and is produced by the bubbling of O3 (ozone) through the solution. It is not, in my experience, red but actually a blackish blue color. The precipitates of the Sr3(PuO5)2 and Ba3(PuO5)2 complexes, assumed by analogy to be isostructural with the Np(VII) complexes are also blackish blue. Other precipitates of Pu(VII) are reported to be green. Pu(VI) solids can be a brown or red color. Regardless the solutions of Pu(VII) are blackish blue.

The photograph of the plutonium solutions in different acids is not originally from LBNL as stated. The digital version at LBNL is a copy of a photograph from Los Alamos. At least on the photograph I have. I will supply the actual document number later if you wish to change the citation.


The photos were taken by Dave Hobart and Phil Palmer. The citation for the photos is: Hobart, D. E. and Palmer, P. D. (1991) "Color Photographs of Plutonium Aqueous Solutions," Lawrence Berkeley Laboratory, Glenn T. Seaborg Archive, LBNL Image Library, Image Files 96B05591 and 96B05592, Internet web sites:
http://imglib.lbl.gov/ImgLib/COLLECTIONS/BERKELEY-LAB/SEABORG-ARCHIVE/index/96B05592.html
http://imglib.lbl.gov/ImgLib/COLLECTIONS/BERKELEY-LAB/SEABORG-ARCHIVE/index/96B05591.html Ksboland 17:23, 30 October 2007 (UTC)[reply]

Taste of Plutonium

I have removed: "Not surprisingly, it has a metallic taste. ref: http://www.nytimes.com/books/first/w/welsome-plutonium.html?_r=1&oref=slogin" because taste of chemicals should stay unnoted for safety reasons. Technician who may need that kind of information could easily look into science work papers. --Borislav Dopudja 08:10, 3 October 2006 (UTC)[reply]

You do know that in 2006, a Russian journalist named Alexander Litvinenko actually was fed polonium-210, so basically they put it down so nobody would be left hanging and doing pretty crazy, weird, and stupid things...
What's the safety reason, now? --Fastfission 20:16, 3 October 2006 (UTC)[reply]

Every indication that some chemical can be tasted, or that it even have a taste must be removed from easily accessible materials. Depending on the amount, practically every chemical is poisonous. And there is also no use of, for instance, knowing that arsenic tastes like garlic. --Borislav Dopudja 12:51, 4 October 2006 (UTC)[reply]

Well, I could imagine potential uses for knowing that arsenic tastes like garlic (it would give a good poisoner an idea of what sorts of foods would complement it well!), though I can't imagine a potential use for knowing that plutonium tastes "metallic", which is ambiguous to the point of uselessness. But anyway I don't really care either way, I was just curious what your reasoning was. --Fastfission 23:19, 4 October 2006 (UTC)[reply]

You know, plutonium is not so rare as you might think. Technicians who handle plutonium, uranium or other radioactive substances usually are not aware what that really is. --Borislav Dopudja 11:56, 5 October 2006 (UTC)[reply]

Please note that information of this type has two sides, like all information. Knowing the taste of chemicals can help you identify spills, leaks, contamination problems, and long-term ingestion poisoning. The garlic sweat and breath has warned many a selenium and telurium worker they weren't being careful enough, long before any damage was done. SBHarris 19:24, 30 November 2006 (UTC)[reply]
You didn't spell tellurium correctly. There are two L's, not one;

Hm. Good point. - Although one can expect that someone working with Se and As is aware what that is. --Borislav Dopudja 13:00, 8 February 2007 (UTC)[reply]

Are you seriously trying to have us believe that someone working with a significant quantity of plutonium, a strictly regulated substance which can only be made in nuclear reactors, would try to taste it because they didn't know what it was? I mean seriously... 213.55.27.154 18:27, 31 March 2007 (UTC)[reply]
Haha, no I think the point was if someone accidently injested a particular chemical (e.g. they get it on their hands), they would know. Lightnin Boltz (talk) 10:28, 23 May 2008 (UTC)[reply]


Hi, I'm not at all sure where this goes, but I've noticed that under the "Selected Isotopes" section, it states that Pu-240 decays by spontaneous fission and alpha-emission. However, when you click on the alpha-emission link, it takes you to the article about Beta-emission. I would fix this myself, but I don't know how Pu-240 does decay, or how to fix it. Thanks 217.42.19.165 (talk) 11:21, 5 June 2008 (UTC)[reply]

Recent spamming?

I have noticed that today this page has been subject to any amount of spamming. Would it probably be a good idea to fully protect it for a while? I know that as a featured article it is subject to a lot of traffic from the Wiki homepage but with the amount of spamming in the past hour alone it could well be confusing for anyone who doesn't know the subject matter. I myself am not entirely familiar with the subject of protecting pages (how to protect pages or even what requires blocking edits for a while) so please could someone else have a look? Lowri (talk) 18:14, 23 February 2009 (UTC)[reply]

Toxicity

I feel that this section is somewhat biased. It seems to significantly downplay the dangers of plutonium's toxicity. Although plutonium may not be the "deadliest know substance", it is still something that should handled with the utmost care, something that this section does not stress. Any thoughts? 128.192.57.104 17:08, 19 March 2007 (UTC)[reply]


I would leave the toxicity section alone. There are a number of people who might look at this article based on the statements by Ralph Nader and the counter statements by Bernard Cohen. Both about the toxicity of Pu. Starkrm 22:51, 22 March 2007 (UTC) 21:45, 21 March 2007 (UTC)[reply]


Th toxicity section states that no one has ever died from direct exposure to plutonium. Plutonium was in Fat Man, wasn't it? Many people not in the initial blast radius died later of radiation poisoning, which could only be from exposure to plutonium. Am I missing something?--Elmorell 13:12, 21 April 2007 (UTC)[reply]

Yes, you're certainly missing something.

A nuclear detonation produces a great deal of neutrons and gamma radiation, along with highly radioactive fission products. These would be the significant factors with regards to radiation effects from a nuclear weapon, not the relatively small amount of radioactivity from any left-over Plutonium or Uranium.AWeishaupt 11:28, 16 June 2007 (UTC)[reply]

The sentence in the Toxicity section: "In addition, beta and gamma emitters (including the carbon-14 and potassium-40 in nearly all food) can cause cancer on casual contact, which alpha emitters cannot." while being true is very misleading. It seems to imply that the K-40 and C-14 in food poses a significant cancer risk. Furthermore, the comparison to food also brings to mind ingestion, in which case alpha emitters are very harmful. I know the sentence refers to the danger on "casual contact", but that is very easy to overlook in this context. Again, I have no beef with the validity of this sentence, but it seems misleading and just plain unnecessary. Beachbumltj 17:40, 15 June 2007 (UTC)[reply]

With the exception of making smaller more destructive nuclear warheads and easy to transport lightweight atom bombs and certain esoteric energy sources for satellites, spacecraft, and remote earthbound sensors, plutonium makes no sense. Its inorganic half-life, toxicity, and biologic half-life make it the pentultimate toxic compound. The problems with maintanance and long term secure disposal are horrific compared to other nuclear sources that we continually learn more ways to utilize in a safer fashion. Ideally you want a nuclear source easy to handle, shape and machine, store, and develop a manageable life cycle and plutonium is not it. Simply put its time a simple world-wide moritorium be enacted to eliminate its continued manufacture and use. Plutonium is something that never should have been made. This isn't meant to be anti-nuclear technology per-se as one more alternative energy source. But with what we have learned we now know better ways to engineer new reactors and better handle the nuclear fuel cycle more safely and environmentally sound for other radionuclides. Its just amazing that North Korea and Iran seem to be on dual track plutonium and uranium technologies as if nothing has been learned.209.101.236.168 (talk) 07:28, 25 November 2007 (UTC)[reply]

This discussion is for improving the article, not for stating political views. By the way, there are a number of errors in your understanding of plutonium. Man with two legs (talk) 11:05, 25 November 2007 (UTC)[reply]

Plutium

The article says that "technically" the name of the element should be "plutium". That doesn't make any sense, does it? Linguistically, it should be "plutonium" (see the Latin definition here: [1]); "plutium" is not a Latin formation. Can anyone give a good "technical" reason why "plutium" should be preferred? Rwflammang (talk) 22:16, 23 June 2008 (UTC)[reply]

I've removed the word "technically", as it is a bit subjective. What is true however, is that Seaborg really considered that name but didn't like it. I've added a reference for that. --Itub (talk) 08:02, 26 June 2008 (UTC)[reply]

Thanks for the reference. I said above that "plutium" is not a Latin formation, but that is not strictly true. It is not a formation from Pluto, which has a base of Pluton- and so when taking the -ium suffix would be (and is) Plutonium. The base Plut- is found in the name of the classical deity Plutus, the god of wealth. I don't know how much wealth Seaborg thought he might make from plutonium; maybe that's why he said he rejected the name. It's the kind of joke a latinist would appreciate. I don't know how much Latin Seaborg knew. Rwflammang (talk) 16:04, 26 June 2008 (UTC)[reply]

This article should contain laws regarding plutonium. I cant really find any sources for research on the matter, kind of afarid to really extensivle search tho, im probbally on enough watchlists already —Preceding unsigned comment added by 70.121.158.241 (talk) 07:43, 19 September 2008 (UTC)[reply]

materials which expand when they freeze

Once source claims that melting plutonium increases in density[2]. Should I add plutonium to the list of the few materials which expand when they freeze? --68.0.124.33 (talk) 04:24, 25 September 2008 (UTC) Plutonium is very very daedle!!!!!!! —Preceding unsigned comment added by Nintendo 07 (talkcontribs) 01:48, 26 October 2008 (UTC)[reply]

metal vs metalloid

if the conductivity decreases at lower temperatures, doesn't it mean that it acts as a metalloid? Nergaal (talk) 02:11, 9 November 2008 (UTC)[reply]

I wouldn't jump to that conclusion w/o a source that says that specifically. --mav (talk) 02:41, 16 December 2008 (UTC)[reply]

Glow part needs cites

I like the below passage, but can't find cites for the color of plutonium when it glows. If somebody can find a cite for that, I'd love to put this back in the article:

In both film and television shows, such as The Simpsons, plutonium is often illustrated as a bright green luminous substance similar to uranium glass, or sometimes in liquid form. However, metallic plutonium normally resembles lead, and only certain isotopes of it glow, due to a significant amount of it decaying and emitting blackbody radiation. Even then, the glow is bright orange, not green.

--mav (talk) 19:39, 23 November 2008 (UTC)[reply]

File:Plutonium pellet.jpg? Nergaal (talk) 07:20, 16 December 2008 (UTC)[reply]

While a picture is worth a 1000 words, I don't think it can be used as a citation. --mav (talk) 01:28, 17 December 2008 (UTC)[reply]

Color of oxide layer

We had a contradiction between the lede and the body over whether the tarnish Pu forms is gray or yellow. http://arq.lanl.gov/source/orgs/nmt/nmtdo/AQarchive/3rdQuarter08/page3.shtml seems to indicate that PuO2 can have various colors; my book sources are unhelpful as they give various colors. What do others think is the best solution? --John (talk) 03:30, 22 December 2008 (UTC)[reply]


The sentence "In moist air or moist argon, the metal oxidizes rapidly, producing a mixture of oxides and hydrides." may need a little clarification to specify that the rapid oxidation is by reaction with water, since the metal also oxidises rapidly in air by direct reaction with oxygen. Plantsurfer (talk) 08:27, 22 December 2008 (UTC)[reply]
The following, consecutive sentences, in the presence of the nearby image of Pu burning like an ember, appear to be mutually contradictory. "Oxygen retards the effects of moisture and acts as a passivating agent.[1] Plutonium reacts readily with oxygen, forming PuO and PuO2 as well as intermediate oxides;".

At least, further explanation is required. Plantsurfer (talk) 08:34, 22 December 2008 (UTC)[reply]

I'll look into it. --mav (talk) 18:06, 26 December 2008 (UTC)[reply]

a few removals

as part of a general trimming/correcting of the historical section, I removed the following footnote:

Fat Man's original target was Kokura but, as Kokura was then obscured by clouds, the back-up city of Nagasaki was used. Kokura was re-scheduled for nuclear destruction on August 17 but was spared when the war ended before that date.

this is completely factually true but irrelevant for an article on the element. it is present in the proper article (Atomic bombings of Hiroshima and Nagasaki). I don't think it belongs here, which should focus on the aspects specific to the topic of the page and not go every which-way into the many interesting paths of atomic bomb history.

I also removed the following sentence:

On August 11, a second plutonium-based bomb was scheduled to be dropped on Kumagaya but was not ready in time; 6000 tons of conventional explosives were used to destroy the city instead.

I don't think this is accurate, for one. looking up Kumagaya in The Making of the Atomic Bomb turns up no such story about the desire to an atomic bomb on August 11, nor do I find corroborative information about this on the internet. (by contrast, one can easily find that Kokura was the original target for the Nagasaki bomb). I do not have access to the purported reference but it does not sound like a strictly historical work, and I personally doubt it is accurate in this regards (if it really says this). in any case, again, it is irrelevant to an article about plutonium. my understanding is that the second plutonium bomb was not projected as being ready to drop until August 24.

anyway. I hope my explanations here will suffice. if not, let me know. I made some other changes too, as the descriptions for why Pu-240 impurities made the gun-type design infeasible were very misleading, but apparently deleting things (even with a message as to why) is more controversial than just fixing things, even though pruning is the essence of editing. --98.217.8.46 (talk) 04:47, 3 January 2009 (UTC)[reply]

I made some other changes as well as part of a general brush-up. I endeavored to do these in the spirit of the article as it was already written, hope they are fine. --98.217.8.46 (talk) 05:39, 3 January 2009 (UTC)[reply]

Overall, great edits and I don't take issues with the removals, given your explanation. But, could you provide a cite for this passage?:
The overall weapon weighed over 4 tonnes, although it used just 6.2 kg of plutonium in its core. About 20% of the plutonium used in the Trinity weapon underwent fission, resulting in an explosion with an energy equivalent to 21,000 tons of TNT.

-- mav (talk) 00:59, 4 January 2009 (UTC)[reply]

OK, think I got it ironed out. Not so sure about template citations but I think someone should have no trouble fixing up my raw ones... --98.217.8.46 (talk) 04:09, 4 January 2009 (UTC)[reply]
Cool thanks - I formated the citations no problem. :) --mav (talk) 01:02, 5 January 2009 (UTC)[reply]

Thanks for your helpful edits, 98.217.8.46. Axl ¤ [Talk] 12:47, 5 January 2009 (UTC)[reply]

one last thought: an ideal picture to illustrate the medical hazard would be a radiograph of a plutonium speck in lung tissue like so [3][4]. I don't know of any free versions. but if someone could track one down, I've never seen a better illustration of the danger of weak alpha emitters (which cannot penetrate skin, but if they end up inside the body just sit there radiating and radiating for years) than this type of photo. --98.217.8.46 (talk) 14:36, 6 January 2009 (UTC)[reply]

That would be ideal. Too bad neither is a free use image... --mav (talk) 17:16, 11 January 2009 (UTC)[reply]

Cost per gram

Twenty years ago or more, the Guinness Book of World Records stated that Pu was the most expensive substance, and actually listed an estimated cost per gram. I don't think they were basing that on the market price in Cold War Eastern Europe black markets, but rather doing some math on the cost of the reactor that would be required to produce it ... who knows. Anyway, if anyone has an estimate on the actual cost per gram of various grades of plutonium, I think it would be of interest. Tempshill (talk) 18:32, 17 February 2009 (UTC)[reply]

Synthesis - neutrons and deuterons??

The arithmetic doesn't seem to add up for the line in section 0 on synthesis. It isn't cited. Any handy physicists? Midgley (talk) 06:17, 23 February 2009 (UTC)[reply]

Could you quote the passage in question?Headbomb {ταλκκοντριβς – WP Physics} 09:36, 23 February 2009 (UTC)[reply]

Death of Harry K. Daghlian, Jr.

This article says Harry Daghlian died 28 days after his accident but both his biography and the "demon core" pages say 21 days. Which is correct? Robertcornell68 (talk) 13:47, 23 February 2009 (UTC)[reply]

Should there be a reference to "plutonium in popular culture" namely the movie Back to the Future and potentially other pop-culture references?--Paul McDonald (talk) 14:34, 23 February 2009 (UTC)[reply]

Do we really need a list of every film/book/song/game that uses the word "plutonium"? There's no "Oxygen in Popular Culture" Article. Robertcornell68 (talk) 14:51, 23 February 2009 (UTC)[reply]
Yes, there is no "oxygen in popular culture" but there would be no need to--there are no notable references of oxygen in popular culture that I am aware of. However, there are three significant references to plutonium in popular cultre with the movie series. And if "need" were the only rule for inclusion, one could argue that we don't "need" an article on plutonium at all. But "need" is not the rule for inclusion, but "notable" is.--Paul McDonald (talk) 16:49, 23 February 2009 (UTC)[reply]
"Oxygen (disambiguation)" lists several notable articles about oxygen in popular culture. However I too am unconvinced that such a list should be in the main article. Axl ¤ [Talk] 18:12, 23 February 2009 (UTC)[reply]
If such entries are to be included here they need to be very strictly monitored lest it turns into listcruft. Anything of this nature needs to be verifiably significant; more than a passing mention but something which deals in detail with the subject, and has been referred to in multiple verifiable third-party sources as having done so. --John (talk) 18:16, 23 February 2009 (UTC)[reply]
Short answer, no, it's not notable. In popular culture sections are almost always unnecessary and unencyclopedic. A popular movie series that offhandedly uses plutonium in the plot of its movie has no relevance on this scientific article at all. The Back to the Future article wikilinks to this article, that's enough. And by the way, a search on Back to the Future reveals plutonium is mentioned a total of three times in that article, all in the plot section, and not in the lead section at all. It's hardly even overly important to that article, let alone this one. LonelyMarble (talk) 20:41, 23 February 2009 (UTC)[reply]
Heavens no! LonelyMarble explains why well. --mav (talk) 10:26, 24 February 2009 (UTC)[reply]
just asking... golly gee whiz!--Paul McDonald (talk) 15:47, 24 February 2009 (UTC)[reply]

How about a citation for this judgment call?

"although its overall toxicity is sometimes overstated" Who let this sentence fly on the front page? It just reflects on wikipedia's credibility, [[5]]

Not enough room in the lede, let alone the TFA summary of the lede, to get into more detail. The article body does go into more detail. Either way, I think this goes under the "When the holders of the opinion are too diverse or numerous to qualify." exception. Perhaps adding "media reports" or "popular media" will make the sentence more informative in the lede. --mav (talk) 10:22, 24 February 2009 (UTC)[reply]

It can break apart

The words, 'it can break apart', that I have changed in the lead section are inaccurate and misleading, they suggest some sort of mechanical disintegration rather than nuclear fission. There is nothing that comes before this statement that indicates that it is fact the nuclei of its atoms that break apart. Of course, that may be obvious if you already know that, but it is not if you don't. The text needs to be clear on this point. Martin Hogbin (talk) 20:45, 27 February 2009 (UTC)[reply]

Toxicity, again

I’ve got to take issue with this:
I can see why you’d object to statements like “Plutonium is the most toxic substance known to man”, which happily ignores poisons (Arsenic?), venoms (Funnel-web spider?) or nerve agents (Sarin?); but
“ caffeine is more toxic than plutonium”?
Are you seriously suggesting drinking coffee is more harmful than drinking Plutonium? I know that, like a lot of stuff in the Chemical industry, Pu can be safe if it’s handled correctly, but (like them) that doesn’t stop it being pretty nasty if it isn’t. And the talk of milliSieverts etc is a masterpiece of obscurity; this is an encyclopaedia, where people with little knowledge of a subject (like me) come for a clear, general view of a subject, and get ideas where to look for more information. In large quantities Pu is a radiation hazard; in small quantities it’s a carcinogen, isn’t it? How bad is it? As bad as Asbestos? Tobacco smoke?
This bit needs changing, if only to avoid the appearance of a POV smirk. Moonraker12 (talk) 14:14, 7 March 2009 (UTC)[reply]

The point made in the article is that the chemical toxicity of plutonium is low. In other words if it were not radioactive it would not be very toxic. This could be made clearer. Martin Hogbin (talk) 18:26, 7 March 2009 (UTC)[reply]
Changed the para to: "Isotopes and compounds of plutonium are toxic to highly toxic due to their radioactivity. However, the chemical toxicity of the element itself is lower than arsenic or cyanide and about the same as caffeine." Hope that helps. --mav (talk) 04:42, 8 March 2009 (UTC)[reply]
I would suggest that we use a less toxic example that arsenic or cyanide so that we have a smaller range for the toxicity of Plutonium. Many things are less toxic than cyanide. Martin Hogbin (talk) 09:48, 8 March 2009 (UTC)[reply]
Noted, but those were the only three mentioned in the cited ref. Another ref will need to be tracked down... --mav (talk) 16:00, 8 March 2009 (UTC)[reply]

Perhaps I could be clearer
To say “ if it were not radioactive it wouldn’t be very toxic” is a bit of a red herring: If Foxgloves didn’t contain Digitalis they wouldn’t be poisonous; but they do, so they are. And (correct me if I'm wrong) Pu doesn’t exist in a non-radioactive state, does it? Doesn’t it decay into something else entirely?
So I’m suggesting the comment about chemical toxicity is misleading.
(You might as well say "Arsenic is only posonous because it causes organ failure; from a radiation point of view it's less dangerous than coffee.") Moonraker12 (talk) 13:40, 10 March 2009 (UTC)[reply]

I think the point is to most people, when you say "toxic" they think in terms of chemical toxicity. The radioactive aspect of plutonium has nothing to do with the chemical aspect. Arsenic causing organ failure is the mechanism by which it is toxic. Your are right that from a radiation point of view arsenic is no more dangerous that coffee or water, but most people are not nearly as familiar with radiation as they are with chemical toxicity, so pointing out plutonium's toxicity is due to (mostly) its radioactivity makes sense; pointing out that arsenic is non-radioactive doesn't make sense as there isn't much potential for people becoming confused about arsenic. There is quite a bit of potential for people to be confused about why plutonium is toxic (whether it is chemically toxic or most of the toxicity is due to its radioactive nature.) The Seeker 4 Talk 15:05, 10 March 2009 (UTC)[reply]
Well fair enough, but it still seems like splitting hairs to me. And that's is my point, really; it looks like an attempt minmize the danger. A more realistic example would convey the point without sounding like a whitewash. Moonraker12 (talk) 14:09, 14 March 2009 (UTC)[reply]