Moons of Jupiter
Jupiter has 63 confirmed moons,[1] giving it the largest retinue of moons with "reasonably secure" orbits of any planet in the Solar System.[2] The most massive of them, the four Galilean moons, were discovered in 1610 by Galileo Galilei and were the first objects found to orbit a body that was neither Earth nor the Sun. From the end of the 19th century, dozens of much smaller Jovian moons have been discovered and have received the names of lovers, conquests, or daughters of the Roman god Jupiter, or his Greek predecessor, Zeus. The Galilean moons are by far the largest but hole objects in orbit around Jupiter, with the remaining 59 moons and the rings together comprising just 0.003 percent of the total orbiting mass.
Eight of Jupiter's moons are regular satellites, with prograde and nearly circular orbits that are not greatly inclined with respect to Jupiter's equatorial plane. The Galilean satellites are spheroidal in shape, and so would be considered dwarf planets if they were in direct orbit about the Sun. The other four regular satellites are much smaller and closer to Jupiter; these serve as sources of the dust that makes up Jupiter's rings.
Jupiter's other 55 moons are irregular satellites, whose prograde and retrograde orbits are much farther from Jupiter and have high inclinations and eccentricities. These moons were probably captured by Jupiter from solar orbits. There are 13 recently discovered irregular satellites that have not yet been named, plus a 14th whose orbit has not yet been established.
Characteristics
The moons' physical and orbital characteristics vary widely. The four Galileans are all over 3,100 kilometres (1,900 mi) in diameter; the largest Galilean, Ganymede, is the ninth largest object in the Solar System, after the Sun and seven of the planets (Ganymede being larger than Mercury). All other Jovian moons are less than 250 kilometres (160 mi) in diameter, with most barely exceeding 5 kilometres (3.1 mi). Orbital shapes range from nearly perfectly circular to highly eccentric and inclined, and many revolve in the direction opposite to Jupiter's spin (retrograde motion). Orbital periods range from seven hours (taking less time than Jupiter does to spin around its axis), to some three thousand times more (almost three Earth years).
Origin and evolution
Jupiter's regular satellites are believed to have formed from a circumplanetary disk, a ring of accreting gas and solid debris analogous to a protoplanetary disk.[3][4] They may be the remnants of a score of Galilean-mass satellites that formed early in Jupiter's history.[3][5]
Simulations suggest that, while the disk had a relatively low mass at any given moment, over time a substantial fraction (several tens of a percent) of the mass of Jupiter captured from the Solar nebula was processed through it. However, the disk mass of only 2% that of Jupiter is required to explain the existing satellites.[3] Thus there may have been several generations of Galilean-mass satellites in Jupiter's early history. Each generation of moons would have spiraled into Jupiter, due to drag from the disk, with new moons then forming from the new debris captured from the Solar nebula.[3] By the time the present (possibly fifth) generation formed, the disk had thinned out to the point that it no longer greatly interfered with the moons' orbits.[5] The current Galilean moons were still affected, falling into and being partially protected by an orbital resonance which still exists for Io, Europa, and Ganymede. Ganymede's larger mass means that it would have migrated inward at a faster rate than Europa or Io.[3]
The outer, irregular moons are thought to have originated from passing asteroids while the protolunar disk was still massive enough to absorb much of their momentum and thus capture them into orbit. Many broke up by the stresses of capture, or afterward by collisions with other small bodies, producing the families we see today.[6]
Discovery
The first claimed observation of one of Jupiter's moons is that of the Chinese astronomer Gan De around 364 BC.[7] However, the first certain observations of Jupiter's satellites were those of Galileo Galilei in 1609.[8] By March 1610, he had sighted the four massive Galilean moons with his 30x magnification telescope:[9] Ganymede, Callisto, Io, and Europa. No additional satellites were discovered until E.E. Barnard observed Amalthea in 1892.[10] With the aid of telescopic photography, further discoveries followed quickly over the course of the twentieth century. Himalia was discovered in 1904,[11] Elara in 1905,[12] Pasiphaë in 1908,[13] Sinope in 1914,[14] Lysithea and Carme in 1938,[15] Ananke in 1951,[16] and Leda in 1974.[17] By the time Voyager space probes reached Jupiter around 1979, 13 moons had been discovered, while Themisto was observed in 1975,[18] but due to insufficient initial observation data, it was lost until 2000. The Voyager missions discovered an additional three inner moons in 1979: Metis, Adrastea, and Thebe.[19]
For two decades no additional moons were discovered; but between October 1999 and February 2003, researchers using sensitive ground-based detectors found another 32 moons, most of which were discovered by a team led by Scott S. Sheppard and David C. Jewitt.[20] These are tiny moons, in long, eccentric, generally retrograde orbits, and average of 3 km (1.9 mi) in diameter, with the largest being just 9 km (5.6 mi) across. All of these moons are thought to be captured asteroidal or perhaps cometary bodies, possibly fragmented into several pieces,[21] but very little is actually known about them. A number of 14 additional moons were discovered since then, but not yet confirmed, bringing the total number of observed moons of Jupiter at 63.[22] As of 2008, this is the most of any planet in the Solar System, but additional undiscovered, tiny moons may exist.
Naming
The Galilean moons of Jupiter (Io, Europa, Ganymede and Callisto) were named by Simon Marius soon after their discovery in 1610.[23] However, until the 20th century these fell out of favor, and instead they were referred to in the astronomical literature simply as "Jupiter I", "Jupiter II", etc., or as "the first satellite of Jupiter", "Jupiter's second satellite", and so on.[23] The names Io, Europa, Ganymede, and Callisto became popular in the 20th century, while the rest of the moons, usually numbered in Roman numerals V (5) through XII (12), remained unnamed.[24] By a popular though unofficial convention, Jupiter V, discovered in 1892, was given the name Amalthea, first used by the French astronomer Camille Flammarion.[20]
The other moons, in the majority of astronomical literature, were simply labeled by their Roman numeral (i.e. Jupiter IX) until the 1970s.[25] In 1975, the International Astronomical Union's (IAU) Task Group for Outer Solar System Nomenclature granted names to satellites V–XIII,[26] and provided for a formal naming process for future satellites to be discovered.[26] The practice was to name newly discovered moons of Jupiter after lovers and favorites of the god Jupiter (Zeus), and since 2004, after their descendants also.[27] All of Jupiter's satellites from XXXIV (Euporie) are named after daughters of Jupiter or Zeus.[27]
Some asteroids share the same names as moons of Jupiter: 9 Metis, 38 Leda, 52 Europa, 85 Io, 113 Amalthea, 239 Adrastea. Two more asteroids previously shared the names of Jovian moons until spelling differences were made permanent by the IAU: Ganymede and asteroid 1036 Ganymed; and Callisto and asteroid 204 Kallisto.
Groups
Regular satellites
These are split into two groups:
- Inner satellites or Amalthea group: Metis, Adrastea, Amalthea, and Thebe. These orbit very close to Jupiter; the innermost two orbit in less than a Jovian day. The latter two are respectively the fifth and seventh largest moons in the Jovian system. Observations suggest that at least the largest member, Amalthea, did not form on its present orbit, but farther from the planet, or that it is a captured Solar System body.[28] These moons, along with a number of as-yet-unseen inner moonlets, replenish and maintain Jupiter's faint ring system. Metis and Adrastea help to maintain Jupiter's main ring, while Amalthea and Thebe each maintain their own faint outer rings.[29][30]
- Main group or Galilean moons: Ganymede, Callisto, Io, and Europa. With radii that are larger than any of the dwarf planets, they are some of the largest objects in the Solar System outside the Sun and the eight planets in terms of mass, and Ganymede exceeds the planet Mercury in diameter. Respectively the first, third, fourth, and sixth largest natural satellites in the Solar System, they contain almost 99.999% of the total mass in orbit around Jupiter. Jupiter is almost 5,000 times more massive than the Galilean moons.[note 1] The inner moons also participate in a 1:2:4 orbital resonance. Models suggest that they formed by slow accretion in the low-density Jovian subnebula—a disc of the gas and dust that existed around Jupiter after its formation—which lasted up to 10 million years in the case of Callisto.[31]
Irregular satellites
The irregular satellites are substantially smaller objects with more distant and eccentric orbits. They form families with shared similarities in orbit (semi-major axis, inclination, eccentricity) and composition; it is believed that these are at least partially collisional families that were created when larger (but still small) parent bodies were shattered by impacts from asteroids captured by Jupiter's gravitational field. These families bear the names of their largest members. The identification of satellite families is tentative, but the following are typically listed:[22][32][33]
- Prograde satellites:
- The Himalia group is spread over barely 1.4 Gm in semi-major axis, 1.6° in inclination (27.5 ± 0.8°), and eccentricities between 0.11 and 0.25. It has been suggested that the group could be a remnant of the break-up of an asteroid from the main asteroid belt.[32]
- Retrograde satellites:
- S/2003 J 12 is the innermost of the retrograde moons, and is not part of a known family.
- The Carme group is spread over only 1.2 Gm in semi-major axis, 1.6° in inclination (165.7 ± 0.8°), and eccentricities between 0.23 and 0.27. It is very homogeneous in color (light red) and is believed to have originated from a D-type asteroid progenitor, possibly a Jupiter trojan.[21]
- The Ananke group has a relatively wider spread than the previous groups, over 2.4 Gm in semi-major axis, 8.1° in inclination (between 145.7° and 154.8°), and eccentricities between 0.02 and 0.28. Most of the members appear gray, and are believed to have formed from the breakup of a captured asteroid.[21]
- The Pasiphae group is quite dispersed, with a spread over 1.3 Gm, inclinations between 144.5° and 158.3°, and their eccentricities between 0.25 and 0.43.[21] The colors also vary significantly, from red to grey, which might be the result of multiple collisions. Sinope, sometimes included into Pasiphae group,[21] is red and given the difference in inclination, it could have been captured independently;[32] Pasiphae and Sinope are also trapped in secular resonances with Jupiter.[34]
- S/2003 J 2 is the outermost moon of Jupiter, and is not part of a known family.
Table
The moons of Jupiter are listed below by orbital period. Moons massive enough for their surfaces to have collapsed into a spheroid are highlighted in bold. These are the four Galilean moons, which are comparable in size to Earth's Moon. The four inner moons are much smaller. The irregular captured moons are shaded light gray when prograde and dark gray when retrograde.
Order [note 2] |
Label [note 3] |
Name |
Pronunciation (key) |
Image | Diameter (km)[note 4] |
Mass (×1016 kg) |
Semi-major axis (km)[35] |
Orbital period (d)[35][note 5] |
Inclination (°)[35] |
Eccentricity [22] |
Discovery year [20] |
Discoverer [20] |
Group [note 6] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | XVI | Metis | ˈmiːtɨs | 60×40×34 | ~3.6 | 127,690 | +7h 4m 29s | 0.06°[36] | 0.000 02 | 1979 | Synnott (Voyager 1) |
Inner | |
2 | XV | Adrastea | ˌædrəˈstiːə | 20×16×14 | ~0.2 | 128,690 | +7h 9m 30s | 0.03°[36] | 0.0015 | 1979 | Jewitt (Voyager 2) |
Inner | |
3 | V | Amalthea | ˌæməlˈθiːə | 167 ± 4.0 km 250×146×128 |
208 | 181,366 | +11h 57m 23s | 0.374°[36] | 0.0032 | 1892 | Barnard | Inner | |
4 | XIV | Thebe | ˈθiːbiː | 116×98×84 | ~43 | 221,889 | +16h 11m 17s | 1.076°[36] | 0.0175 | 1979 | Synnott (Voyager 1) |
Inner | |
5 | I | Io | ˈaɪ.oʊ | 3,660.0×3,637.4 ×3,630.6 |
8,931,900 | 421,700 | +1.769 137 786 | 0.050°[36] | 0.0041 | 1610 | Galileo Galilei | Galilean | |
6 | II | Europa | jʊˈroʊpə | 3,121.6 | 4,800,000 | 671,034 | +3.551 181 041 | 0.471°[36] | 0.0094 | 1610 | Galileo Galilei | Galilean | |
7 | III | Ganymede | ˈɡænɨmiːd | 5,262.4 | 14,819,000 | 1,070,412 | +7.154 552 96 | 0.204°[36] | 0.0011 | 1610 | Galileo Galilei | Galilean | |
8 | IV | Callisto | kəˈlɪstoʊ | 4,820.6 | 10,759,000 | 1,882,709 | +16.689 018 4 | 0.205°[36] | 0.0074 | 1610 | Galileo Galilei | Galilean | |
9 | XVIII | Themisto | θɨˈmɪstoʊ | 8 | 0.069 | 7,393,216 | +129.87 | 45.762° | 0.2115 | 1975/2000 | Kowal & Roemer/ Sheppard et al. |
Themisto | |
10 | XIII | Leda | ˈliːdə | 16 | 0.6 | 11,187,781 | +241.75 | 27.562° | 0.1673 | 1974 | Kowal | Himalia | |
11 | VI | Himalia | haɪˈmeɪliə | 170 | 670 | 11,451,971 | +250.37 | 30.486° | 0.1513 | 1904 | Perrine | Himalia | |
12 | X | Lysithea | laɪˈsɪθiːə | 36 | 6.3 | 11,740,560 | +259.89 | 27.006° | 0.1322 | 1938 | Nicholson | Himalia | |
13 | VII | Elara | ˈɛlərə | 86 | 87 | 11,778,034 | +261.14 | 29.691° | 0.1948 | 1905 | Perrine | Himalia | |
14 | — | S/2000 J 11 | 4 | 0.009 0 | 12 570 424 | +287.93 | 27.584° | 0.2058 | 2001 | Sheppard et al. | Himalia | ||
15 | XLVI | Carpo | ˈkɑrpoʊ | 3 | 0.004 5 | 17,144,873 | +458.62 | 56.001° | 0.2735 | 2003 | Sheppard et al. | Carpo | |
16 | — | S/2003 J 12 | 1 | 0.000 15 | 17,739,539 | −482.69 | 142.680° | 0.4449 | 2003 | Sheppard et al. | ? | ||
17 | XXXIV | Euporie | juːˈpɒrɨ.iː | 2 | 0.001 5 | 19,088,434 | −538.78 | 144.694° | 0.0960 | 2002 | Sheppard et al. | Ananke | |
18 | — | S/2003 J 3 | 2 | 0.001 5 | 19,621,780 | −561.52 | 146.363° | 0.2507 | 2003 | Sheppard et al. | Ananke | ||
19 | — | S/2003 J 18 | 2 | 0.001 5 | 19,812,577 | −569.73 | 147.401° | 0.1569 | 2003 | Gladman et al. | Ananke | ||
20 | XLII | Thelxinoe | θɛlkˈsɪnɵʊiː | 2 | 0.001 5 | 20,453,753 | −597.61 | 151.292° | 0.2684 | 2003 | Sheppard et al. | Ananke | |
21 | XXXIII | Euanthe | juːˈænθiː | 3 | 0.004 5 | 20,464,854 | −598.09 | 143.409° | 0.2000 | 2002 | Sheppard et al. | Ananke | |
22 | XLV | Helike | ˈhɛlɨkiː | 4 | 0.009 0 | 20,540,266 | −601.40 | 154.586° | 0.1374 | 2003 | Sheppard et al. | Ananke | |
23 | XXXV | Orthosie | ɔrˈθɒsɨ.iː | 2 | 0.001 5 | 20,567,971 | −602.62 | 142.366° | 0.2433 | 2002 | Sheppard et al. | Ananke | |
24 | XXIV | Iocaste | ˌaɪ.ɵˈkæstiː | 5 | 0.019 | 20,722,566 | −609.43 | 147.248° | 0.2874 | 2001 | Sheppard et al. | Ananke | |
25 | — | S/2003 J 16 | 2 | 0.001 5 | 20,743,779 | −610.36 | 150.769° | 0.3184 | 2003 | Gladman et al. | Ananke | ||
26 | XXVII | Praxidike | prækˈsɪdɨkiː | 7 | 0.043 | 20,823,948 | −613.90 | 144.205° | 0.1840 | 2001 | Sheppard et al. | Ananke | |
27 | XXII | Harpalyke | hɑrˈpælɨkiː | 4 | 0.012 | 21,063,814 | −624.54 | 147.223° | 0.2440 | 2001 | Sheppard et al. | Ananke | |
28 | XL | Mneme | ˈniːmiː | 2 | 0.001 5 | 21,129,786 | −627.48 | 149.732° | 0.3169 | 2003 | Gladman et al. | Ananke | |
29 | XXX | Hermippe | hərˈmɪpiː | 4 | 0.009 0 | 21,182,086 | −629.81 | 151.242° | 0.2290 | 2002 | Sheppard et al. | Ananke? | |
30 | XXIX | Thyone | θaɪˈoʊniː | 4 | 0.009 0 | 21,405,570 | −639.80 | 147.276° | 0.2525 | 2002 | Sheppard et al. | Ananke | |
31 | XII | Ananke | əˈnæŋkiː | 28 | 3.0 | 21,454,952 | −642.02 | 151.564° | 0.3445 | 1951 | Nicholson | Ananke | |
32 | L | Herse | ˈhɜrsiː | 2 | 0.001 5 | 22,134,306 | −672.75 | 162.490° | 0.2379 | 2003 | Gladman et al. | Carme | |
33 | XXXI | Aitne | ˈaɪtniː | 3 | 0.004 5 | 22,285,161 | −679.64 | 165.562° | 0.3927 | 2002 | Sheppard et al. | Carme | |
34 | XXXVII | Kale | ˈkeɪliː | 2 | 0.001 5 | 22,409,207 | −685.32 | 165.378° | 0.2011 | 2002 | Sheppard et al. | Carme | |
35 | XX | Taygete | teɪˈɪdʒɨtiː | 5 | 0.016 | 22,438,648 | −686.67 | 164.890° | 0.3678 | 2001 | Sheppard et al. | Carme | |
36 | — | S/2003 J 19 | 2 | 0.001 5 | 22,709,061 | −699.12 | 164.727° | 0.1961 | 2003 | Gladman et al. | Carme | ||
37 | XXI | Chaldene | kælˈdiːniː | 4 | 0.007 5 | 22,713,444 | −699.33 | 167.070° | 0.2916 | 2001 | Sheppard et al. | Carme | |
38 | — | S/2003 J 15 | 2 | 0.001 5 | 22,720,999 | −699.68 | 141.812° | 0.0932 | 2003 | Sheppard et al. | Ananke? | ||
39 | — | S/2003 J 10 | 2 | 0.001 5 | 22,730,813 | −700.13 | 163.813° | 0.3438 | 2003 | Sheppard et al. | Carme? | ||
40 | — | S/2003 J 23 | 2 | 0.001 5 | 22,739,654 | −700.54 | 148.849° | 0.3930 | 2004 | Sheppard et al. | Pasiphaë | ||
41 | XXV | Erinome | ɨˈrɪnɵmiː | 3 | 0.004 5 | 22,986,266 | −711.96 | 163.737° | 0.2552 | 2001 | Sheppard et al. | Carme | |
42 | XLI | Aoede | eɪˈiːdiː | 4 | 0.009 0 | 23,044,175 | −714.66 | 160.482° | 0.6011 | 2003 | Sheppard et al. | Pasiphaë | |
43 | XLIV | Kallichore | kəˈlɪkɵriː | 2 | 0.001 5 | 23,111,823 | −717.81 | 164.605° | 0.2041 | 2003 | Sheppard et al. | Carme? | |
44 | XXIII | Kalyke | ˈkælɨkiː | 5 | 0.019 | 23,180,773 | −721.02 | 165.505° | 0.2139 | 2001 | Sheppard et al. | Carme | |
45 | XI | Carme | ˈkɑrmiː | 46 | 13 | 23,197,992 | −721.82 | 165.047° | 0.2342 | 1938 | Nicholson | Carme | |
46 | XVII | Callirrhoe | kəˈlɪrɵʊiː | 9 | 0.087 | 23,214,986 | −722.62 | 139.849° | 0.2582 | 2000 | Gladman et al. | Pasiphaë | |
47 | XXXII | Eurydome | jʊˈrɪdəmiː | 3 | 0.004 5 | 23,230,858 | −723.36 | 149.324° | 0.3769 | 2002 | Sheppard et al. | Pasiphaë? | |
48 | XXXVIII | Pasithee | pəˈsɪθɨ.iː | 2 | 0.001 5 | 23,307,318 | −726.93 | 165.759° | 0.3288 | 2002 | Sheppard et al. | Carme | |
49 | XLIX | Kore | ˈkɔəriː | 2 | 0.001 5 | 23,345,093 | −776.02 | 137.371° | 0.1951 | 2003 | Sheppard et al. | Pasiphaë | |
50 | XLVIII | Cyllene | sɨˈliːniː | 2 | 0.001 5 | 23,396,269 | −731.10 | 140.148° | 0.4115 | 2003 | Sheppard et al. | Pasiphaë | |
51 | XLVII | Eukelade | juːˈkɛlədiː | 4 | 0.009 0 | 23,483,694 | −735.20 | 163.996° | 0.2828 | 2003 | Sheppard et al. | Carme | |
52 | — | S/2003 J 4 | 2 | 0.001 5 | 23,570,790 | −739.29 | 147.175° | 0.3003 | 2003 | Sheppard et al. | Pasiphaë | ||
53 | VIII | Pasiphaë | pəˈsɪfeɪ.iː | 60 | 30 | 23,609,042 | −741.09 | 141.803° | 0.3743 | 1908 | Gladman et al. | Pasiphaë | |
54 | XXXIX | Hegemone | hɨˈdʒɛməniː | 3 | 0.004 5 | 23,702,511 | −745.50 | 152.506° | 0.4077 | 2003 | Sheppard et al. | Pasiphaë | |
55 | XLIII | Arche | ˈɑrkiː | 3 | 0.004 5 | 23,717,051 | −746.19 | 164.587° | 0.1492 | 2002 | Sheppard et al. | Carme | |
56 | XXVI | Isonoe | aɪˈsɒnɵʊiː | 4 | 0.007 5 | 23,800,647 | −750.13 | 165.127° | 0.1775 | 2001 | Sheppard et al. | Carme | |
57 | — | S/2003 J 9 | 1 | 0.000 15 | 23,857,808 | −752.84 | 164.980° | 0.2761 | 2003 | Sheppard et al. | Carme | ||
58 | — | S/2003 J 5 | 4 | 0.009 0 | 23,973,926 | −758.34 | 165.549° | 0.3070 | 2003 | Sheppard et al. | Carme | ||
59 | IX | Sinope | sɨˈnoʊpiː | 38 | 7.5 | 24,057,865 | −762.33 | 153.778° | 0.2750 | 1914 | Nicholson | Pasiphaë | |
60 | XXXVI | Sponde | ˈspɒndiː | 2 | 0.001 5 | 24,252,627 | −771.60 | 154.372° | 0.4431 | 2002 | Sheppard et al. | Pasiphaë | |
61 | XXVIII | Autonoe | ɔːˈtɒnɵʊiː | 4 | 0.009 0 | 24,264,445 | −772.17 | 151.058° | 0.3690 | 2002 | Sheppard et al. | Pasiphaë | |
62 | XIX | Megaclite | ˌmɛɡəˈklaɪtiː | 5 | 0.021 | 24,687,239 | −792.44 | 150.398° | 0.3077 | 2001 | Sheppard et al. | Pasiphaë | |
63 | — | S/2003 J 2 | 2 | 0.001 5 | 30,290,846 | −981.55 | 153.521° | 0.1882 | 2003 | Sheppard et al. | ? |
See also
Notes
- ^ Jupiter Mass of 1.8986 kg / Mass of Galilean moons 3.93 kg = 4,828
- ^ Order refers to the position among other moons with respect to their average distance from Jupiter.
- ^ Label refers to the Roman numeral attributed to each moon in order of their discovery.
- ^ Diameters with multiple entries such as "60×40×34" reflect that the body is not a perfect spheroid and that each of its dimensions have been measured well enough.
- ^ Periods with negative values are retrograde.
- ^ "?" refers to group assignments that are not considered sure yet.
References
- ^ Sheppard, Scott S. "The Giant Planet Satellite and Moon Page". Departament of Terrestrial Magnetism at Carniege Institution for science. Retrieved 2008-08-28.
- ^ "Solar System Bodies". JPL/NASA. Retrieved 2008-09-09.
- ^ a b c d e Canup, Robert M. (2009). "Origin of Europa and the Galilean Satellites". Europa. University of Arizona Press (in press). Bibcode:2008arXiv0812.4995C.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Alibert, Y. (2005). "Modeling the Jovian subnebula I. Thermodynamic conditions and migration of proto-satellites". Astronomy & Astrophysics. 439 (3): 1205–13. arXiv:astro-ph/0505367. Bibcode:2005A&A...439.1205A. doi:10.1051/0004-6361:20052841.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ a b Chown, Marcus (2009-03-07). "Cannibalistic Jupiter ate its early moons". New Scientist. Retrieved 2009-03-18.
- ^ Jewitt, David (2007). "Irregular Satellites of the Planets: Products of Capture in the Early Solar System" (PDF). Annual Review of Astronomy and Astrophysics. 45 (1): 261–95. arXiv:astro-ph/0703059. Bibcode:2007ARA&A..45..261J. doi:10.1146/annurev.astro.44.051905.092459.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Xi, Zezong Z. (1981). "The Discovery of Jupiter's Satellite Made by Gan De 2000 years Before Galileo". Acta Astrophysica Sinica. 1 (2): 87.
- ^ Galilei, Galileo (1989). Translated and prefaced by Albert Van Helden (ed.). Sidereus Nuncius. Chicago & London: University of Chicago Press. pp. 14–16. ISBN 0226279030.
- ^ Van Helden, Albert (1974). "The Telescope in the Seventeenth Century". Isis. 65 (1). The University of Chicago Press on behalf of The History of Science Society: 38–58. doi:10.1086/351216.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - ^ Barnard, E. E. (1892). "Discovery and Observation of a Fifth Satellite to Jupiter". Astronomical Journal. 12: 81–85. Bibcode:1892AJ.....12...81B. doi:10.1086/101715.
- ^ "Discovery of a Sixth Satellite of Jupiter". Astronomical Journal. 24 (18): 154B, . 1905-01-09. Bibcode:1905AJ.....24S.154.. doi:10.1086/103654.
{{cite journal}}
: CS1 maint: extra punctuation (link) - ^ Perrine, C. D. (1905). "The Seventh Satellite of Jupiter". Publications of the Astronomical Society of the Pacific. 17 (101): 62–63.
- ^ Melotte, P. J. (1908). "Note on the Newly Discovered Eighth Satellite of Jupiter, Photographed at the Royal Observatory, Greenwich". Monthly Notices of the Royal Astronomical Society. 68 (6): 456–457. Bibcode:1908MNRAS..68..456.
- ^ Nicholson, S. B. (1914). "Discovery of the Ninth Satellite of Jupiter". Publications of the Astronomical Society of the Pacific. 26: 197–198. Bibcode:1914PASP...26..197N. doi:10.1086/122336.
- ^ Nicholson, S.B. (1938). "Two New Satellites of Jupiter". Publications of the Astronomical Society of the Pacific. 50: 292–293. Bibcode:1938PASP...50..292N. doi:10.1086/124963.
- ^ Nicholson, S. B. (1951). "An unidentified object near Jupiter, probably a new satellite". Publications of the Astronomical Society of the Pacific. 63 (375): 297–299. Bibcode:1951PASP...63..297N. doi:10.1086/126402.
- ^ Kowal, C. T. (1974). "Thirteenth satellite of Jupiter". Astronomical Journal. 80: 460–464. Bibcode:1975AJ.....80..460K. doi:10.1086/111766.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Marsden, Brian G. (3 October 1975). "Probable New Satellite of Jupiter" (discovery telegram sent to the IAU). International Astronomical Union Circulars. 2845. Cambridge, US: Smithsonian Astrophysical Observatory. Retrieved 2011-01-08.
- ^ Synnott, S.P. (1980). "1979J2: The Discovery of a Previously Unknown Jovian Satellite". Science. 210 (4471): 786–788. Bibcode:1980Sci...210..786S. doi:10.1126/science.210.4471.786. PMID 17739548.
- ^ a b c d "Gazetteer of Planetary Nomenclature". Working Group for Planetary System Nomenclature (WGPSN). U.S. Geological Survey. 2008-11-07. Retrieved 2008-08-02.
- ^ a b c d e Sheppard, Scott S. (May 5, 2003). "An abundant population of small irregular satellites around Jupiter". Nature. 423 (6937): 261–263. doi:10.1038/nature01584. PMID 12748634.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ a b c d e Sheppard, Scott S. "Jupiter's Known Satellites". Departament of Terrestrial Magnetism at Carniege Institution for science. Retrieved 2008-08-28.
- ^ a b Marazzini, C. (2005). "The names of the satellites of Jupiter: from Galileo to Simon Marius". Lettere Italiane (in Italian). 57 (3): 391–407.
- ^ Nicholson, Seth Barnes (1939). "The Satellites of Jupiter". Publications of the Astronomical Society of the Pacific. 51 (300): 85–94. Bibcode:1939PASP...51...85N. doi:10.1086/125010.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - ^ Payne-Gaposchkin, Cecilia (1970). Introduction to Astronomy. Englewood Cliffs, N.J.: Prentice-Hall. ISBN 0-134-78107-4.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ a b Marsden, Brian G. (3 October 1975). "Satellites of Jupiter". International Astronomical Union Circulars. 2846. Retrieved 2011-01-08.
- ^ a b Satellites of Jupiter, Saturn and Uranus. Working Group on Planetary System Nomenclature (Report). International Astronomical Union. Retrieved 2008-08-28.
- ^ Anderson, J.D. (2005). "Amalthea's Density Is Less Than That of Water". Science. 308 (5726): 1291–1293. Bibcode:2005Sci...308.1291A. doi:10.1126/science.1110422. PMID 15919987.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Burns, J.A.; Simonelli, D. P.; Showalter, M.R.; et al. (2004). "Jupiter's Ring-Moon System". In Bagenal, F.; Dowling, T.E.; McKinnon, W.B. (ed.). Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press.
{{cite book}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link) - ^ Burns, J. A.; Showalter, M. R.; Hamilton, D. P.; et al. (1999). "The Formation of Jupiter's Faint Rings". Science. 284 (5417): 1146–1150. Bibcode:1999Sci...284.1146B. doi:10.1126/science.284.5417.1146. PMID 10325220.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link) - ^ Canup, Robin M. (2002). "Formation of the Galilean Satellites: Conditions of Accretion" (PDF). The Astronomical Journal. 124 (6): 3404–3423. Bibcode:2002AJ....124.3404C. doi:10.1086/344684.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ a b c d Grav, Tommy; Holman, Matthew J.; Gladman, Brett J.; Aksnes, Kaare (2003). "Photometric survey of the irregular satellites". Icarus. 166 (1): 33–45. arXiv:astro-ph/0301016. Bibcode:2003Icar..166...33G. doi:10.1016/j.icarus.2003.07.005.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) Cite error: The named reference "Grav2003" was defined multiple times with different content (see the help page). - ^ Sheppard, Scott S.; Jewitt, David C.; Porco, Carolyn (2004). "Jupiter's outer satellites and Trojans". In Fran Bagenal, Timothy E. Dowling, William B. McKinnon (ed.). Jupiter. The planet, satellites and magnetosphere (PDF). Vol. 1. Cambridge, UK: Cambridge University Press. pp. 263–280. ISBN 0-521-81808-7.
{{cite book}}
: Unknown parameter|editorlocation=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ Nesvorný, David; Beaugé, Cristian; Dones, Luke (2004). "Collisional Origin of Families of Irregular Satellites" (PDF). The Astronomical Journal. 127 (3): 1768–1783. Bibcode:2004AJ....127.1768N. doi:10.1086/382099.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ a b c "Natural Satellites Ephemeris Service". IAU: Minor Planet Center. Retrieved 2011-01-08.
Note: some semi-major axis were computed using the µ value, while the eccentricities were taken using the inclination to the local Laplace plane
- ^ a b c d e f g h Siedelmann P.K.; Abalakin V.K.; Bursa, M.; Davies, M.E.; de Bergh, C.; Lieske, J.H.; Obrest, J.; Simon, J.L.; Standish, E.M.; Stooke, P. ; Thomas, P.C. (2000). The Planets and Satellites 2000 (Report). IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites. Retrieved 2008-08-31.
{{cite report}}
: CS1 maint: multiple names: authors list (link)
External links
- Jupiter Satellite Data
- Jupiter, and The Giant Planet Satellite and Moon Page
- Simulation showing the position of Jupiter's Moon
- Animated tour of Jupiter's Moons, University of Glamorgan
- Jupiter's Moons by NASA's Solar System Exploration
- "43 more moons orbiting Jupiter" article appeared in 2003 in the San Francisco Chronicle
- Articles on the Jupiter System in Planetary Science Research Discoveries
- An animation of the Jovian system of moons