Prime gap
A prime gap is the difference between two successive prime numbers. The n-th prime gap, denoted gn or g(pn) is the difference between the (n + 1)-th and the
n-th prime numbers, i.e.
We have g1 = 1, g2 = g3 = 2, and g4 = 4. The sequence (gn) of prime gaps has been extensively studied.
The first 30 prime gaps are:
- 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14 OEIS: A001223.
Simple observations
For any prime number P, we write P# for P primorial, that is, the product of all prime numbers up to and including P. If Q is the prime number following P, then the sequence
is a sequence of Q − 2 consecutive composite integers, so here there is a prime gap of at least length Q − 1. Therefore, there exist gaps between primes which are arbitrarily large, i.e., for any prime number P, there is an integer n with gn ≥ P. (This is seen by choosing n so that pn is the greatest prime number less than P# + 2.) Another way to see that arbitrarily large prime gaps must exist is the fact that the density of primes approaches zero, according to the Prime number theorem. In fact, by this theorem, P# is very roughly a number the size of exp(P), and near exp(P) the average distance between consecutive primes is P.
In reality, prime gaps of P numbers can occur at numbers much smaller than P#. For instance, the smallest sequence of 71 consecutive composite numbers occurs between 31398 and 31468, whereas 71# has twenty-seven digits - its full decimal expansion being 557940830126698960967415390.
Although the average gap between primes increases as the natural logarithm of the integer, the ratio of the maximum prime gap to the integers involved also increases as larger and larger numbers and gaps are encountered.
In the opposite direction, the twin prime conjecture asserts that gn = 2 for infinitely many integers n.
Numerical results
As of 2012[update] the largest known prime gap with identified probable prime gap ends has length 2254930, with 86853-digit probable primes found by H. Rosenthal and J. K. Andersen.[1] The largest known prime gap with identified proven primes as gap ends has length 337446, with 7996-digit primes found by T. Alm, J. K. Andersen and François Morain.[2]
We say that gn is a maximal gap if gm < gn for all m < n. As of August 2009[update] the largest known maximal gap has length 1476, found by Tomás Oliveira e Silva. It is the 75th maximal gap, and it occurs after the prime 1425172824437699411.[3]
Usually the ratio of gn / ln(pn) is called the merit of the gap gn . As of January 2012, the largest known merit value is 66520 / ln(1931*1933#/7230 - 30244) ≈ 35.4244594 where 1933# indicates the primorial of 1933. This number, 1931*1933#/7230 - 30244, is a 816-digit prime. The next largest known merit value is 1476 / ln(1425172824437699411) ≈ 35.31.[4][5]
|
|
|
Further results
Upper bounds
Bertrand's postulate states that there is always a prime number between k and 2k, so in particular pn+1 < 2pn, which means gn < pn.
The prime number theorem says that the "average length" of the gap between a prime p and the next prime is ln p. The actual length of the gap might be much more or less than this. However, from the prime number theorem one can also deduce an upper bound on the length of prime gaps: for every ε > 0, there is a number N such that gn < εpn for all n > N.
One can deduce that the gaps get arbitrarily smaller in proportion to the primes: the quotient gn/pn approaches zero as n goes to infinity.
Hoheisel was the first to show[6] that there exists a constant θ < 1 such that
hence showing that
for sufficiently large n.
Hoheisel obtained the possible value 32999/33000 for θ. This was improved to 249/250 by Heilbronn,[7] and to θ = 3/4 + ε, for any ε > 0, by Chudakov.[8]
A major improvement is due to Ingham,[9] who showed that if
for some positive constant c, where O refers to the big O notation, then
for any θ > (1 + 4c)/(2 + 4c). Here, as usual, ζ denotes the Riemann zeta function and π the prime-counting function. Knowing that any c > 1/6 is admissible, one obtains that θ may be any number greater than 5/8.
An immediate consequence of Ingham's result is that there is always a prime number between n3 and (n + 1)3 if n is sufficiently large. Note however that not even the Lindelöf hypothesis, which assumes that we can take c to be any positive number, implies that there is a prime number between n2 and (n + 1)2, if n is sufficiently large (see Legendre's conjecture). To verify this, a stronger result such as Cramér's conjecture would be needed.
Huxley showed that one may choose θ = 7/12.[10]
A recent result, due to Baker, Harman and Pintz, shows that θ may be taken to be 0.525.[11]
In 2005, Daniel Goldston, János Pintz and Cem Yıldırım have proved that
and later improved it[12] to
Lower bounds
Robert Rankin proved the existence of a constant c > 0 such that the inequality
holds for infinitely many values n with c = eγ. The best known value of the constant c is currently c = 2eγ, where γ is the Euler–Mascheroni constant.[13] Paul Erdős offered a $5,000 prize for a proof or disproof that the constant c in the above inequality may be taken arbitrarily large.[14]
Conjectures about gaps between primes
Even better results are possible if it is assumed that the Riemann hypothesis is true. Harald Cramér proved that, under this assumption, the gap g(pn) satisfies
using the big O notation. Later, he conjectured that the gaps are even smaller. Roughly speaking he conjectured that
At the moment, the numerical evidence seems to point in this direction. See Cramér's conjecture for more details.
Andrica's conjecture states that
This is a slight strengthening of Legendre's conjecture that between successive square numbers there is always a prime.
As an arithmetic function
The gap gn between the nth and (n + 1)st prime numbers is an example of an arithmetic function. In this context it is usually denoted dn and called the prime difference function.[14] The function is neither multiplicative nor additive.
See also
References
- ^ Largest known prime gap
- ^ A proven prime gap of 337446
- ^ Maximal Prime Gaps
- ^ The Top-20 Prime Gaps
- ^ NEW PRIME GAP OF MAXIMUM KNOWN MERIT
- ^ Hoheisel, G. (1930). "Primzahlprobleme in der Analysis". Sitzunsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin. 33: 3–11.
- ^ Heilbronn, H. A. (1933). "Über den Primzahlsatz von Herrn Hoheisel". Mathematische Zeitschrift. 36 (1): 394–423. doi:10.1007/BF01188631.
- ^ Tchudakoff, N. G. (1936). "On the difference between two neighboring prime numbers". Math. Sb. 1: 799–814.
- ^ Ingham, A. E. (1937). "On the difference between consecutive primes". Quarterly Journal of Mathematics. Oxford Series. 8 (1): 255–266. doi:10.1093/qmath/os-8.1.255.
- ^ Huxley, M. N. (1972). "On the Difference between Consecutive Primes". Inventiones Mathematicae. 15 (2): 164–170. doi:10.1007/BF01418933.
- ^ Baker, R. C.; Harman, G.; Pintz, G.; Pintz, J. (2001). "The difference between consecutive primes, II". Proceedings of the London Mathematical Society. 83 (3): 532–562. doi:10.1112/plms/83.3.532.
- ^ arXiv:0710.2728
- ^ Pintz, J. (1997). "Very large gaps between consecutive primes". J. Number Theory. 63 (2): 286–301. doi:10.1006/jnth.1997.2081.
- ^ a b Guy (2004) §A8
- Guy, Richard K. (2004). Unsolved problems in number theory (3rd ed.). Springer-Verlag. ISBN 978-0-387-20860-2. Zbl 1058.11001.
External links
- Thomas R. Nicely, Some Results of Computational Research in Prime Numbers -- Computational Number Theory. This reference web site includes a list of all first known occurrence prime gaps.
- Weisstein, Eric W. "Prime Difference Function". MathWorld.
- "Prime Difference Function". PlanetMath.
- Armin Shams, [Re-extending Chebyshev's theorem about Bertrand's conjecture http://link.springer.com/article/10.1007%2Fs11253-008-0034-7], does not involve an 'arbitrarily big' constant as some other reported results.
- Chris Caldwell, Gaps Between Primes
- www.primegaps.com A study of the gaps between consecutive prime numbers