Deoxyribonuclease I

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Tom.Reding (talk | contribs) at 20:55, 22 May 2016 (CS1 maintenance: vauthors/veditors or enumerate multiple authors/editors; WP:GenFixes on using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

DNASE1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesDNASE1, DNL1, DRNI, deoxyribonuclease I, deoxyribonuclease 1
External IDsOMIM: 125505 MGI: 103157 HomoloGene: 3826 GeneCards: DNASE1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_010061
NM_001357143

RefSeq (protein)

NP_005214
NP_001338754

NP_034191
NP_001344072

Location (UCSC)Chr 16: 3.61 – 3.68 MbChr 16: 3.85 – 3.86 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Deoxyribonuclease I (usually called DNase I), is an endonuclease coded by the human gene DNASE1.[5] DNase I is a nuclease that cleaves DNA preferentially at phosphodiester linkages adjacent to a pyrimidine nucleotide, yielding 5'-phosphate-terminated polynucleotides with a free hydroxyl group on position 3', on average producing tetranucleotides. It acts on single-stranded DNA, double-stranded DNA, and chromatin. In addition to its role as a waste-management endonuclease, it has been suggested to be one of the deoxyribonucleases responsible for DNA fragmentation during apoptosis.[6]

DNase I binds to the cytoskeletal protein actin. It binds actin monomers with very high (sub-nanomolar) affinity and actin polymers with lower affinity. The function of this interaction is unclear. However, since actin-bound DNase I is enzymatically inactive, the DNase-actin complex might be a storage form of DNase I that prevents damage of the genetic information.

Template:PBB Summary


In genomics

In genomics, DNase I hypersensitive sites are thought to be characterized by open, accessible chromatin; therefore, a DNase I sensitivity assay is a widely used methodology in genomics for identifying which regions of the genome are likely to contain active genes [7]

DNase I Sequence Specificity

It has been recently reported that DNase I shows some levels of sequence specificity that may depend on experimental conditions.[8] In contrast to other enzymes which have high substrate specificity, DNase I certainly does not cleave with an absolute sequence specificity. However, cleavage at sites that contain C or G at their 3' end is less efficient.

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000213918Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000005980Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: DNASE1 deoxyribonuclease I".
  6. ^ Samejima, K; Earnshaw, W.C. (2005). "Trashing the genome: the role of nucleases during apoptosis". Nat Rev Mol Cell Biol. 6: 677–88. doi:10.1038/nrm1715. {{cite journal}}: Unknown parameter |last-author-amp= ignored (|name-list-style= suggested) (help)
  7. ^ Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE (2008). "High-resolution mapping and characterization of open chromatin across the genome". Cell. 132: 311–322. doi:10.1016/j.cell.2007.12.014. PMC 2669738. PMID 18243105.
  8. ^ Koohy, Hashem; Down, Thomas A.; Hubbard, Tim J.; Mariño-Ramírez, Leonardo (26 July 2013). "Chromatin Accessibility Data Sets Show Bias Due to Sequence Specificity of the DNase I Enzyme". PLoS ONE. 8 (7): e69853. doi:10.1371/journal.pone.0069853.{{cite journal}}: CS1 maint: unflagged free DOI (link)

Further reading

External links

Template:PBB Controls