2021 in archosaur paleontology: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 284: Line 284:
* Hone & [[Thomas R. Holtz Jr.|Holtz]] (2021) evaluate the evidence for the competing interpretations of the ecology of ''[[Spinosaurus]]'', and reject the interpretation of this theropod as a specialised aquatic pursuit predator.<ref>{{cite journal| vauthors = Hone DW, Holtz TR |title=Evaluating the ecology of '' Spinosaurus'': Shoreline generalist or aquatic pursuit specialist? |year=2021 |journal=Palaeontologia Electronica |volume=24 |issue=1 |pages=Article number 24(1):a03 |doi=10.26879/1110 |doi-access=free }}</ref>
* Hone & [[Thomas R. Holtz Jr.|Holtz]] (2021) evaluate the evidence for the competing interpretations of the ecology of ''[[Spinosaurus]]'', and reject the interpretation of this theropod as a specialised aquatic pursuit predator.<ref>{{cite journal| vauthors = Hone DW, Holtz TR |title=Evaluating the ecology of '' Spinosaurus'': Shoreline generalist or aquatic pursuit specialist? |year=2021 |journal=Palaeontologia Electronica |volume=24 |issue=1 |pages=Article number 24(1):a03 |doi=10.26879/1110 |doi-access=free }}</ref>
* A study on the [[histology]] and [[geochemistry]] of a [[tibia]] and a [[femur]] of a specimen or specimens of ''[[Allosaurus]] fragilis'' from the [[Cleveland-Lloyd Dinosaur Quarry]] ([[Utah]], United States), and on its implications for the knowledge of the growth strategy of this species, is published by Ferrante ''et al.'' (2021).<ref>{{cite journal| vauthors = Ferrante C, Cavin L, Vennemann T, Martini R |year=2021 |title=Histology and Geochemistry of ''Allosaurus'' (Dinosauria: Theropoda) From the Cleveland-Lloyd Dinosaur Quarry (Late Jurassic, Utah): Paleobiological Implications |journal=Frontiers in Earth Science |volume=9 |pages=Article 641060 |doi=10.3389/feart.2021.641060 |bibcode=2021FrEaS...9..225F |s2cid=233131160 |doi-access=free }}</ref>
* A study on the [[histology]] and [[geochemistry]] of a [[tibia]] and a [[femur]] of a specimen or specimens of ''[[Allosaurus]] fragilis'' from the [[Cleveland-Lloyd Dinosaur Quarry]] ([[Utah]], United States), and on its implications for the knowledge of the growth strategy of this species, is published by Ferrante ''et al.'' (2021).<ref>{{cite journal| vauthors = Ferrante C, Cavin L, Vennemann T, Martini R |year=2021 |title=Histology and Geochemistry of ''Allosaurus'' (Dinosauria: Theropoda) From the Cleveland-Lloyd Dinosaur Quarry (Late Jurassic, Utah): Paleobiological Implications |journal=Frontiers in Earth Science |volume=9 |pages=Article 641060 |doi=10.3389/feart.2021.641060 |bibcode=2021FrEaS...9..225F |s2cid=233131160 |doi-access=free }}</ref>
* Caudal vertebra of a theropod with affinities to [[Carcharodontosauria]] is described from the Upper Jurassic Sergi Formation by Bandeira ''et al.'' (2021), representing the first unambiguous record of a dinosaur from the [[Jurassic]] of [[Brazil]] reported to date.<ref>{{cite journal | vauthors = Bandeira KL, Brum AS, Pêgas RV, Souza LG, Pereira PV, Pinheiro AE | title = The first Jurassic theropod from the Sergi Formation, Jatobá Basin, Brazil | journal = Anais da Academia Brasileira de Ciências | volume = 93 | issue = suppl 2 | pages = e20201557 | year = 2021 | doi = 10.1590/0001-3765202120201557 }}</ref>
* A study on the phylogenetic affinities of putative [[Carcharodontosauridae|carcharodontosaurid]] teeth from the Upper Cretaceous strata in northern and central Patagonia, and on their implications for the knowledge of the timing of extinction of carcharodontosaurids in South America, is published by Meso ''et al.'' (2021).<ref>{{cite journal| vauthors = Meso JG, Juárez Valieri RD, Porfiri JD, Correa SA, Martinelli AG, Casal GA, Canudo JI, Poblete F, Dos Santos D |title=Testing the persistence of Carcharodontosauridae (Theropoda) in the Upper Cretaceous of Patagonia based on dental evidence |journal=Cretaceous Research |year=2021 |volume=125 |pages=Article 104875 |doi=10.1016/j.cretres.2021.104875 }}</ref>
* A study on the phylogenetic affinities of putative [[Carcharodontosauridae|carcharodontosaurid]] teeth from the Upper Cretaceous strata in northern and central Patagonia, and on their implications for the knowledge of the timing of extinction of carcharodontosaurids in South America, is published by Meso ''et al.'' (2021).<ref>{{cite journal| vauthors = Meso JG, Juárez Valieri RD, Porfiri JD, Correa SA, Martinelli AG, Casal GA, Canudo JI, Poblete F, Dos Santos D |title=Testing the persistence of Carcharodontosauridae (Theropoda) in the Upper Cretaceous of Patagonia based on dental evidence |journal=Cretaceous Research |year=2021 |volume=125 |pages=Article 104875 |doi=10.1016/j.cretres.2021.104875 }}</ref>
* A study on the skeletal anatomy of ''[[Aerosteon]] riocoloradensis'' is published by Aranciaga Rolando ''et al.'' (2021).<ref>{{cite journal| vauthors = Aranciaga Rolando A, Méndez A, Canale J, Novas F |year=2021 |title=Osteology of ''Aerosteon riocoloradensis'' (Sereno et al. 2008) a large megaraptoran (Dinosauria: Theropoda) from the Upper Cretaceous of Argentina |journal=Historical Biology: An International Journal of Paleobiology |volume=in press |pages=1–57 |doi=10.1080/08912963.2021.1910816 }}</ref>
* A study on the skeletal anatomy of ''[[Aerosteon]] riocoloradensis'' is published by Aranciaga Rolando ''et al.'' (2021).<ref>{{cite journal| vauthors = Aranciaga Rolando A, Méndez A, Canale J, Novas F |year=2021 |title=Osteology of ''Aerosteon riocoloradensis'' (Sereno et al. 2008) a large megaraptoran (Dinosauria: Theropoda) from the Upper Cretaceous of Argentina |journal=Historical Biology: An International Journal of Paleobiology |volume=in press |pages=1–57 |doi=10.1080/08912963.2021.1910816 }}</ref>

Revision as of 14:59, 6 August 2021

List of years in archosaur paleontology
In reptile paleontology
2018
2019
2020
2021
2022
2023
2024
In paleontology
2018
2019
2020
2021
2022
2023
2024
In science
2018
2019
2020
2021
2022
2023
2024
+...

This article records new taxa of fossil archosaurs of every kind that are scheduled described during the year 2021, as well as other significant discoveries and events related to paleontology of archosaurs that are scheduled to occur in the year 2021.

General research

  • A study on the relationship between full potential joint mobility and the poses used during locomotion in extant American alligator and helmeted guineafowl, evaluating its implications for reconstructions of locomotion of extinct archosaurs, is published by Manafzadeh, Kambic & Gatesy (2021).[1]
  • A study estimating moment arms for major pelvic limb muscles in extant and fossil archosaurs, aiming to investigate the idea that bird-line archosaurs switched from hip-based to knee-based locomotion between Archosauria (especially Neotheropoda) and Aves, is published by Allen, Kilbourne & Hutchinson (2021).[2]
  • A study aiming to determine how ontogenetic changes in skeletal anatomy influence muscle size, leverage, orientation, and locomotor function during the development of flight in extant chukar partridge is published by Heers et al. (2021), who evaluate the implications of their findings on current knowledge of how extinct winged theropods might have achieved bird-like behaviors before acquiring fully bird-like anatomies.[3]
  • A study on jumping mechanics and performance in extant elegant crested tinamou, and on its implications for inferences of jumping abilities in extinct animals such as dromaeosaurid dinosaurs, is published by Bishop et al. (2021).[4]
  • A study on the morphological diversity and evolution of the semicircular canals of the inner ear in extant and fossil archosaurs is published by Bronzati et al. (2021).[5]
  • A study on the evolution of eggshell thickness in non-avian dinosaurs and birds is published by Legendre & Clarke (2021).[6]
  • A study on the evolution of birdlike locomotor abilities and hearing acuity, as indicated by the anatomy of the inner ear in extant and fossil reptiles and birds, is published by Hanson et al. (2021).[7]
  • A study assessing the accuracy of bite force estimates in extinct archosaurs and mammals is published by Sakamoto (2021).[8]

Pseudosuchians

Research

General

  • A study on the phylogenetic relationships of pseudosuchian archosaurs, aiming to determine drivers of body size evolution in this group, is published by Stockdale & Benton (2021).[9]
  • The first occurrence of the track type "Chirotherium" lulli (inferred to be produced by a pseudosuchian archosaur) from western North America is reported from the Owl Rock Member of the Chinle Formation (Utah, United States) by Milner et al. (2021).[10]

Aetosaurs

  • Description of the braincase of Aetosauroides scagliai, based on data from specimens from the Upper Triassic Candelária Sequence (Brazil), is published by Paes Neto et al. (2021).[11]
  • An osteoderm of Typothorax coccinarum with punctures and scores which are likely bite marks is described from the Upper Triassic Chinle Formation (Arizona, United States) by Drymala, Bader & Parker (2021), who interpret this finding as supporting the hypothesis that aetosaurs were prey items of large archosauromorphs.[12]
  • Reyes, Parker & Marsh (2021) describe the first complete articulated skull of Typothorax coccinarum from the Owl Rock Member of the Chinle Formation (Petrified Forest National Park), and evaluate the implications of this specimen for the knowledge of the relationships and morphological diversity of aetosaurs.[13]
  • A study on the biomechanical properties of the skull of Neoaetosauroides engaeus is published by Taborda, Desojo & Dvorkin (2021).[14]

Crocodylomorphs

  • A study on the morphological diversity of skull and jaw shape in crocodylomorphs throughout their evolutionary history is published by Stubbs et al. (2021).[15]
  • A study on the evolution of the skull morphology in crocodyliforms is published by Felice, Pol & Goswami (2021).[16]
  • Description of coprolites from the Upper Cretaceous Adamantina Formation (Brazil) found in association with skeletons of baurusuchid and sphagesaurid crocodylomorphs, and a study on the implications of these coprolites for the knowledge of the diet of these crocodylomorphs, is published by de Oliveira et al. (2021).[17]
  • A study on the bone histology and growth dynamics of Araripesuchus, based on data from specimens from the La Buitrera Palaeontological Area (Río Negro Province, Argentina), is published by Fernández Dumont et al. (2021).[18]
  • A study on the resistance to stress of the skull of Araripesuchus gomesii, and on its implications for the knowledge of likely diet of this crocodylomorph, is published by Nieto et al. (2021).[19]
  • New partially preserved skull of Campinasuchus dinizi is described from the Fazenda São José (Adamantina/Vale do Rio do Peixe Formation, Brazil) by Darlim et al. (2021), who evaluate the implications of this specimen for the knowledge of the distribution of baurusuchids in the Late Cretaceous of South America.[20]
  • New soft tissue records for thalattosuchians are reported from the Late Jurassic localities of Wattendorf and Painten (Bavaria, Germany) by Spindler et al. (2021), who interpret their findings as indicating the skin of metriorhynchids lacked any traces of scales or scutes and instead showed folded and transverse fibers.[21]
  • Description of the cranial and endocranial anatomy of Macrospondylus bollensis is published by Wilberg et al. (2021).[22]
  • Isolated metriorhynchid tooth crowns, representing some of the most recent known occurrences of Metriorhynchidae worldwide, are described from the Valanginian Kopřivnice Formation (Czech Republic) by Madzia et al. (2021), who interpret these specimens as evidence of the presence of two distinct lineages of geosaurin metriorhynchids in the area of Czech Republic during the Early Cretaceous.[23]
  • A study on the anatomy of the braincase of a metriorhynchid specimen belonging or related to the species "Metriorhynchus" brachyrhynchus, and on the evolution of neurosensory and endocranial systems of metriorhynchids, is published by Schwab et al. (2021).[24]
  • A study on the anatomy of the snout of Dakosaurus andiniensis, and on the evolution of the facial anatomy of thalattosuchians, is published by Fernández & Herrera (2021), who interpret their findings as indicative of presence of anatomical adaptations likely helping drainage of nasal glands (probably excreting salt).[25]
  • A study on the evolution of tethysuchian and gavialoid crocodylomorphs from the Campanian to the Thanetian is published by Jouve (2021).[26]
  • A study on the anatomy of the braincase and inner ear of Rhabdognathus aslerensis is published by Erb & Turner (2021).[27]
  • A study on the anatomy of the postcranial skeleton of Cerrejonisuchus improcerus is published by Scavezzoni & Fischer (2021), who also provide new information on the anatomy of the postcranial skeletons of Congosaurus bequaerti and Hyposaurus rogersii, and provide evidence of a distinctive postcranial anatomy of dyrosaurids among crocodyliforms.[28]
  • New fossil material of Deltasuchus motherali, providing new information on changes in the skeleton of this crocodyliform during the ontogeny, and indicative of dietary shifts from juvenile to adult, is described from the Cenomanian Woodbine Formation (Texas, United States) by Drumheller et al. (2021), who also study the phylogenetic relationships of D. motherali, and identify an endemic clade of Appalachian crocodyliforms, which they name Paluxysuchidae.[29]
  • New fossil material of Deinosuchus, representing one of the earliest records of this genus in North American reported to date, is described from the Campanian Menefee Formation (New Mexico, United States) by Mohler, McDonald & Wolfe (2021).[30]
  • Description of the crocodyliform fossil material from the Eocene (Lutetian) Ikovo locality (Ukraine), including the easternmost record of diplocynodontines in Europe reported to date, is published by Kuzmin & Zvonok (2021), who also review the fossil record and biogeography of crocodyliforms from the Paleocene and Eocene of Europe.[31]
  • Cidade & Rincón (2021) report the first occurrence of Acresuchus pachytemporalis from the Miocene Urumaco Formation (Venezuela), expanding known geographic distribution of this species.[32]
  • Description and a study on the taxonomic status of the crocodylians from the Neogene Irrawaddy Formation (Myanmar), including one of the oldest records of the genus Gavialis reported to date, is published by Iijima et al. (2021).[33]
  • Revision of the taxonomy and a study on the phylogenetic relationships of the Miocene tomistomines from Italy and Malta is published by Nicholl et al. (2021).[34]
  • A study on the phylogenetic relationships of Voay robustus, based on mitochondrial genomic data, is published by Hekkala et al. (2021).[35]
  • Description of a new skull of Crocodylus anthropophagus from the DK site at Olduvai (Tanzania), representing the oldest fossil of a member of this species reported to date, and a study on the phylogenetic relationships of this species is published by Azzarà et al. (2021)[36]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Allodaposuchus iberoarmoricanus[37]

Sp. nov

Valid

Blanco

Late Cretaceous (Campanian)

 France

Aphaurosuchus[38]

Gen. et sp. nov

Valid

Darlim, Montefeltro & Langer

Late Cretaceous (Campanian-Maastrichtian)

Bauru Basin

 Brazil

A baurusuchid crocodylomorph. Genus includes new species A. escharafacies.

Brachiosuchus[39]

Gen. et sp. nov

In press

Salih et al.

Late Cretaceous

Kababish Formation

 Sudan

A dyrosaurid crocodylomorph. Genus includes new species B. kababishensis.

Burkesuchus[40]

Gen. et sp. nov

Valid

Novas et al.

Late Jurassic (Tithonian)

Toqui Formation

 Chile

An early member of Mesoeucrocodylia. The type species is B. mallingrandensis.

Caipirasuchus attenboroughi[41]

Sp. nov

Valid

Ruiz et al.

Late Cretaceous (Turonian-Campanian)

Santo Anastácio Formation

 Brazil

A sphagesaurid crocodylomorph.

Chinatichampsus[42]

Gen. et sp. nov

Valid

Stocker, Brochu & Kirk

Eocene (Uintan-Duchesnean)

Devil's Graveyard Formation

 United States
( Texas)

A caiman. The type species is C. wilsonorum.

Coronelsuchus[43]

Gen. et sp. nov

Valid

Pinheiro et al.

Late Cretaceous (Turonian)

Araçatuba Formation

 Brazil

A sphagesaurian crocodylomorph. The type species is C. civali

Cricosaurus albersdoerferi[44]

Sp. nov

Valid

Sachs, Young, Abel, & Mallison

Late Jurassic (Kimmeridgian)

Torleite Formation

 Germany

Cricosaurus rauhuti[45]

Sp. nov

Valid

Herrera, Aiglstorfer & Bronzati

Late Jurassic (Tithonian)

Mörnsheim Formation

 Germany

Gunggamarandu[46]

Gen. et sp. nov

Valid

Ristevski et al.

Pliocene or Pleistocene

 Australia

A tomistomine crocodylian. The type species is G. maunala.

Kocurypelta[47]

Gen. et sp. nov

Valid

Czepiński et al.

Late Triassic (Norian)

Lissauer Breccia

 Poland

An aetosaur. Genus includes new species K. silvestris.

Non-avian dinosaurs

Research

General

  • A study on the impact of the disparity between neonates and adults on the structure and diversity of dinosaur communities is published by Schroeder, Lyons & Smith (2021), who claim that communities with giant theropods lacked carnivores weighing 100 to 1000 kg, and argue that juveniles of giant theropod species likely filled the mesocarnivore niche, resulting in reduced overall taxonomic diversity.[48]
  • Evidence of cessation of longitudinal skeletal growth in non-avian dinosaurs, inferred from a study of the articular surfaces of long bones, is presented by Rothschild & Witzmann (2021).[49]
  • A study aiming to determine whether the presence of keratan sulfate is exclusive evidence for the presence of medullary bone in dinosaur fossils (and therefore whether it can be used to identify dinosaur specimens as gravid females) is published by Canoville et al. (2021).[50]
  • A study on the variation in tail anatomy and length across the Dinosauria is published by Hone, Persons & Le Comber (2021).[51]
  • A study on the possibilities of determination of the presence of sexual dimorphism in dinosaurs, evaluating whether the previous method used for dinosaurs correctly recognizes living animals as dimorphic, is published by Motani (2021).[52]
  • Review of the fossil record of Carnian dinosaurs from South America is published by Novas et al. (2021), who also interpret Chindesaurus, Daemonosaurus and Tawa as likely late-surviving members of Herrerasauria.[53]
  • A study on dinosaur trackways that show changes in direction from Jurassic and Cretaceous sites in North and South America, Europe and Asia is published by Lockley et al. (2021).[54]
  • Fossil trackways made by theropods, ornithopods and possibly ankylosaurs, are reported from the Folkestone Formation of the Lower Greensand Group by Hadland et al (2021), representing the youngest known footprints of non-avian dinosaurs known from the United Kingdom.[55]
  • A study on the climate of the Lufeng area (China) during the Early Jurassic, and on the relationship between the global distribution of dinosaur fossils and climate during the Jurassic, is published by Shen et al. (2021).[56]
  • Druckenmiller et al. (2021) report the discovery of a diverse assemblage of herbivorous and carnivorous non-avian dinosaurs, including perinatal and very young specimens, from the Upper Cretaceous Prince Creek Formation (Alaska, United States), and interpret this finding as indicating that most, if not all, dinosaurs from this assemblage were nonmigratory year-round Arctic residents.[57]
  • A study on the distribution of dinosaurs across the latest Cretaceous of North America is published by García‐Girón et al. (2021).[58]
  • A study aiming to determine whether plant-eating dinosaurs could have moved seeds long distances is published by Perry (2021).[59]
  • A study on changes of diversity of dinosaurs belonging to the families Ankylosauridae, Ceratopsidae, Hadrosauridae, Dromaeosauridae, Troodontidae and Tyrannosauridae during the Late Cretaceous is published by Condamine et al. (2021), who interpret their findings as indicative of a decline of non-avian dinosaur diversity during the last 10 million years of the Cretaceous period, and attempt to determine possible causes of this decline.[60]

Saurischians

  • New fossil material of theropod and sauropod dinosaurs, including a caudal vertebra with pneumatic internal structures rarely observed outside Late Cretaceous South American saltasaurines, is described from the Campanian Quseir Formation (Egypt) by Salem et al. (2021).[61]
  • Putative large-sized sauropodomorph specimen from the Carnian strata at the ‘Cerro da Alemoa’ locality (southern Brazil) is reinterpreted as a herrerasaurid specimen (the largest dinosaur reported from the Candelária Sequence to date) by Garcia et al. (2021).[62]
Theropods
  • A study aiming to determine whether the knowledge of patterns of species abundance and clade diversity in theropod dinosaurs is significantly impacted by the diagnosability of their fossils is published by Cashmore, Butler & Maidment (2021).[63]
  • A study on the evolution of vision and hearing modalities in theropod dinosaurs is published by Choiniere et al. (2021), who interpret their findings as indicative of early evolution of nocturnal predation in alvarezsauroid theropods.[64]
  • A vertebra of a non-coelophysoid, non-averostran neotheropod which may be 15 million years older than Dilophosaurus wetherilli is described from the Lower Jurassic (Hettangian) Whitmore Point Member of the Moenave Formation (Utah, United States) by Marsh et al. (2021), who interpret this finding as indicating that not all contemporaneous theropod traces were made by coelophysoids.[65]
  • New fossil material of ceratosaur theropods, probably representing one of the oldest known record of abelisaurids, is described from the Upper Jurassic Cañadón Calcáreo Formation (Argentina) by Rauhut & Pol (2021).[66]
  • A study on the skeletal anatomy and phylogenetic relationships of Xenotarsosaurus bonapartei is published by Ibiricu et al. (2021).[67]
  • Spinosaurid neck vertebrae distinct from known vertebrae of Spinosaurus aegyptiacus and exhibiting an unusual combination of positionally variable characters are described from the Kem Kem Group (Morocco) by McFeeters (2021), who interprets this finding as evidence of a greater degree of intraspecific variation in the vertebrae of S. aegyptiacus than previously recognized, or alternatively, evidence for the occurrence of two spinosaurid taxa in the Kem Kem Group.[68]
  • Spinosaurid caudal vertebrae are described from the Lower Cretaceous Sao Khua Formation (Thailand) by Samathi, Sander & Chanthasit (2021), who also reinterpret the putative ceratosaur Camarillasaurus cirugedae as a spinosaurid.[69]
  • Hone & Holtz (2021) evaluate the evidence for the competing interpretations of the ecology of Spinosaurus, and reject the interpretation of this theropod as a specialised aquatic pursuit predator.[70]
  • A study on the histology and geochemistry of a tibia and a femur of a specimen or specimens of Allosaurus fragilis from the Cleveland-Lloyd Dinosaur Quarry (Utah, United States), and on its implications for the knowledge of the growth strategy of this species, is published by Ferrante et al. (2021).[71]
  • Caudal vertebra of a theropod with affinities to Carcharodontosauria is described from the Upper Jurassic Sergi Formation by Bandeira et al. (2021), representing the first unambiguous record of a dinosaur from the Jurassic of Brazil reported to date.[72]
  • A study on the phylogenetic affinities of putative carcharodontosaurid teeth from the Upper Cretaceous strata in northern and central Patagonia, and on their implications for the knowledge of the timing of extinction of carcharodontosaurids in South America, is published by Meso et al. (2021).[73]
  • A study on the skeletal anatomy of Aerosteon riocoloradensis is published by Aranciaga Rolando et al. (2021).[74]
  • Fragmentary specimens of tyrannosaurid theropods from the Dinosaur Park Formation of the Alberta, Canada) in the collection of the San Diego Natural History Museum were described by Yun (2021).[75]
  • Bones of tyrannosaurid theropods with extensive tooth marks matching the teeth of tyrannosaurids are described from the Upper Cretaceous of the San Juan Basin (northwestern New Mexico, United States) by Dalman & Lucas (2021), who interpret this finding as evidence for cannibalistic behavior among tyrannosaurids.[76]
  • Caneer, Moklestad & Lucas (2021) describe structures which are not readily assignable to any known ichnotaxon from the Upper Cretaceous of the Raton Basin (New Mexico), and interpret them as one footprint and two forearm/hand prints probably produced by a large tyrannosaurid theropod standing up from a prone position.[77]
  • Perinatal tyrannosaurid bones and teeth are described from the Upper Cretaceous Two Medicine Formation (Montana, United States) and Horseshoe Canyon Formation (Alberta, Canada) by Funston et al. (2021), who evaluate the implications of these findings for the knowledge of the minimum hatchling size of tyrannosaurids, their nesting habits and development of their teeth.[78]
  • A study on tyrannosaurid tracks from the Campanian Wapiti Formation (Alberta, Canada), evaluating the implications of these tracks for the knowledge of changes in pedal anatomy of tyrannosaurids during their ontogeny, is published by Enriquez et al. (2021).[79]
  • A study on possible causes of monopolization of large carnivore guilds in Asian and American dinosaur assemblages by tyrannosaurids in the latest Cretaceous is published by Holtz (2021).[80]
  • A study on changes of mandibular biomechanical properties and tooth morphology in Albertosaurus sarcophagus and Gorgosaurus libratus during their ontogeny is published by Therrien et al. (2021), who interpret their findings as indicating the occurrence of ontogenetic dietary shift in albertosaurine tyrannosaurids.[81]
  • A study on the mechanical properties of the mandibles of tyrannosaurine tyrannosaurids representing different ontogenetic stages (including small juvenile) is published by Rowe & Snively (2021).[82]
  • New bone bed containing at least four specimens of Teratophoneus curriei or a related tyrannosaurid is described from the Campanian Kaiparowits Formation (Utah, United States) by Titus et al. (2021), who study the taphonomy of this bone bed, and evaluate its implications for the knowledge whether known accumulations of tyrannosaurid specimens represent time-averaged or forced accumulations, or whether they are evidence of gregariousness of tyrannosaurids.[83]
  • A metatarsal of juvenile tyrannosaurid theropod from the Dinosaur Park Formation of the Alberta, Canada, possibly referable to Daspletosaurus torosus was described by Yun (2021).[84]
  • A study aiming to calculate population variables such as abundance at any one time, species persistence and total number of individuals that ever lived for Tyrannosaurus rex is published by Marshall et al. (2021).[85]
  • A study aiming to estimate the natural frequency of the vertical swaying of the tail and the preferred walking speed and step frequency of Tyrannosaurus rex is published by van Bijlert, van Soest & Schulp (2021).[86]
  • A study attempting to determine bite force of a juvenile Tyrannosaurus rex, based on mechanical tests designed to replicate bite marks attributed to juvenile specimens of this species, is published by Peterson, Tseng & Brink (2021).[87]
  • A study on the anatomy of the postcranial skeleton and on the phylogenetic relationships of Pelecanimimus polyodon is published by Cuesta et al. (2021), who name a new clade Macrocheiriformes, defined as Pelecanimimus and all derived ornithomimosaurs.[88]
  • A study on pelvic musculature in non-avian maniraptorans is published by Rhodes, Henderson & Currie (2021).[89]
  • A study on the neuroanatomy of a new alvarezsauroid skeleton in the collection of the Henan Geological Museum (China) is published by Agnolín et al. (2021).[90]
  • A study on the skeletal anatomy, probable musculature and likely function of tails of alvarezsaurian theropods is published by Meso et al. (2021).[91]
  • A study on growth strategies and body miniaturization in the evolutionary history of alvarezsauroid theropods is published by Qin et al. (2021).[92]
  • Reconstructions of the muscular system of the hindlimb, forelimb and the shoulder girdle of Nothronychus are presented by Smith (2021).[93][94]
  • Partial skeleton of Elmisaurus rarus, preserving elements overlapping with known fossil material of Nomingia gobiensis, is described from the Upper Cretaceous Nemegt Formation (Mongolia) by Funston et al. (2021), who interpret this specimen as indicating that N. gobiensis is likely a junior synonym of E. rarus.[95]
  • Cau et al. (2021) report the identification of additional elements of the pectoral apparatus of the holotype specimen of Halszkaraptor escuilliei, including the furcula, and evaluate its implications for the knowledge of the evolution of the avian furcula.[96]
  • A study on the anatomy of the skeleton of Unenlagia comahuensis is published by Novas et al. (2021).[97]
  • A study on the vertebral pneumaticity in Unenlagia comahuensis is published by Gianechini & Zurriaguz (2021).[98]
  • Description of a new troodontid specimen from the Upper Cretaceous Wulansuhai Formation (China), and a study on the phylogenetic relationships and evolutionary history of the Late Cretaceous troodontids, is published by Wang et al. (2021).[99]
  • Multi-individual aggregates of mammal skeletons are described from the Upper Cretaceous Two Medicine Formation (Montana, United States) by Freimuth et al. (2021), who interpret these aggregates as the oldest known mammal-bearing regurgitalites, probably produced by Troodon formosus.[100]
  • Brown, Tanke & Hone (2021) describe a hadrosaurid bone from the Campanian Dinosaur Park Formation (Alberta, Canada) preserved with bite marks produced by a small- to medium-sized theropod dinosaur, deviating from the majority of known theropod tooth marks and indicative of a behavior similar to mammalian gnawing.[101]
  • Revision of the biodiversity of theropods from the Dinosaur Park Formation is published by Cullen et al. (2021).[102]
  • Exquisitely preserved, ornamented partial eggs with theropod affinities, representing some of the smallest Mesozoic eggs reported to date, are described from the Campanian Kaiparowits Formation (Utah, United States) by Oser et al. (2021), who name a new ootaxon Stillatuberoolithus storrsi.[103]
Sauropodomorphs
  • Review of the diversity and composition of South American sauropodomorph faunas throughout the Late Triassic is published by Pol et al. (2021).[104]
  • A study on the evolution of the olfactory system in sauropodomorph dinosaurs, as indicated by the ratio between the size of the olfactory bulbs and cerebral hemispheres in sauropodomorph endocasts, is published by Müller (2021).[105]
  • A study on the timing of the earliest occurrence of Triassic sauropodomorphs in their northernmost range (Fleming Fjord Formation, Greenland), and on possible relationship between climate changes and early sauropodomorph dispersal to the temperate belt of the Northern Hemisphere, is published by Kent & Clemmensen (2021).[106]
  • New skull material of Plateosaurus, including the first two juvenile skulls of members of this genus, is described from the locality of Frick (Switzerland) by Lallensack et al. (2021), who attempt to determine whether the locality of Frick and German localities of Trossingen and Halberstadt contain specimens of Plateosaurus belonging to a single species.[107]
  • A study on the skeletal growth during the ontogeny in Massospondylus carinatus is published by Chapelle, Botha & Choiniere (2021).[108]
  • A study on the cranial anatomy of Anchisaurus polyzelus and the development of cranial characters in sauropodomorph ontogeny is published by Fabbri et al. (2021)[109]
  • An extensive Late Jurassic sauropod tracksite, preserving the longest continuous sequence of sauropod pes prints reported to date and representing a rare record of a >180° turn made by the sauropod trackmaker to completely change direction and cross its own trackway, is described from a high altitude locality near Ouray (Colorado, United States) by Goodell et al. (2021).[110]
  • A study on the skeletal anatomy of the holotype of Patagosaurus fariasi is published by Holwerda, Rauhut & Pol (2021).[111]
  • A new specimen of Haplocanthosaurus with expanded neural canals is described by Wedel et al. (2021). [112]
  • A study on the anatomy and phylogenetic relationships of Amphicoelias altus is published by Mannion, Tschopp & Whitlock (2021).[113]
  • The paleohistology of two dicraeosaurids from the La Amarga Formation (Argentina) is studied by Winholdz and Cerda (2021), who find that the holotype specimen of Amargatitanis macni belonged to a more mature individual than the holotype of Amargasaurus cazaui.[114]
  • Fossilized skin of a juvenile member of the genus Diplodocus, providing evidence of new scale shapes and patterns never before seen in diplodocids, is described from the Mother's Day Quarry (Bighorn Basin, Montana, United States) by Gallagher, Poole & Schein (2021).[115]
  • Redescription of the anatomy of the braincase of Limaysaurus tessonei is published by Paulina-Carabajal & Calvo (2021).[116]
  • Description of the anatomy of the referred specimen of Diamantinasaurus matildae and a study on the phylogenetic relationships of this species is published by Poropat et al. (2021), who name a new clade Diamantinasauria, which includes it alongside Savannasaurus and Sarmientosaurus.[117]
  • Fossil material of a giant titanosaur sauropod, distinct from Andesaurus and probably exceeding Patagotitan in size, is described from the Cenomanian Candeleros Formation (Argentina) by Otero et al. (2021).[118]
  • Revision of known fossil material of Pellegrinisaurus powelli and a study on the skeletal anatomy, bone histology and phylogenetic relationships of this sauropod are published by Cerda et al. (2021).[119]
  • New titanosaur remains, possibly belonging to a member of Colossosauria distinct from previously known taxa, are described from the Upper Cretaceous Portezuelo Formation (Argentina) by Bellardini et al. (2021).[120]
  • A study on the composition of several gastroliths from the Morrison are published by Malone, Strasser, Malone, D’Emic, Brown, and Craddock, who point to the differences between them and the surrounding rock and similarities to another site 1,000 km eastwards to suggest evidence of migration in sauropod dinosaurs.[121]
  • Description of new fossil material and a study on the phylogenetic relationships of Tengrisaurus starkovi is published by Averianov, Sizov & Skutschas (2021).[122]
  • Evidence of the preservation of nitrogen-bearing organic molecules (identified as proteinaceous moieties) in titanosaur eggshell from the Maastrichtian Lameta Formation (India) is presented by Dhiman et al. (2021).[123]
  • A study on the stable isotope compositions of titanosaurian eggshells, bone and an associated tooth sampled in three Late Cretaceous nesting sites from La Rioja Province (Argentina), evaluating their implications for the knowledge of the body temperature of titanosaur sauropods, their diet, and the environmental conditions they needed reproduce, is published by Leuzinger et al. (2021).[124]

Ornithischians

  • New fossil material of ornithischians, including remains of basal euiguanodontian and hadrosaurid ornithopods and the southernmost record of ankylosaurs from South America reported to date, is described from the Upper Cretaceous (CampanianMaastrichtian) Chorrillo Formation (Argentina) by Rozadilla et al. (2021), who evaluate the implications of these fossils for the knowledge of the evolutionary history of ankylosaurs and hadrosaurids in South America.[125]
  • Radermacher et al. (2021) describe a new, fully articulated skeleton of Heterodontosaurus tucki, preserving a suite of novel postcranial features unknown in any other ornithischian dinosaur, and evaluate the implications of this specimen for the knowledge of the evolution of ornithischian respiratory biology.[126]
Thyreophorans
  • A study on the skeletal anatomy and bone histology of Scutellosaurus lawleri, providing new data on the morphology and new life reconstruction for this dinosaur, is published by Breeden et al. (2021).[127]
  • A stegosaurian humerus is described from the Cañadón Calcáreo Formation (Argentina) by Rauhut, Carballido & Pol (2021), extending the fossil record of Stegosauria to the Late Jurassic of South America.[128]
  • A study on the morphology, macro- and microwear, and microanatomy of the stegosaur teeth from the Teete locality (Lower Cretaceous Batylykh Formation; Sakha, Russia), evaluating their implications for the knowledge of the paleobiology of the Teete stegosaur, is published by Skutschas et al. (2021).[129]
  • The smallest stegosaur track reported to date, co-occurring with the tracks of larger individuals, is described from the Lower Cretaceous Tugulu Group (Xinjiang, China) by Xing et al. (2021).[130]
  • Riguetti et al. (2021) describe nodosaurid tracks from the Maastrichtian El Molino Formation (Bolivia), increasing known diversity of ankylosaur tracks from South America.[131]
  • Several fragmentary skulls and skull elements of Hungarosaurus, providing new information on the morphological diversity, development and possible function of the ornamentation of nodosaurid skulls, are described by Ősi et al. (2021).[132]
  • A study on dental microwear and jaw movement of Jinyunpelta, and on its implications for the knowledge of the evolution of the feeding mechanism of ankylosaurids, is published by Kubo et al. (2021).[133]
  • Articulated postcranial skeleton of an indeterminate ankylosaurid dinosaur is described from the Barun Goyot Formation (Mongolia) by Park et al. (2021), who interpret this specimen as indicating that Asian ankylosaurids evolved rigid bodies with a reduced number of pedal phalanges, as well as the existence of at least two forms of flank armor in ankylosaurids, and discuss possible adaptations for digging in ankylosaurids.[134]
Cerapods
  • A study on the skeletal anatomy and phylogenetic relationships of Haya griva is published by Barta & Norell (2021).[135]
  • A study on the anatomy of the manus of Tenontosaurus tilletti is published by Hunt, Cifelli & Davies (2021).[136]
  • A study on the accumulated remains of Dysalotosaurus lettowvorbecki from the Upper Jurassic Tendaguru Formation (Tanzania) is published by Hübner et al. (2021), who interpret two large bonebeds as most likely resulting from two independent catastrophic mortality events.[137]
  • A study on the anatomy of the braincase and probable brain size in Proa valdearinnoensis is published by Knoll et al. (2021).[138]
  • A specimen of Gobihadros mongoliensis preserving features of cessation of growth, indicating that it reached the terminal size and advanced age, is described from the Upper Cretaceous Bayan Shireh Formation (Mongolia) by Słowiak et al. (2021), who diagnose this specimen as affected by calcium pyrophosphate deposition disease, making it the first known non-avian dinosaur specimen affected with this disease.[139]
  • Redescription of the anatomy and a study on the phylogenetic relationships of Lophorhothon atopus, based on data from the holotype and from a new specimen, is published by Gates & Lamb (2021).[140]
  • A study on the anatomy of the postcranial skeleton of Tanius sinensis is published by Borinder et al. (2021).[141]
  • Description of new fossil material of hadrosaurids from the Upper Cretaceous Lago Colhué Huapí Formation (Argentina), and a study on the environment inhabited by these hadrosaurids and on the influence of paleoenvironmental conditions on South American hadrosaurid distribution, is published by Ibiricu et al. (2021).[142]
  • Holland et al. (2021) describe an assemblage of late juvenile hadrosaurid specimens from the Spring Creek Bonebed (Alberta, Canada), representing the first record of lambeosaurines from the Wapiti Formation and possibly indicating that age segregation was a life history strategy among hadrosaurids.[143]
  • Revision of the type material and a study on the phylogenetic affinities of Latirhinus uitstlani is published by Ramírez-Velasco, Espinosa-Arrubarrena & Alvarado-Ortega (2021).[144]
  • Redescription of Parasaurolophus cyrtocristatus, based on data from a new skull from the Campanian Fruitland Formation (New Mexico, United States), is published by Gates, Evans & Sertich (2021).[145]
  • A study on the injuries of the holotype specimen of Bonapartesaurus rionegrensis, and on their implications for the knowledge of its paleobiology, is published by Cruzado-Caballero et al. (2021).[146]
  • A study aiming to determine the taxonomic validity of the species Sphaerotholus buchholtzae and S. edmontonensis is published by Woodruff et al. (2021).[147]
  • Vinther, Nicholls & Kelly (2021) describe the first fossil cloacal vent in an exceptionally preserved non-avian dinosaur specimen (a specimen of Psittacosaurus from the Early Cretaceous Jehol deposits of Liaoning, China).[148]
  • A study on jaws and teeth of juvenile and adult specimens of Psittacosaurus lujiatunensis, aiming to determine whether this dinosaur underwent a dietary shift during its ontogeny, is published by Landi et al. (2021).[149]
  • A study on the ontogenetic changes in the femoral histology of Psittacosaurus sibiricus is published by Skutschas et al. (2021).[150]
  • A study on the whole-skull shape in a large sample of specimens of Protoceratops andrewsi is published by Knapp, Knell & Hone (2021), who argue that the frill of P. andrewsi shows several characteristics consistent with a socio-sexual trait.[151]
  • A study on the biodiversity patterns of Late Cretaceous hadrosaurids and ceratopsids from the western interior of North America, evaluating whether the fossil record provides evidence of faunal provinciality of these dinosaurs, is published by Maidment et al. (2021).[152]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Arackar[153]

Gen. et sp. nov

Valid

Rubilar-Rogers et al.

Late Cretaceous (CampanianMaastrichtian)

Hornitos Formation

 Chile

A lithostrotian titanosaur sauropod. Genus includes new species A. licanantay.

Arrudatitan[154]

Gen. et comb. nov

Valid

Silva Junior et al.

Late Cretaceous (Campanian-Maastrichtian)

Adamantina Formation

 Brazil

A titanosaur sauropod; a new genus for "Aeolosaurus" maximus.

Australotitan[155]

Gen. et sp. nov

Valid

Hocknull et al.

Late Cretaceous (Cenomanian-? Turonian)

Winton Formation

 Australia

A titanosaur sauropod. The type species is A. cooperensis.

Dzharatitanis[156]

Gen. et sp. nov

Valid

Averianov & Sues

Late Cretaceous (Turonian)

Bissekty Formation

 Uzbekistan

A sauropod of uncertain phylogenetic placement. Originally described as a rebbachisaurid, but subsequently argued to be a member of Titanosauria.[157] The type species is D. kingi.

File:Dzharatitanis kingi restoration.jpg

Fylax[158]

Gen. et sp. nov

Valid

Prieto-Márquez and Carrera Farias

Late Cretaceous (Maastrichtian)

Figuerola Formation

 Spain

A non-hadrosaurid hadrosauromorph. The type species is F. thyrakolasus.

Kansaignathus[159][160]

Gen. et sp. nov

Valid

Averianov and Lopatin

Late Cretaceous (Santonian)

Ialovachsk Formation

 Tajikistan

A velociraptorin dromaeosaurid. The type species is K. sogdianus.

Llukalkan[161]

Gen. et sp. nov

Valid

Gianechini et al.

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

 Argentina

A furileusaurian abelisaurid. The type species is L. aliocranianus.

Menefeeceratops[162]

Gen. et sp. nov

Valid

Dalma et al.

Late Cretaceous (Campanian)

Menefee Formation

 United States
( New Mexico)

A centrosaurine ceratopsid, possibly a member of the tribe Nasutoceratopsini. The type species is M. sealeyi.

Ninjatitan[163]

Gen. et sp. nov

Valid

Gallina, Canale, & Carballido

Early Cretaceous (BerriasianValanginian)

Bajada Colorada Formation

 Argentina

The earliest known titanosaur sauropod found. The type species is N. zapatai.

Ornatops[164]

Gen. et sp. nov

Valid

McDonald et al.

Late Cretaceous (Campanian)

Menefee Formation

 United States
( New Mexico)

A saurolophine hadrosaurid belonging to the tribe Brachylophosaurini. The type species is O. incantatus.

File:Ornatops.jpg

Portellsaurus[165]

Gen. et sp. nov

Valid

Santos-Cubedo et al.

Early Cretaceous (Barremian)

Margas de Mirambell Formation

 Spain

A styracosternan hadrosauroid. The type species is P. sosbaynati

Shri[166]

Gen. et sp. nov

Valid

Turner, Montanari & Norell

Late Cretaceous (Maastrichtian)

Barun Goyot Formation

 Mongolia

A dromaeosaurid theropod. Genus includes new species S. devi.

Tamarro[167]

Gen. et sp. nov

Valid

Sellés et al.

Late Cretaceous (Maastrichtian)

Talarn Formation

 Spain

A troodontid theropod. The type species is T. insperatus.

Tlatolophus[168]

Gen. et sp. nov

Valid

Ramírez-Velasco et al.

Late Cretaceous (Campanian)

Cerro del Pueblo Formation

 Mexico

A lambeosaurine hadrosaurid belonging to the tribe Parasaurolophini. Genus includes new species T. galorum.

Yamatosaurus[169]

Gen. et sp. nov

Valid

Kobayashi et al.

Late Cretaceous (Maastrichtian)

Kita-Ama Formation

 Japan

A basal hadrosaurid. The type species is Y. izanagii.

Ypupiara[170]

Gen. et sp. nov

In press

Brum et al.

Late Cretaceous (Maastrichtian)

Marília Formation

 Brazil

An unenlagiin dromaeosaurid. The type species is Y. lopai.

Birds

Research

  • The study on the phylogenetic relationships and powered flight potential of early birds and their closest relatives published by Pei et al. (2020), arguing that the potential for powered flight evolved at least three times (once in birds and twice in dromaeosaurids),[171] is criticized by Serrano & Chiappe (2021).[172][173]
  • A study on the diversification rates of birds throughout their evolutionary history is published by Yu, Zhang & Xu (2021).[174]
  • A study on the evolution of the brain in birds, based on data from extant and recently extinct birds, Archaeopteryx and non-avian coelurosaurian theropods, is published by Watanabe et al. (2021).[175]
  • A study aiming to infer the diets of the last common ancestor of living birds, based on data from digestive system-related genes, is published by Wu (2021), who interprets his findings as indicative of a diet shift from carnivory to herbivory at the non-avian archosaur-to-bird transition, and evaluates possible implications of this diet shift for the evolution of early birds.[176]
  • Review of methods used to determine diet in modern and fossil birds, evaluating their utility for determination of diets of Mesozoic birds, is published by Miller & Pittman (2021).[177]
  • A study on patterns and modes of the evolution of skeletal morphology and limb proportions in Mesozoic birds is published by Wang et al. (2021).[178]
  • A study on the variation in tooth crown shape of Mesozoic birds, and its implications for the knowledge of their diets, is published by Zhou et al. (2021).[179]
  • A study on the impact of tooth loss on the diversification of Mesozoic birds is published by Brocklehurst & Field (2021), who find no evidence for a link between toothlessness and accelerated cladogenesis, as well as no evidence for models whereby acquisitions of toothlessness among Mesozoic birds were driven by an overarching selective trend.[180]
  • Review of the variability of bone histology in basal members of Avialae is published by Monfroy & Kundrát (2021).[181]
  • A study on the ecomorphology of extant and fossil birds, aiming to determine whether the ecologies of Mesozoic birds can be inferred on the basis of data from measurements of their forelimbs and hindlimbs, is published by Bell et al. (2021).[182]
  • The study published by Kaye, Pittman & Wahl (2020), reporting evidence interpreted by the authors as indicative of the feather moulting in the Thermopolis specimen of Archaeopteryx,[183] is criticized by Kiat et al. (2021).[184][185]
  • A study on the histology of the scapulocoracoid in Confuciusornis is published by Wu et al. (2021).[186]
  • New enantiornithine specimen with a well-preserved skull, retaining the plesiomorphic dinosaurian palate and diapsid temporal configurations indicative of an akinetic skull, is described from the Lower Cretaceous Jiufotang Formation (China) by Wang et al. (2021), who evaluate the implications of this specimen for the knowledge of the evolution of bird skulls.[187]
  • A study on the anatomy of the quadrate bone of Longipteryx chaoyangensis, evaluating its possible functional implications, is published by Stidham & O'Connor (2021).[188]
  • A study on the identity of purported gastroliths reported in a referred specimen of Bohaiornis guoi from the Early Cretaceous of China is published by Liu et al. (2021).[189]
  • A study on the bone histology and growth of the skeleton of Mirarce eatoni is published by Atterholt et al. (2021).[190]
  • An almost complete juvenile specimen of Archaeorhynchus is described from the Aptian Jiufotang Formation (China) by Foth et al. (2021), who evaluate the implications of the anatomy of this specimen for the knowledge of the ontogenetic development of Mesozoic birds.[191]
  • Ju et al. (2021) revise the fossil material of Iteravis huchzermeyeri and Gansus zheni, and consider these species to be synonymous.[192]
  • A cervical vertebra of a member of Ornithuromorpha distinct from Gargantuavis, representing the first fossil evidence of a giant bird from the late Maastrichtian of Europe reported to date, is described from Beranuy (Huesca, Spain) by Pérez-Pueyo et al. (2021).[193]
  • Torres, Norell & Clarke (2021) describe a new specimen of Ichthyornis dispar from the Niobrara Formation (Kansas, United States), preserving a nearly complete skull, and evaluate the implications of the anatomy of this specimen for the knowledge of the evolution of birds and for the knowledge of probable reasons why birds survived the end-Cretaceous mass extinction.[194]
  • New information on the anatomy of Vegavis iaai, based on data from the holotype specimen which was fully extracted from the sedimentary matrix, is presented by Acosta Hospitaleche & Worthy (2021).[195]
  • Mayr & Zelenkov (2021) interpret eogruids and ergilornithids as representatives of the stem group of Struthioniformes, based on data from new fossils from the late Eocene of Mongolia.[196]
  • A fossil ostrich specimen with exceptional soft-tissue preservation is described from the Miocene Liushu Formation (Linxia Basin, China) by Li et al. (2021).[197]
  • A femur of a giant ostrich, significantly larger than the living common ostrich, is described from the Pleistocene Nihewan Formation (China) by Buffetaut & Angst (2021), who assign it to Pachystruthio indet. and interpret this finding as evidence of wide geographical distribution of giant ostriches in the Early Pleistocene of Eurasia.[198]
  • A mid-Holocene coprolite deposit attributed to the bush moa is reported from southern New Zealand by Wood et al. (2021), who evaluate the implications of this finding for the knowledge of the diet and ecology of this moa.[199]
  • A study comparing egg size and volume in extinct island emus and in mainland emu, aiming to determine egg size in relation to body size in island emus and their breeding strategy, is published by Hume & Robertson (2021).[200]
  • A study on the phylogenetic relationships of Brontornis burmeisteri is published by Agnolin (2021), who interprets this taxon as a member of Galloanserae.[201]
  • Reexamination of specimens of Omorhamphus storchii and Gastornis parisiensis alleged to preserve alveoli for teeth is published by Louchart et al. (2021), who reject claims of presence of teeth in gastornithids.[202]
  • A study on the morphology of the dromornithid brain, based on data from dromornithid endocast material spanning from the late Oligocene to the late Miocene, is published by Handley & Worthy (2021).[203]
  • A study on the bone histology, growth dynamics and life history of Genyornis newtoni is published by Chinsamy & Worthy (2021).[204]
  • Redescription of Columba congi is published by Shen, Stidham & Li (2021).[205]
  • Oswald et al. (2021) recover a nearly complete mitochondrial genome of the Haitian cave rail (Nesotrochis steganinos) from fossils, and find this bird to be a relative of the families Sarothruridae and Aptornithidae rather than a rallid as previously thought.[206]
  • New fossil material of plotopterids, resembling bones of Olympidytes (which was previously considered endemic to North America), is described from the Eocene to Oligocene Itanoura and Kakinoura formations (Japan) by Mori & Miyata (2021), who interpret these fossils as indicating that early diversity of this family in Japan was higher than previously thought.[207]
  • A carpometacarpus of a petrel, potentially representing a new genus and species, is described from the Miocene Gaiman Formation (Argentina) by Piro & Acosta Hospitaleche (2021).[208]
  • A study on the anatomy and pneumaticity of the skull and on the paleoneurology of the fossil banded penguin Spheniscus urbinai is published by Acosta Hospitaleche, Paulina‐Carabajal & Yury‐Yáñez (2021).[209]
  • A study on the new referred material of Dryornis pampeanus from the Pliocene Chapadmalal Formation (Argentina) and on the phylogenetic relationships of this species is published by Degrange et al. (2021), who interpret D. pampeanus as the largest cathartiform reported to date.[210]
  • The first unequivocal fossil material of teratorns from the Pleistocene of South America is described from four fossiliferous localities of Central Argentina by Cenizo et al. (2021), who evaluate the implications of these fossils for the knowledge of the evolutionary history of teratorns, and update the taxonomy of the family.[211]
  • Redescription of the type specimen of Macrornis tanaupus from the Eocene Totland Bay Formation (Hampshire, United Kingdom) is published by Buffetaut & Angst (2021), who interpret this fossil as a partial tibiotarsus of a large terrestrial bird, possibly a phorusrhacid.[212]
  • A review of the knowledge of phorusrhacid skull anatomy is presented by Degrange (2021).[213]
  • Mayr, De Pietri & Scofield (2021) describe new fossil material of birds from the Eocene Nanjemoy Formation (Virginia, United States), including the first representatives of the families Messelasturidae, Psittacopedidae and Zygodactylidae from this formation.[214]
  • A distal end of the left tarsometatarsus of a phasianid, which represents the first avian fossil record of Taiwan, is described from the Pleistocene Chiting Formation (Tainan, Taiwan) by Tsai & Mayr (2021).[215]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Apteryx littoralis[216]

Sp. nov

Valid

Tennyson & Tomotani

Pleistocene

 New Zealand

A kiwi.

Archaeodromus[217]

Gen. et sp. nov

Valid

Mayr

Eocene (Ypresian)

London Clay

 United Kingdom

A member of the family Archaeotrogonidae. The type species is A. anglicus.

Bitumenpicus[218]

Gen. et sp. nov

In press

Campbell & Bocheński

Late Pleistocene

La Brea Tar Pits

 United States
( California)

A woodpecker. Genus includes new species B. minimus.

Breacopus[218]

Gen. et sp. nov

In press

Campbell & Bocheński

Late Pleistocene

La Brea Tar Pits

 United States
( California)

A woodpecker. Genus includes new species B. garretti.

Bumbalavis[219]

Gen. et sp. nov

Valid

Zelenkov

Late Paleocene-early Eocene

Naran-Bulak Formation

 Mongolia

A member of the family Presbyornithidae. Genus includes new species B. anatoides.

Bumbanipes[220]

Gen. et sp. nov

Valid

Zelenkov

Early Eocene

 Mongolia

A member of Gruiformes showing the greatest similarity with modern limpkin. Genus includes new species B. aramoides.

Bumbanipodius[220]

Gen. et sp. nov

Valid

Zelenkov

Early Eocene

 Mongolia

A member of Galliformes showing morphological similarities with Argillipes aurorum and members of the family Quercymegapodiidae. Genus includes new species B. magnus.

Bumbaniralla[220]

Gen. et sp. nov

Valid

Zelenkov

Early Eocene

 Mongolia

Bird described on the basis of a coracoid, morphologically intermediate between those of Walbeckornis and members of the family Messelornithidae. Genus includes new species B. walbeckornithoides.

Bumbanortyx[220]

Gen. et sp. nov

Valid

Zelenkov

Early Eocene

 Mongolia

A small galliform bird showing morphological similarities with members of the families Quercymegapodiidae and Gallinuloididae. Genus includes new species B. transitoria.

Crosnoornis[221]

Gen. et sp. nov

In press

Bocheński et al.

Oligocene (Rupelian)

 Poland

A passerine, an early member of Suboscines. The type species is C. nargizia.

Eopelecanus[222]

Gen. et sp. nov

Valid

El Adli et al.

Eocene (Priabonian)

Birket Qarun Formation

 Egypt

A pelican. Genus includes new species E. aegyptiacus.

Fortipesavis[223]

Gen. et sp. nov

Valid

Clark & O'Connor

Early Cretaceous (Albian)

Burmese amber

 Myanmar

A member of Enantiornithes. The type species is F. prehendens.

Marambiornopsis[224]

Gen. et sp. nov

Valid

Jadwiszczak, Reguero & Mörs

Eocene (Priabonian)

Submeseta Formation

Antarctica

A small-sized penguin. The type species is M. sobrali.

Melanerpes shawi[218]

Sp. nov

In press

Campbell & Bocheński

Late Pleistocene

La Brea Tar Pits

 United States
( California)

A woodpecker, a species of Melanerpes.

Palaeogeranos[225]

Gen. et sp. nov

In press

Louchart & Duhamel

Early Oligocene

 France

A member of Gruoidea related to the limpkin and cranes. Genus includes new species P. tourmenti.

Parapsittacopes[226]

Gen. et sp. nov

Valid

Mayr

Early Eocene

London Clay

 United Kingdom

A relative of Psittacopes, Pumiliornis and Morsoravis. Genus includes new species P. bergdahli.

Pica praepica[227]

Sp. nov

Valid

Boev

Early Pleistocene

 Bulgaria

A species of Pica.

Procellaria altirostris[228]

Sp. nov

Valid

Tennyson & Tomotani

Pliocene (Piacenzian)

Tangahoe Formation

 New Zealand

A species of Procellaria.

Tynskya waltonensis[229]

Sp. nov

Valid

Mayr

Eocene (Ypresian)

London Clay

 United Kingdom

A species of the messelasturid Tynskya.

Ueekenkcoracias[230]

Gen. et sp. nov

Degrange et al.

Eocene (Ypresian)

Huitrera Formation

 Argentina

A member of the stem group of Coracii. The type species is U. tambussiae.

Pterosaurs

Research

  • A study on the flight abilities of hatchling pterosaurs is published by Naish, Witton & Martin-Silverstone (2021).[231]
  • New information on the skeletal anatomy of Austriadraco dallavecchiai is provided by Dalla Vecchia (2021).[232]
  • An early juvenile or late hatchling specimen of Kunpengopterus sinensis, providing new information on the skeletal changes during ontogeny in wukongopterids, is described from the Tiaojishan Formation (China) by Jiang et al. (2021).[233]
  • Pêgas, Costa & Kellner (2021) attempt to reconstruct the adductor musculature of the pterodactyloid skull, and to estimate bite force for nine pterodactyloid species.[234]
  • Fragment of an ulna of a pteranodontid pterosaur is described from the Campanian locality Polunino 2 (Volgograd Oblast, Russia) by Averianov & Yarkov (2021), representing the first record of the family Pteranodontidae from the Lower Volga region reported so far.[235]
  • A review of putative boreopterid pterosaurs from the South Korea was published by Yun (2021), who concluded that they could not be confidently referred to Boreopteridae.[236]
  • New specimen of Istiodactylus latidens, probably coming from the Lower Cretaceous Vectis Formation (United Kingdom) and possibly representing the missing jaws of the holotype of this species, is described by Averianov et al. (2021).[237]
  • Bantim et al. (2021) describe a pteranodontoid pterosaur with anhanguerid affinities from Aptian-age deposits of the Romualdo Formation (Brazil).[238]
  • Solonin et al. (2021) describe teeth from the Upper Cretaceous (Santonian) Dmitrov Formation (Ryazan Oblast, Russia), referrable to ornithocheirid pterosaurs, leading to the first occurrence of them in said formation.[239]
  • Postcranial elements referrable to Lonchognathosaurus, confirming the validity of the genus and providing new information on the anatomy of this pterosaur, are described from the Lower Cretaceous Lianmuqin Formation (China) by Augustin et al. (2021).[240]
  • 114 small pterosaur footprints, possibly produced by pterosaurs belonging to the species Noripterus complicidens, are described from the Lower Cretaceous Shengjinkou Formation (China) by Li, Wang & Jiang (2021), who name a new ichnospecies Pteraichnus wuerhoensis.[241]
  • New fossil material of pterosaurs is described from the Lower Cretaceous Lianmuqin Formation (China) by Augustin et al. (2021), who interpret these fossils as probable evidence of the presence of a second dsungaripterid taxon (distinct from Lonchognathosaurus) in this formation.[242]
  • A study on the internal architecture and mechanical properties of a hyper-elongate cervical vertebra of an azhdarchid pterosaur from the Kem Kem Group (Morocco) is published by Williams et al. (2021).[243]
  • A large wing bone (possibly an ulna) of a pterosaur with an estimated wingspan comparable with the holotype specimen of Cryodrakon boreas is described from the Campanian Kaiparowits Formation (Utah, United States) by Farke (2021).[244]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Javelinadactylus[245]

Gen. et sp. nov

Valid

Nascimento-Campos et al.

Late Cretaceous (Maastrichtian)

Javelina Formation

 United States
( Texas)

A tapejarid. The type species is J. sagebieli

Kunpengopterus antipollicatus[246]

Sp. nov

Valid

Zhou et al.

Late Jurassic (Oxfordian)

Tiaojishan Formation

 China

Sinomacrops[247]

Gen. et sp. nov

Valid

Wei et al.

MiddleLate Jurassic (Callovian–Oxfordian)

Tiaojishan Formation

 China

An anurognathid. The type species is S. bondei.

Tacuadactylus[248]

Gen. et sp. nov

Valid

Soto et al.

Late Jurassic (Kimmeridgian)

Tacuarembó Formation

 Uruguay

A gnathosaurine ctenochasmatid. The type species is T. luciae

Other archosaurs

Research

  • Marchetti et al. (2021) revise the tetrapod (including dinosauromorph) footprint assemblage from the Quarziti del Monte Serra Formation (Ladinian of Italy), and interpret this assemblage and other findings of Ladinian dinosauromorph footprints as evidence of wide dispersal of dinosauromorphs as early as the Middle Triassic.[249]
  • The first putative forelimb and pectoral girdle of Lagerpeton chanarensis is described by McCabe & Nesbitt (2021).[250]
  • A study on the nature of tooth attachment in silesaurids, and on its implications of the knowledge of the evolution of tooth attachment of archosaurs, is published by Mestriner et al. (2021).[251]

New taxa

References

  1. ^ Manafzadeh AR, Kambic RE, Gatesy SM (February 2021). "A new role for joint mobility in reconstructing vertebrate locomotor evolution". Proceedings of the National Academy of Sciences of the United States of America. 118 (7): e2023513118. Bibcode:2021PNAS..11820235M. doi:10.1073/pnas.2023513118. PMC 7896293. PMID 33558244.
  2. ^ Allen VR, Kilbourne BM, Hutchinson JR (March 2021). "The evolution of pelvic limb muscle moment arms in bird-line archosaurs". Science Advances. 7 (12): eabe2778. Bibcode:2021SciA....7.2778A. doi:10.1126/sciadv.abe2778. PMC 7978429. PMID 33741593.
  3. ^ Heers AM, Varghese SL, Hatier LK, Cabrera JJ (2021). "Multiple Functional Solutions During Flightless to Flight-Capable Transitions". Frontiers in Ecology and Evolution. 8: Article 573411. doi:10.3389/fevo.2020.573411. S2CID 231858466.
  4. ^ Bishop PJ, Falisse A, De Groote R, Hutchinson JR (2021). "Predictive simulations of musculoskeletal function and jumping performance in a generalized bird". Integrative Organismal Biology. in press. doi:10.1093/iob/obab006.
  5. ^ Bronzati M, Benson RB, Evers SW, Ezcurra MD, Cabreira SF, Choiniere J, Dollman KN, Paulina-Carabajal A, Radermacher VJ, Roberto-da-Silva L, Sobral G, Stocker MR, Witmer LM, Langer MC, Nesbitt SJ (2021). "Deep evolutionary diversification of semicircular canals in archosaurs". Current Biology. 31 (12): 2520–2529.e6. doi:10.1016/j.cub.2021.03.086. PMID 33930303. S2CID 233472336.
  6. ^ Legendre LJ, Clarke JA (2021). "Shifts in eggshell thickness are related to changes in locomotor ecology in dinosaurs". Evolution. 75 (6): 1415–1430. doi:10.1111/evo.14245. PMID 33913155. S2CID 233448002.
  7. ^ Hanson M, Hoffman EA, Norell MA, Bhullar BA (2021). "The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization". Science. 372 (6542): 601–609. Bibcode:2021Sci...372..601H. doi:10.1126/science.abb4305. PMID 33958471. S2CID 233872841.
  8. ^ Sakamoto M (2021). "Assessing bite force estimates in extinct mammals and archosaurs using phylogenetic predictions". Palaeontology. in press. doi:10.1111/pala.12567.
  9. ^ Stockdale MT, Benton MJ (January 2021). "Environmental drivers of body size evolution in crocodile-line archosaurs". Communications Biology. 4 (1): 38. doi:10.1038/s42003-020-01561-5. PMC 7790829. PMID 33414557.
  10. ^ Milner AR, Irmis RB, Lockley MG, Klein H, Slauf D, Romillio A (2021). "First report of "Chirotherium" lulli from the Upper Triassic Chinle Formation of San Juan County, Utah". New Mexico Museum of Natural History and Science Bulletin. 82: 275–284.
  11. ^ Paes Neto VD, Desojo JB, Brust AC, Ribeiro AM, Schultz CL, Soares MB (2021). "The first braincase of the basal aetosaur Aetosauroides scagliai (Archosauria: Pseudosuchia) from the Upper Triassic of Brazil". Journal of Vertebrate Paleontology. in press: e1928681. doi:10.1080/02724634.2021.1928681.
  12. ^ Drymala SM, Bader K, Parker WG (2021). "Bite marks on an aetosaur (Archosauria, Suchia) osteoderm: assessing Late Triassic predator-prey ecology through ichnology and tooth morphology". PALAIOS. 36 (1): 28–37. Bibcode:2021Palai..36...28D. doi:10.2110/palo.2020.043. S2CID 231857816.
  13. ^ Reyes WA, Parker WG, Marsh AD (2021). "Cranial Anatomy and Dentition of the Aetosaur Typothorax coccinarum (Archosauria: Pseudosuchia) from the Upper Triassic (Revueltian–Mid Norian) Chinle Formation of Arizona". Journal of Vertebrate Paleontology. 40 (6): e1876080. doi:10.1080/02724634.2020.1876080. S2CID 233616969.
  14. ^ Taborda JR, Desojo JB, Dvorkin EN (2021). "Biomechanical skull study of the aetosaur Neoaetosauroides engaeus using finite element analysis". Ameghiniana. in press. doi:10.5710/AMGH.23.07.2021.3412.
  15. ^ Stubbs TL, Pierce SE, Elsler A, Anderson PS, Rayfield EJ, Benton MJ (March 2021). "Ecological opportunity and the rise and fall of crocodylomorph evolutionary innovation". Proceedings. Biological Sciences. 288 (1947): 20210069. doi:10.1098/rspb.2021.0069. PMC 8059953. PMID 33757349. S2CID 232326789.
  16. ^ Felice RN, Pol D, Goswami A (2021). "Complex macroevolutionary dynamics underly the evolution of the crocodyliform skull". Proceedings of the Royal Society B: Biological Sciences. 288 (1954): Article ID 20210919. doi:10.1098/rspb.2021.0919. PMC 8277476. PMID 34256005.
  17. ^ de Oliveira FA, Santucci RM, de Oliveira CE, de Andrade MB (2021). "Morphological and compositional analyses of coprolites from the Upper Cretaceous Bauru Group reveal dietary habits of notosuchian fauna". Lethaia. in press. doi:10.1111/let.12431.
  18. ^ Fernández Dumont ML, Pereyra ME, Bona P, Apesteguía S (2021). "New data on the palaeosteohistology and growth dynamic of the notosuchian Araripesuchus Price, 1959". Lethaia. in press. doi:10.1111/let.12423.
  19. ^ Nieto MN, Degrange FJ, Sellers KC, Pol D, Holliday CM (2021). "Biomechanical performance of the cranio-mandibular complex of the small notosuchian Araripesuchus gomesii (Notosuchia, Uruguaysuchidae)". The Anatomical Record. in press. doi:10.1002/ar.24697. PMID 34132040.
  20. ^ Darlim G, Carvalho IS, Tavares SA, Langer MC (2021). "A new Pissarrachampsinae specimen from the Bauru Basin, Brazil, adds data to the understanding of the Baurusuchidae (Mesoeucrocodylia, Notosuchia) distribution in the Late Cretaceous of South America". Cretaceous Research. in press: Article 104969. doi:10.1016/j.cretres.2021.104969.
  21. ^ Spindler F, Lauer R, Tischlinger H, Mäuser M (2021). "The integument of pelagic crocodylomorphs (Thalattosuchia: Metriorhynchidae)". Palaeontologia Electronica. 24 (2): Article number 24.2.a25. doi:10.26879/1099.
  22. ^ Wilberg EW, Beyl AR, Pierce SE, Turner AH (2021). "Cranial and endocranial anatomy of a three-dimensionally preserved teleosauroid thalattosuchian skull". The Anatomical Record. in press. doi:10.1002/ar.24704. PMID 34259385.
  23. ^ Madzia D, Sachs S, Young MT, Lukeneder A, Skupien P (2021). "Evidence of two lineages of metriorhynchid crocodylomorphs in the Lower Cretaceous of the Czech Republic". Acta Palaeontologica Polonica. 66 (2): 357–367. doi:10.4202/app.00801.2020.
  24. ^ Schwab JA, Young MT, Herrera Y, Witmer LM, Walsh SA, Katsamenis OL, Brusatte SL (2021). "The braincase and inner ear of 'Metriorhynchus' cf. 'M.' brachyrhynchus – implications for aquatic sensory adaptations in crocodylomorphs". Journal of Vertebrate Paleontology. Online edition: e1912062. doi:10.1080/02724634.2021.1912062.
  25. ^ Fernández MS, Herrera Y (2021). "Active airflow of the paranasal sinuses in extinct crocodyliforms: Evidence from a natural cast of the thalattosuchian Dakosaurus andiniensis". The Anatomical Record. in press. doi:10.1002/ar.24678. PMID 34125496.
  26. ^ Jouve S (2021). "Differential diversification through the K-Pg boundary, and post-crisis opportunism in longirostrine crocodyliforms". Gondwana Research. 99: 110–130. doi:10.1016/j.gr.2021.06.020.
  27. ^ Erb A, Turner AH (2021). "Braincase anatomy of the Paleocene crocodyliform Rhabdognathus revealed through high resolution computed tomography". PeerJ. 9: e11253. doi:10.7717/peerj.11253. PMC 8103917. PMID 33986990.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  28. ^ Scavezzoni I, Fischer V (2021). "The postcranial skeleton of Cerrejonisuchus improcerus (Crocodyliformes: Dyrosauridae) and the unusual anatomy of dyrosaurids". PeerJ. 9: e11222. doi:10.7717/peerj.11222. PMC 8117932. PMID 34026348.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  29. ^ Drumheller, S. K.; Adams, T. L.; Maddox, H.; Noto, C. R. (2021). Expanded Sampling Across Ontogeny in Deltasuchus motherali (Neosuchia, Crocodyliformes). Revealing Ecomorphological Niche Partitioning and Appalachian Endemism in Cenomanian Crocodyliforms. Elements of Paleontology. pp. 1–67. doi:10.1017/9781009042024. ISBN 9781009042024.
  30. ^ Mohler BF, McDonald AT, Wolfe DG (2021). "First remains of the enormous alligatoroid Deinosuchus from the Upper Cretaceous Menefee Formation, New Mexico". PeerJ. 9: e11302. doi:10.7717/peerj.11302. PMC 8080887. PMID 33981505.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  31. ^ Kuzmin IT, Zvonok EA (2021). "Crocodylian assemblage from the middle Eocene Ikovo locality (Lugansk Province, Ukraine), with a discussion of the fossil record and geographic origins of crocodyliform fauna in the Paleogene of Europe". Geobios. 65: 7–27. doi:10.1016/j.geobios.2021.02.002.
  32. ^ Cidade GM, Rincón AD (2021). "The first occurrence of Acresuchus (Alligatoroidea, Caimaninae) from the Urumaco Formation of Venezuela and the late Miocene crocodylian fauna of northern South America". Journal of South American Earth Sciences. 110: Article 103344. Bibcode:2021JSAES.11003344C. doi:10.1016/j.jsames.2021.103344.
  33. ^ Iijima M, Takai M, Nishioka Y, Thaung-Htike, Zin-Maung-Maung-Thein, Egi N, et al. (2021). "Taxonomic overview of Neogene crocodylians in Myanmar". Journal of Vertebrate Paleontology. 40 (6): e1879100. doi:10.1080/02724634.2021.1879100. S2CID 233619370.
  34. ^ Nicholl CS, Rio JP, Mannion PD, Delfino M (2021). "A re-examination of the anatomy and systematics of the tomistomine crocodylians from the Miocene of Italy and Malta". Journal of Systematic Palaeontology. 18 (22): 1853–1889. doi:10.1080/14772019.2020.1855603. S2CID 231636898.
  35. ^ Hekkala E, Gatesy J, Narechania A, Meredith R, Russello M, Aardema ML, et al. (2021). "Paleogenomics illuminates the evolutionary history of the extinct Holocene "horned" crocodile of Madagascar, Voay robustus". Communications Biology. 4 (1): Article number 505. doi:10.1038/s42003-021-02017-0. PMC 8079395. PMID 33907305.
  36. ^ Azzarà B, Boschian G, Brochu CA, Delfino M, Dawid A, Iurino DA, Kimambo JS, Manzi G, Masao FT, Menconero S, Njau JK, Cherin M (2021). "A new cranium of Crocodylus anthropophagus from olduvai Gorge, northern Tanzania". Rivista Italiana di Paleontologia e Stratigrafia. 127 (2): 275–295. doi:10.13130/2039-4942/15771.
  37. ^ Blanco A (2021). "Importance of the postcranial skeleton in eusuchian phylogeny: Reassessing the systematics of allodaposuchid crocodylians". PLOS ONE. 16 (6): e0251900. doi:10.1371/journal.pone.0251900. PMC 8189472. PMID 34106925.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  38. ^ Darlim G, Montefeltro FC, Langer MC (April 2021). "3D skull modelling and description of a new baurusuchid (Crocodyliformes, Mesoeucrocodylia) from the Late Cretaceous (Bauru Basin) of Brazil". Journal of Anatomy. Online edition. doi:10.1111/joa.13442. PMID 33870512.
  39. ^ Salih KO, Evans DC, Bussert R, Klein N, Müeller J (2021). "Brachiosuchus kababishensis, a new long-snouted dyrosaurid (Mesoeucrocodylia) from the Late Cretaceous of north central Sudan". Historical Biology: An International Journal of Paleobiology. in press: 1–20. doi:10.1080/08912963.2021.1947513.
  40. ^ Novas FE, Agnolin FL, Lio GL, Rozadilla S, Suárez M, de la Cruz R, Carvalho IS, Rubilar-Rogers D, Isasi MP (2021). "New transitional fossil from late Jurassic of Chile sheds light on the origin of modern crocodiles". Scientific Reports. 11 (1): Article number 14960. doi:10.1038/s41598-021-93994-z. PMC 8298593. PMID 34294766.
  41. ^ Ruiz JV, Bronzati M, Ferreira GS, Martins KC, Queiroz MV, Langer MC, Montefeltro FC (2021). "A new species of Caipirasuchus (Notosuchia, Sphagesauridae) from the Late Cretaceous of Brazil and the evolutionary history of Sphagesauria". Journal of Systematic Palaeontology. 19 (4): 265–287. doi:10.1080/14772019.2021.1888815. S2CID 235172623.
  42. ^ Stocker MR, Brochu CA, Kirk EC (2021). "A new caimanine alligatorid from the Middle Eocene of Southwest Texas and implications for spatial and temporal shifts in Paleogene crocodyliform diversity". PeerJ. 9: e10665. doi:10.7717/peerj.10665. PMC 7812925. PMID 33520458.
  43. ^ Pinheiro AE, De Douza LG, Bandeira KL, Brum AS, Pereira PV, De Castro LO, Ramos RR, Simbras FM (2021). "The first notosuchian crocodyliform from the Araçatuba Formation (Bauru Group, Paraná Basin), and diversification of sphagesaurians". Anais da Academia Brasileira de Ciências. 93 (suppl 2): e20201591. doi:10.1590/0001-3765202120201591. PMID 34161450.
  44. ^ Sachs S, Young MT, Abel P, Mallison H (2021). "A new species of Cricosaurus (Thalattosuchia, Metriorhynchidae) based upon a remarkably well-preserved skeleton from the Upper Jurassic of Germany". Palaeontologia Electronica. 24 (2): Article number 24.2.a24. doi:10.26879/928.
  45. ^ Herrera Y, Aiglstorfer M, Bronzati M (2021). "A new species of Cricosaurus (Thalattosuchia: Crocodylomorpha) from southern Germany: the first three-dimensionally preserved Cricosaurus skull from the Solnhofen Archipelago". Journal of Systematic Palaeontology. 19 (2): 145–167. doi:10.1080/14772019.2021.1883138. S2CID 233194201.
  46. ^ Ristevski J, Price GJ, Weisbecker V, Salisbury SW (2021). "First record of a tomistomine crocodylian from Australia". Scientific Reports. 11 (1): Article number 12158. doi:10.1038/s41598-021-91717-y. PMC 8190066. PMID 34108569.
  47. ^ Czepiński Ł, Dróżdż D, Szczygielski T, Tałanda M, Pawlak W, Lewczuk A, et al. (2021). "An Upper Triassic Terrestrial Vertebrate Assemblage from the Forgotten Kocury Locality (Poland) with a New Aetosaur Taxon". Journal of Vertebrate Paleontology. Online edition: e1898977. doi:10.1080/02724634.2021.1898977.
  48. ^ Schroeder K, Lyons SK, Smith FA (February 2021). "The influence of juvenile dinosaurs on community structure and diversity". Science. 371 (6532): 941–944. Bibcode:2021Sci...371..941S. doi:10.1126/science.abd9220. PMID 33632845. S2CID 232050541.
  49. ^ Rothschild BM, Witzmann F (2021). "Identification of growth cessation in dinosaurs based on microscopy of long bone articular surfaces: preliminary results". Alcheringa: An Australasian Journal of Palaeontology. in press: 1–14. doi:10.1080/03115518.2021.1921273.
  50. ^ Canoville A, Zanno LE, Zheng W, Schweitzer MH (January 2021). "Keratan sulfate as a marker for medullary bone in fossil vertebrates". Journal of Anatomy. 238 (6): 1296–1311. doi:10.1111/joa.13388. PMC 8128763. PMID 33398875.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  51. ^ Hone DW, Persons WS, Le Comber SC (2021). "New data on tail lengths and variation along the caudal series in the non-avialan dinosaurs". PeerJ. 9: e10721. doi:10.7717/peerj.10721. PMC 7891087. PMID 33628634.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  52. ^ Motani R (2021). "Sex estimation from morphology in living animals and dinosaurs". Zoological Journal of the Linnean Society. 192 (4): 1029–1044. doi:10.1093/zoolinnean/zlaa181.
  53. ^ Novas FE, Agnolin FL, Ezcurra MD, Müller RT, Martinelli A, Langer M (2021). "Review of the fossil record of early dinosaurs from South America, and its phylogenetic implications". Journal of South American Earth Sciences. 110: Article 103341. doi:10.1016/j.jsames.2021.103341.
  54. ^ Lockley MG, Xing L, Kim KS, Meyer CA (2021). "Tortuous trackways: evidence and implications of deviations, turns and changes in direction by dinosaurian trackmakers". Historical Biology: An International Journal of Paleobiology. in press: 1–14. doi:10.1080/08912963.2020.1865945.
  55. ^ Hadland, Friedrich, Lagnaoui, Martill, Philip T., Steve, Abdelouahe, David M. (2021). "The youngest dinosaur footprints from England and their palaeoenvironmental implications". Proceedings of the Geologists' Association. doi:10.1016/j.pgeola.2021.04.005.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  56. ^ Shen, H.; Zhang, L.; Wang, C.; Amiot, R.; Wang, X.; Cui, L.; Song, P. (2021). "Early Jurassic palaeoclimate in Southwest China and its implications for dinosaur fossil distribution". Geological Journal. in press. doi:10.1002/gj.4168.
  57. ^ Druckenmiller PS, Erickson GM, Brinkman D, Brown CM, Eberle JJ (2021). "Nesting at extreme polar latitudes by non-avian dinosaurs". Current Biology. in press. doi:10.1016/j.cub.2021.05.041. PMID 34171301. S2CID 235631483.
  58. ^ García-Girón J, Heino J, Alahuhta J, Chiarenza AA, Brusatte SL (2021). "Palaeontology meets metacommunity ecology: the Maastrichtian dinosaur fossil record of North America as a case study". Palaeontology. 64 (3): 335–357. doi:10.1111/pala.12526.
  59. ^ Perry GL (January 2021). "How far might plant-eating dinosaurs have moved seeds?". Biology Letters. 17 (1): 20200689. doi:10.1098/rsbl.2020.0689. PMC 7876603. PMID 33401998.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  60. ^ Condamine FL, Guinot G, Benton MJ, Currie PJ (2021). "Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures". Nature Communications. 12 (1): Article number 3833. doi:10.1038/s41467-021-23754-0. PMC 8242047. PMID 34188028.
  61. ^ Salem BS, O'Connor PM, Gorscak E, El-Sayed S, Sertich JJ, Seiffert E, Sallam HM (2021). "Dinosaur remains from the Upper Cretaceous (Campanian) of the Western Desert, Egypt". Cretaceous Research. 123: Article 104783. doi:10.1016/j.cretres.2021.104783.
  62. ^ Garcia MS, Müller RT, Pretto FA, Da-Rosa ÁA, Dias-Da-Silva S (2021). "Taxonomic and phylogenetic reassessment of a large-bodied dinosaur from the earliest dinosaur-bearing beds (Carnian, Upper Triassic) from southern Brazil". Journal of Systematic Palaeontology. 19 (1): 1–37. doi:10.1080/14772019.2021.1873433. S2CID 232313141.
  63. ^ Cashmore DD, Butler RJ, Maidment SC (2021). "Taxonomic identification bias does not drive patterns of abundance and diversity in theropod dinosaurs". Biology Letters. 17 (7): Articles ID 20210168. doi:10.1098/rsbl.2021.0168. PMC 8278044. PMID 34256583.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  64. ^ Choiniere JN, Neenan JM, Schmitz L, Ford DP, Chapelle KE, Balanoff AM, Sipla JS, Georgi JA, Walsh SA, Norell MA, Xu X, Clark JM, Benson RB (2021). "Evolution of vision and hearing modalities in theropod dinosaurs". Science. 372 (6542): 610–613. Bibcode:2021Sci...372..610C. doi:10.1126/science.abe7941. PMID 33958472. S2CID 233872840.
  65. ^ Marsh AD, Milner AR, Harris JD, De Blieux DD, Kirkland JI (2021). "A non-averostran neotheropod vertebra (Dinosauria: Theropoda) from the earliest Jurassic Whitmore Point Member (Moenave Formation) in southwestern Utah". Journal of Vertebrate Paleontology. in press: e1897604. doi:10.1080/02724634.2021.1897604.
  66. ^ Rauhut OW, Pol D (2021). "New theropod remains from the Late Jurassic Cañadón Calcáreo formation of Chubut, Argentina". Journal of South American Earth Sciences. 111: Article 103434. doi:10.1016/j.jsames.2021.103434.
  67. ^ Ibiricu LM, Baiano MA, Martínez RD, Alvarez BN, Lamanna MC, Casal GA (2021). "A detailed osteological description of Xenotarsosaurus bonapartei (Theropoda: Abelisauroidae): implications for abelisauroid phylogeny". Cretaceous Research. 124: Article 104829. doi:10.1016/j.cretres.2021.104829.
  68. ^ McFeeters B (2021). "New mid-cervical vertebral morphotype of Spinosauridae from the Kem Kem Group of Morocco". Vertebrate Anatomy Morphology Palaeontology. 8: 182–193. doi:10.18435/vamp29370.
  69. ^ Samathi A, Sander PM, Chanthasit P (2021). "A spinosaurid from Thailand (Sao Khua Formation, Early Cretaceous) and a reassessment of Camarillasaurus cirugedae from the Early Cretaceous of Spain". Historical Biology: An International Journal of Paleobiology. in press: 1–15. doi:10.1080/08912963.2021.1874372.
  70. ^ Hone DW, Holtz TR (2021). "Evaluating the ecology of Spinosaurus: Shoreline generalist or aquatic pursuit specialist?". Palaeontologia Electronica. 24 (1): Article number 24(1):a03. doi:10.26879/1110.
  71. ^ Ferrante C, Cavin L, Vennemann T, Martini R (2021). "Histology and Geochemistry of Allosaurus (Dinosauria: Theropoda) From the Cleveland-Lloyd Dinosaur Quarry (Late Jurassic, Utah): Paleobiological Implications". Frontiers in Earth Science. 9: Article 641060. Bibcode:2021FrEaS...9..225F. doi:10.3389/feart.2021.641060. S2CID 233131160.
  72. ^ Bandeira KL, Brum AS, Pêgas RV, Souza LG, Pereira PV, Pinheiro AE (2021). "The first Jurassic theropod from the Sergi Formation, Jatobá Basin, Brazil". Anais da Academia Brasileira de Ciências. 93 (suppl 2): e20201557. doi:10.1590/0001-3765202120201557.
  73. ^ Meso JG, Juárez Valieri RD, Porfiri JD, Correa SA, Martinelli AG, Casal GA, Canudo JI, Poblete F, Dos Santos D (2021). "Testing the persistence of Carcharodontosauridae (Theropoda) in the Upper Cretaceous of Patagonia based on dental evidence". Cretaceous Research. 125: Article 104875. doi:10.1016/j.cretres.2021.104875.
  74. ^ Aranciaga Rolando A, Méndez A, Canale J, Novas F (2021). "Osteology of Aerosteon riocoloradensis (Sereno et al. 2008) a large megaraptoran (Dinosauria: Theropoda) from the Upper Cretaceous of Argentina". Historical Biology: An International Journal of Paleobiology. in press: 1–57. doi:10.1080/08912963.2021.1910816.
  75. ^ Yun CG (2021). "Tyrannosaurid theropod specimens in the San Diego Natural History Museum from the Dinosaur Park Formation (Campanian) of Alberta, Canada". New Mexico Museum of Natural History and Science Bulletin. 82: 569–578.
  76. ^ Dalman SG, Lucas SG (2021). "New evidence for cannibalism in tyrannosaurid dinosaurs from the Upper Cretaceous (Campanian/Maastrichtian) San Juan Basin of New Mexico". New Mexico Museum of Natural History and Science Bulletin. 82: 39–56.
  77. ^ Caneer T, Moklestad T, Lucas SG (2021). "Tracks in the Upper Cretaceous of the Raton Basin possibly show tyrannosaurid rising from a prone position". New Mexico Museum of Natural History and Science Bulletin. 82: 29–37.
  78. ^ Funston GF, Powers MJ, Whitebone SA, Brusatte SL, Scannella JB, Horner JR, Currie PJ (2021). "Baby tyrannosaurid bones and teeth from the Late Cretaceous of western North America" (PDF). Canadian Journal of Earth Sciences. in press: 1–22. doi:10.1139/cjes-2020-0169.
  79. ^ Enriquez NJ, Campione NE, Brougham T, Fanti F, White MA, Sissons RL, et al. (2021). "Exploring possible ontogenetic trajectories in tyrannosaurids using tracks from the Wapiti Formation (upper Campanian) of Alberta, Canada". Journal of Vertebrate Paleontology. 40 (6): e1878201. doi:10.1080/02724634.2021.1878201. S2CID 234814620.
  80. ^ Holtz TR (2021). "Theropod guild structure and the tyrannosaurid niche assimilation hypothesis: implications for predatory dinosaur macroecology and ontogeny in later Late Cretaceous Asiamerica". Canadian Journal of Earth Sciences. in press: 1–18. doi:10.1139/cjes-2020-0174.
  81. ^ Therrien F, Zelenitsky DK, Voris JT, Tanaka K (2021). "Mandibular force profiles and tooth morphology in growth series of Albertosaurus sarcophagus and Gorgosaurus libratus (Tyrannosauridae: Albertosaurinae) provide evidence for an ontogenetic dietary shift in tyrannosaurids". Canadian Journal of Earth Sciences. in press: 1–17. doi:10.1139/cjes-2020-0177.
  82. ^ Rowe AJ, Snively E (February 2021). "Biomechanics of juvenile tyrannosaurid mandibles and their implications for bite force: Evolutionary biology". Anatomical Record. in press. doi:10.1002/ar.24602. PMID 33586862.
  83. ^ Titus AL, Knoll K, Sertich JJ, Yamamura D, Suarez CA, Glasspool IJ, et al. (2021). "Geology and taphonomy of a unique tyrannosaurid bonebed from the upper Campanian Kaiparowits Formation of southern Utah: implications for tyrannosaurid gregariousness". PeerJ. 9: e11013. doi:10.7717/peerj.11013. PMC 8061582. PMID 33976955.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  84. ^ Yun CG (2021). "A juvenile metatarsal of cf. Daspletosaurus torosus: Implications for ontogeny in tyrannosaurid theropods" (PDF). Acta Palaeontologica Romaniae. 17 (2): 15–22. doi:10.35463/j.apr.2021.02.02.
  85. ^ Marshall CR, Latorre DV, Wilson CJ, Frank TM, Magoulick KM, Zimmt JB, Poust AW (April 2021). "Absolute abundance and preservation rate of Tyrannosaurus rex". Science. 372 (6539): 284–287. Bibcode:2021Sci...372..284M. doi:10.1126/science.abc8300. PMID 33859033. S2CID 233245062.
  86. ^ van Bijlert PA, van Soest AJ, Schulp AS (2021). "Natural Frequency Method: estimating the preferred walking speed of Tyrannosaurus rex based on tail natural frequency". Royal Society Open Science. 8 (4): Article ID 201441. Bibcode:2021RSOS....801441V. doi:10.1098/rsos.201441. PMC 8059583. PMID 33996115. S2CID 233312053.
  87. ^ Peterson JE, Tseng ZJ, Brink S (2021). "Bite force estimates in juvenile Tyrannosaurus rex based on simulated puncture marks". PeerJ. 9: e11450. doi:10.7717/peerj.11450. PMC 8179241. PMID 34141468.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  88. ^ Cuesta E, Vidal D, Ortega F, Shibata M, Sanz JL (2021). "Pelecanimimus (Theropoda: Ornithomimosauria) postcranial anatomy and the evolution of the specialized manus in Ornithomimosaurs and sternum in maniraptoriforms". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlab013.
  89. ^ Rhodes MM, Henderson DM, Currie PJ (2021). "Maniraptoran pelvic musculature highlights evolutionary patterns in theropod locomotion on the line to birds". PeerJ. 9: e10855. doi:10.7717/peerj.10855. PMC 7937347. PMID 33717681.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  90. ^ Federico L. Agnolín, Jun-Chang Lu, Martin Kundrát & Li Xu (2021) Alvarezsaurid osteology: new data on cranial anatomy, Historical Biology, DOI: 10.1080/08912963.2021.1929203
  91. ^ Meso JG, Qin Z, Pittman M, Canale JI, Salgado L, Díaz VD (2021). "Tail anatomy of the Alvarezsauria (Theropoda, Coelurosauria), and its functional and behavioural implications". Cretaceous Research. 124: Article 104830. doi:10.1016/j.cretres.2021.104830.
  92. ^ Qin Z, Zhao Q, Choiniere JN, Clark JM, Benton MJ, Xu X (2021). "Growth and miniaturization among alvarezsauroid dinosaurs". Current Biology. in press. doi:10.1016/j.cub.2021.06.013. PMID 34233160. S2CID 235752037.
  93. ^ Smith DK (January 2021). "Hind limb muscle reconstruction in the incipiently opisthopubic large therizinosaur Nothronychus (Theropoda; Maniraptora)". Journal of Anatomy. 238 (6): 1404–1424. doi:10.1111/joa.13382. PMC 8128771. PMID 33417263.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  94. ^ Smith DK (March 2021). "Forelimb musculature and function in the therizinosaur Nothronychus (Maniraptora, Theropoda)". Journal of Anatomy. 239 (2): 307–335. doi:10.1111/joa.13418. PMC 8273597. PMID 33665832. S2CID 232124454.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  95. ^ Funston GF, Currie PJ, Tsogtbaatar C, Khishigjav T (2021). "A partial oviraptorosaur skeleton suggests low caenagnathid diversity in the Late Cretaceous Nemegt Formation of Mongolia". PLOS ONE. 16 (7): e0254564. doi:10.1371/journal.pone.0254564. PMC 8274908. PMID 34252154.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  96. ^ Cau A, Beyrand V, Barsbold R, Tsogtbaatar K, Godefroit P (2021). "Unusual pectoral apparatus in a predatory dinosaur resolves avian wishbone homology". Scientific Reports. 11 (1): 14722. doi:10.1038/s41598-021-94285-3. PMC 8289867. PMID 34282248.
  97. ^ Novas FE, Agnolín FL, Motta MJ, Brissón Egli F (April 2021). "Osteology of Unenlagia comahuensis (Theropoda, Paraves, Unenlagiidae) from the Late Cretaceous of Patagonia". Anatomical Record. in press. doi:10.1002/ar.24641. PMID 33894102.
  98. ^ Gianechini FA, Zurriaguz VL (2021). "Vertebral pneumaticity of the paravian theropod Unenlagia comahuensis, from the Upper Cretaceous of Patagonia, Argentina". Cretaceous Research. 127: Article 104925. doi:10.1016/j.cretres.2021.104925.
  99. ^ Wang S, Zhang Q, Tan Q, Jiangzuo Q, Zhang H, Tan L (2021). "New troodontid theropod specimen from Inner Mongolia, China clarifies phylogenetic relationships of later-diverging small-bodied troodontids and paravian body size evolution". Cladistics. in press. doi:10.1111/cla.12467.
  100. ^ Freimuth WJ, Varricchio DJ, Brannick AL, Weaver LN, Wilson Mantilla GP (2021). "Mammal-bearing gastric pellets potentially attributable to Troodon formosus at the Cretaceous Egg Mountain locality, Two Medicine Formation, Montana, USA". Palaeontology. in press. doi:10.1111/pala.12546.
  101. ^ Brown CM, Tanke DH, Hone DW (2021). "Rare evidence for 'gnawing-like' behavior in a small-bodied theropod dinosaur". PeerJ. 9: e11557. doi:10.7717/peerj.11557. PMC 8234920. PMID 34221716.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  102. ^ Cullen TM, Zanno L, Larson DW, Todd E, Currie PJ, Evans DC (2021). "Anatomical, morphometric, and stratigraphic analyses of theropod biodiversity in the Upper Cretaceous (Campanian) Dinosaur Park Formation". Canadian Journal of Earth Sciences. in press: 1–15. doi:10.1139/cjes-2020-0145.
  103. ^ Oser SE, Chin K, Sertich JJ, Varricchio DJ, Choi S, Rifkin J (2021). "Tiny, ornamented eggs and eggshell from the Upper Cretaceous of Utah represent a new ootaxon with theropod affinities". Scientific Reports. 11 (1): 10021. Bibcode:2021NatSR..1110021O. doi:10.1038/s41598-021-89472-1. PMC 8113451. PMID 33976315.
  104. ^ Pol D, Otero A, Apaldetti C, Martínez RN (2021). "Triassic sauropodomorph dinosaurs from South America: The origin and diversification of dinosaur dominated herbivorous faunas". Journal of South American Earth Sciences. 107: Article 103145. Bibcode:2021JSAES.10703145P. doi:10.1016/j.jsames.2020.103145.
  105. ^ Müller RT (2021). "Olfactory acuity in early sauropodomorph dinosaurs". Historical Biology: An International Journal of Paleobiology. in press: 1–6. doi:10.1080/08912963.2021.1914600.
  106. ^ Kent DV, Clemmensen LB (February 2021). "Northward dispersal of dinosaurs from Gondwana to Greenland at the mid-Norian (215-212 Ma, Late Triassic) dip in atmospheric pCO2". Proceedings of the National Academy of Sciences of the United States of America. 118 (8): e2020778118. Bibcode:2021PNAS..11820207K. doi:10.1073/pnas.2020778118. PMC 7923678. PMID 33593914.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  107. ^ Lallensack JN, Teschner EM, Pabst B, Sander PM (2021). "New skulls of the basal sauropodomorph Plateosaurus trossingensis from Frick, Switzerland: Is there more than one species?". Acta Palaeontologica Polonica. 66 (1): 1–28. doi:10.4202/app.00804.2020.
  108. ^ Chapelle KE, Botha J, Choiniere JN (2021). "Extreme growth plasticity in the early branching sauropodomorph Massospondylus carinatus". Biology Letters. 17 (5): Articles ID 20200843. doi:10.1098/rsbl.2020.0843. PMC 8113909. PMID 33975484.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  109. ^ Fabbri M, Navalón G, Mongiardino Koch N, Hanson M, Petermann H, Bhullar BA (April 2021). "A shift in ontogenetic timing produced the unique sauropod skull". Evolution; International Journal of Organic Evolution. 75 (4): 819–831. doi:10.1111/evo.14190. PMID 33578446. S2CID 231909592.
  110. ^ Goodell Z, Lockley MG, Lucas SG, Schumacher BA, Smith JA, Trujillo R, Xing L (2021). "A high-altitude sauropod trackway site in the Jurassic of Colorado: The longest known consecutive footprint sequence reveals evidence of sharp turning behavior". New Mexico Museum of Natural History and Science Bulletin. 82: 101–112.
  111. ^ Holwerda FM, Rauhut OW, Pol D (2021). "Osteological revision of the holotype of the Middle Jurassic sauropod dinosaur Patagosaurus fariasi Bonaparte, 1979 (Sauropoda: Cetiosauridae)". Geodiversitas. 43 (16): 575–643. doi:10.5252/geodiversitas2021v43a16.
  112. ^ Wedel M, Atterholt J, Dooley Jr AC, Farooq S, Macalino J, Nalley TK, Wisser G, Yasmer J (2021). "Expanded neural canals in the caudal vertebrae of a specimen of Haplocanthosaurus". Academia Letters. doi:10.20935/AL911.
  113. ^ Mannion PD, Tschopp E, Whitlock JA (2021). "Anatomy and systematics of the diplodocoid Amphicoelias altus supports high sauropod dinosaur diversity in the Upper Jurassic Morrison Formation of the USA". Royal Society Open Science. 8 (6): Article ID 210377. doi:10.1098/rsos.210377. PMC 8206699. PMID 34150318.
  114. ^ Windholz GJ, Cerda IA (2021). "Paleohistology of two dicraeosaurid dinosaurs (Sauropoda; Diplodocoidea) from La Amarga Formation (Barremian–Aptian, Lower Cretaceous), Neuquén Basin, Argentina: Paleobiological implications". Cretaceous Research: 104965. doi:10.1016/j.cretres.2021.104965.
  115. ^ Gallagher T, Poole J, Schein JP (2021). "Evidence of integumentary scale diversity in the Late Jurassic sauropod Diplodocus sp. from the Mother's Day Quarry, Montana". PeerJ. 9: e11202. doi:10.7717/peerj.11202. PMC 8098675. PMID 33986987.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  116. ^ Paulina-Carabajal A, Calvo JO (2021). "Re-description of the braincase of the rebbachisaurid sauropod Limaysaurus tessonei and novel endocranial information based on CT scans". Anais da Academia Brasileira de Ciências. 93 (suppl 2): e20200762. doi:10.1590/0001-3765202120200762. PMID 33533794.
  117. ^ Poropat SF, Kundrát M, Mannion PD, Upchurch P, Tischler TR, Elliott DA (2021). "Second specimen of the Late Cretaceous Australian sauropod dinosaur Diamantinasaurus matildae provides new anatomical information on the skull and neck of early titanosaurs". Zoological Journal of the Linnean Society. 192 (2): 610–674. doi:10.1093/zoolinnean/zlaa173.
  118. ^ Otero A, Carballido JL, Salgado L, Canudo JI, Garrido AC (12 January 2021). "Report of a giant titanosaur sauropod from the Upper Cretaceous of Neuquén Province, Argentina". Cretaceous Research. 122: 104754. doi:10.1016/j.cretres.2021.104754.
  119. ^ Cerda I, Zurriaguz VL, Carballido JL, González R, Salgado L (2021). "Osteology, paleohistology and phylogenetic relationships of Pellegrinisaurus powelli (Dinosauria: Sauropoda) from the Upper Cretaceous of Argentinean Patagonia". Cretaceous Research. in press: 104957. doi:10.1016/j.cretres.2021.104957.
  120. ^ Bellardini F, Windholz GJ, Baiano MA, Garrido AC, Filippi L (2021). "New titanosaur remains from the Portezuelo Formation (Turonian–Coniancian) and their implications for the sauropod faunal diversity of the southern Neuquén Basin, Patagonia, Argentina". Journal of South American Earth Sciences. 111: Article 103457. doi:10.1016/j.jsames.2021.103457.
  121. ^ Malone JR, Strasser JC, Malone DH, D'Emic MD, Brown L, Craddock JP (2021). "Jurassic dinosaurs on the move: Gastrolith provenance and long-distance migration". Terra Nova. 33 (4): 375–382. doi:10.1111/ter.12522. ISSN 1365-3121.
  122. ^ Averianov AO, Sizov AV, Skutschas PP (2021). "Gondwanan affinities of Tengrisaurus, Early Cretaceous titanosaur from Transbaikalia, Russia (Dinosauria, Sauropoda)". Cretaceous Research. 122: Article 104731. doi:10.1016/j.cretres.2020.104731.
  123. ^ Dhiman H, Dutta S, Kumar S, Verma V, Prasad G (2021). "Discovery of proteinaceous moieties in Late Cretaceous dinosaur eggshell". Palaeontology. in press. doi:10.1111/pala.12565.
  124. ^ Leuzinger L, Bernasconi SM, Vennemann T, Luz Z, Vonlanthen P, Ulianov A, Baumgartner-Mora C, Hechenleitner EM, Fiorelli LE, Alasino PH (2021). "Life and reproduction of titanosaurians: Isotopic hallmark of mid-palaeolatitude eggshells and its significance for body temperature, diet, and nesting". Chemical Geology. in press: Article 120452. doi:10.1016/j.chemgeo.2021.120452.
  125. ^ Rozadilla S, Agnolín F, Manabe M, Tsuihiji T, Novas FE (2021). "Ornithischian remains from the Chorrillo Formation (Upper Cretaceous), southern Patagonia, Argentina, and their Implications on ornithischian paleobiogeography in the southern hemisphere". Cretaceous Research. 125: Article 104881. doi:10.1016/j.cretres.2021.104881.
  126. ^ Radermacher VJ, Fernandez V, Schachner ER, Butler RJ, Bordy EM, Hudgins MN, de Klerk WJ, Chapelle KE, Choiniere JN (2021). "A new Heterodontosaurus specimen elucidates the unique ventilatory macroevolution of ornithischian dinosaurs". eLife. 10: e66036. doi:10.7554/eLife.66036. PMC 8260226. PMID 34225841.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  127. ^ Breeden BT, Raven TJ, Butler RJ, Rowe TB, Maidment SC (2021). "The anatomy and palaeobiology of the early armoured dinosaur Scutellosaurus lawleri (Ornithischia: Thyreophora) from the Kayenta Formation (Lower Jurassic) of Arizona". Royal Society Open Science. 8 (7): Article ID 201676. doi:10.1098/rsos.201676. PMC 8292774. PMID 34295511.
  128. ^ Rauhut OW, Carballido JL, Pol D (2021). "First Osteological Record of a Stegosaur (Dinosauria, Ornithischia) from the Upper Jurassic of South America". Journal of Vertebrate Paleontology. 40 (6): e1862133. doi:10.1080/02724634.2020.1862133. S2CID 234161169.
  129. ^ Skutschas PP, Gvozdkova VA, Averianov AO, Lopatin AV, Martin T, Schellhorn R, et al. (2021). "Wear patterns and dental functioning in an Early Cretaceous stegosaur from Yakutia, Eastern Russia". PLOS ONE. 16 (3): e0248163. Bibcode:2021PLoSO..1648163S. doi:10.1371/journal.pone.0248163. PMC 7968641. PMID 33730093.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  130. ^ Xing L, Lockley MG, PERSONS IV WS, Klein H, Romilio A, Wang D, Wang M (2021). "Stegosaur track assemblage from Xinjiang, China, featuring the smallest known stegosaur record". PALAIOS. 36 (2): 68–76. Bibcode:2021Palai..36...68X. doi:10.2110/palo.2020.036. S2CID 233129489.
  131. ^ Riguetti F, Citton P, Apesteguía S, Zacarías GG, Pereda-Suberbiola X (2021). "New ankylosaurian trackways (cf. Tetrapodosaurus) from an uppermost Cretaceous level of the El Molino Formation of Bolivia". Cretaceous Research. 124: Article 104810. doi:10.1016/j.cretres.2021.104810.
  132. ^ Ősi A, Magyar J, Rosta K, Vickaryous M (2021). "Cranial ornamentation in the Late Cretaceous nodosaurid ankylosaur Hungarosaurus". PeerJ. 9: e11010. doi:10.7717/peerj.11010. PMC 7936564. PMID 33717709.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  133. ^ Kubo T, Zheng W, Kubo MO, Jin X (2021). "Dental microwear of a basal ankylosaurine dinosaur, Jinyunpelta and its implication on evolution of chewing mechanism in ankylosaurs". PLOS ONE. 16 (3): e0247969. Bibcode:2021PLoSO..1647969K. doi:10.1371/journal.pone.0247969. PMC 7946176. PMID 33690686.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  134. ^ Park JY, Lee YN, Currie PJ, Ryan MJ, Bell P, Sissons R, et al. (March 2021). "A new ankylosaurid skeleton from the Upper Cretaceous Baruungoyot Formation of Mongolia: its implications for ankylosaurid postcranial evolution". Scientific Reports. 11 (1): 4101. doi:10.1038/s41598-021-83568-4. PMC 7973727. PMID 33737515.
  135. ^ Barta DE, Norell MA (2021). "The osteology of Haya griva (Dinosauria: Ornithischia) from the Late Cretaceous of Mongolia". Bulletin of the American Museum of Natural History. 445: 1–112. doi:10.1206/0003-0090.445.1.1. hdl:2246/7253. S2CID 232059318.
  136. ^ Hunt TC, Cifelli RL, Davies KL (2021). "The hand of Tenontosaurus tilletti (Dinosauria, Ornithopoda)". Journal of Vertebrate Paleontology. in press: e1938591. doi:10.1080/02724634.2021.1938591.
  137. ^ Hübner TR, Foth C, Heinrich WD, Schwarz D, Bussert R (2021). "Research history, taphonomy, and age structure of a mass accumulation of the ornithopod dinosaur Dysalotosaurus lettowvorbecki from the Upper Jurassic of Tanzania". Acta Palaeontologica Polonica. 66 (2): 275–300. doi:10.4202/app.00687.2019.
  138. ^ Knoll F, Lautenschlager S, Kawabe S, Martínez G, Espílez E, Mampel L, Alcalá L (2021). "Palaeoneurology of the Early Cretaceous iguanodont Proa valdearinnoensis and its bearing on the parallel developments of cognitive abilities in theropod and ornithopod dinosaurs". Journal of Comparative Neurology. in press. doi:10.1002/cne.25224. PMID 34333763.
  139. ^ Słowiak J, Szczygielski T, Rothschild BM, Surmik D (2021). "Dinosaur senescence: a hadrosauroid with age-related diseases brings a new perspective of "old" dinosaurs". Scientific Reports. 11 (1): Article number 11947. doi:10.1038/s41598-021-91366-1. PMC 8196189. PMID 34117305.
  140. ^ Gates TA, Lamb J (2021). "Redescription of Lophorhothon atopus (Ornithopoda: Dinosauria) from the Late Cretaceous of Alabama based on new material". Canadian Journal of Earth Sciences. in press: 1–18. doi:10.1139/cjes-2020-0173.
  141. ^ Borinder NH, Poropat SF, Campione NE, Wigren T, Kear BP (2021). "Postcranial osteology of the basally branching hadrosauroid dinosaur Tanius sinensis from the Upper Cretaceous Wangshi Group of Shandong, China". Journal of Vertebrate Paleontology. in press: e1914642. doi:10.1080/02724634.2021.1914642.
  142. ^ Ibiricu LM, Casal GA, Alvarez BN, De Sosa Tomas A, Lamanna MC, Cruzado-Caballero P (2021). "New hadrosaurid (Dinosauria: Ornithopoda) fossils from the uppermost Cretaceous of central Patagonia and the influence of paleoenvironment on South American hadrosaur distribution". Journal of South American Earth Sciences. 110: Article 103369. Bibcode:2021JSAES.11003369I. doi:10.1016/j.jsames.2021.103369.
  143. ^ Holland B, Bell PR, Fanti F, Hamilton SM, Larson DW, Sissons R, Sullivan C, Vavrek MJ, Wang Y, Campione NE (2021). "Taphonomy and taxonomy of a juvenile lambeosaurine (Ornithischia: Hadrosauridae) bonebed from the late Campanian Wapiti Formation of northwestern Alberta, Canada". PeerJ. 9: e11290. doi:10.7717/peerj.11290. PMC 8103918. PMID 33987001.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  144. ^ Ramírez-Velasco ÁA, Espinosa-Arrubarrena L, Alvarado-Ortega J (2021). "Review of the taxonomic affinities of Latirhinus uitstlani, an emblematic Mexican hadrosaurid". Journal of South American Earth Sciences. in press: Article 103391. doi:10.1016/j.jsames.2021.103391.
  145. ^ Gates TA, Evans DC, Sertich JJ (2021). "Description and rediagnosis of the crested hadrosaurid (Ornithopoda) dinosaur Parasaurolophus cyrtocristatus on the basis of new cranial remains". PeerJ. 9: e10669. doi:10.7717/peerj.10669. PMC 7842145. PMID 33552721.
  146. ^ Cruzado-Caballero P, Lecuona A, Cerda I, Díaz-Martínez I (2021). "Osseous paleopathologies of Bonapartesaurus rionegrensis (Ornithopoda, Hadrosauridae) from Allen Formation (Upper Cretaceous) of Patagonia Argentina". Cretaceous Research. 124: Article 104800. doi:10.1016/j.cretres.2021.104800.
  147. ^ Woodruff DC, Goodwin MB, Lyson TR, Evans DC (2021). "Ontogeny and variation of the pachycephalosaurine dinosaur Sphaerotholus buchholtzae, and its systematics within the genus". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlaa179.
  148. ^ Vinther J, Nicholls R, Kelly DA (February 2021). "A cloacal opening in a non-avian dinosaur". Current Biology. 31 (4): R182–R183. doi:10.1016/j.cub.2020.12.039. PMID 33472049. S2CID 231644183.
  149. ^ Landi D, King L, Zhao Q, Rayfield EJ, Benton MJ (2021). "Testing for a dietary shift in the Early Cretaceous ceratopsian dinosaur Psittacosaurus lujiatunensis". Palaeontology. 64 (3): 371–384. doi:10.1111/pala.12529.
  150. ^ Skutschas PP, Morozov SS, Averianov AO, Leshchinskiy SV, Ivantsov SV, Fayngerts AV, Feofanova OA, Vladimirova ON, Slobodin DA (2021). "Femoral histology and growth patterns of the ceratopsian dinosaur Psittacosaurus sibiricus from the Early Cretaceous of Western Siberia" (PDF). Acta Palaeontologica Polonica. 66 (2): 437–447. doi:10.4202/app.00819.2020.
  151. ^ Knapp A, Knell RJ, Hone DW (February 2021). "Three-dimensional geometric morphometric analysis of the skull of Protoceratops andrewsi supports a socio-sexual signalling role for the ceratopsian frill". Proceedings. Biological Sciences. 288 (1944): 20202938. doi:10.1098/rspb.2020.2938. PMC 7893235. PMID 33529562.
  152. ^ Maidment SC, Dean CD, Mansergh RI, Butler RJ (2021). "Deep-time biodiversity patterns and the dinosaurian fossil record of the Late Cretaceous Western Interior, North America". Proceedings of the Royal Society B: Biological Sciences. 288 (1953): Article ID 20210692. doi:10.1098/rspb.2021.0692. PMC 8220268. PMID 34157868.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  153. ^ Rubilar-Rogers D, Vargas AO, Riga BG, Soto-Acuña S, Alarcón-Muñoz J, Iriarte-Díaz J, Arévalo C, Gutstein CS (2021). "Arackar licanantay gen. et sp. nov. a new lithostrotian (Dinosauria, Sauropoda) from the Upper Cretaceous of the Atacama Region, northern Chile". Cretaceous Research. 124: Article 104802. doi:10.1016/j.cretres.2021.104802.
  154. ^ Silva Junior JC, Martinelli AG, Iori FV, Marinho TS, Hechenleitner EM, Langer MC (2021). "Reassessment of Aeolosaurus maximus, a titanosaur dinosaur from the Late Cretaceous of Southeastern Brazil". Historical Biology: An International Journal of Paleobiology. in press: 1–9. doi:10.1080/08912963.2021.1920016.
  155. ^ Hocknull SA, Wilkinson M, Lawrence RA, Konstantinov V, Mackenzie S, Mackenzie R (2021). "A new giant sauropod, Australotitan cooperensis gen. et sp. nov., from the mid-Cretaceous of Australia". PeerJ. 9: e11317. doi:10.7717/peerj.11317. PMC 8191491. PMID 34164230.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  156. ^ Averianov A, Sues HD (2021). "First rebbachisaurid sauropod dinosaur from Asia". PLOS ONE. 16 (2): e0246620. Bibcode:2021PLoSO..1646620A. doi:10.1371/journal.pone.0246620. PMC 7904184. PMID 33626060.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  157. ^ Lerzo NL, Carballido JL, Gallina PA (2021). "Rebbachisaurid sauropods in Asia? A re-evaluation of the phylogenetic position of Dzharatitanis kingi from the Late Cretaceous of Uzbekistan". Publicación Electrónica de la Asociación Paleontológica Argentina. 21 (1): 18–27. doi:10.5710/PEAPA.24.03.2021.389.
  158. ^ Prieto-Marquez, Albert; Carrera Farias, Miguel (2021). "The late-surviving early diverging Ibero-Armorican 'duck-billed' dinosaur Fylax and the role of the Late Cretaceous European Archipelago in hadrosauroid biogeography". Acta Palaeontologica Polonica. 66 (2): 425–435. doi:10.4202/app.00821.2020.
  159. ^ Averianov, A. O.; Lopatin, A. V. (2021). "Новый хищный динозавр (Theropoda, Dromaeosauridae) из позднего мела Таджикистана" [A new theropod dinosaur (Theropoda, Dromaeosauridae) from the Late Cretaceous of Tajikistan]. Reports of the Russian Academy of Sciences. Earth Sciences (in Russian). 499 (1): 49–53. doi:10.31857/S2686739721070045 (inactive 2021-06-30).{{cite journal}}: CS1 maint: DOI inactive as of June 2021 (link)
  160. ^ Averianov AO, Lopatin AV (2021). "A New Theropod Dinosaur (Theropoda, Dromaeosauridae) from the Late Cretaceous of Tajikistan". Doklady Earth Sciences. 499 (1): 570–574. doi:10.1134/S1028334X21070047. S2CID 236478552.
  161. ^ Gianechini FA, Méndez AH, Filippi LS, Paulina-Carabajal A, Juárez-Valieri RD, Garrido AC (2021). "A New Furileusaurian Abelisaurid from La Invernada (Upper Cretaceous, Santonian, Bajo De La Carpa Formation), Northern Patagonia, Argentina". Journal of Vertebrate Paleontology. 40 (6): e1877151. doi:10.1080/02724634.2020.1877151. S2CID 233551122.
  162. ^ Dalma, S. G.; Lucas, S. G.; Jasinski, S. E.; Lichtig, A. J.; Dodson, P. (2021). "The oldest centrosaurine: a new ceratopsid dinosaur (Dinosauria: Ceratopsidae) from the Allison Member of the Menefee Formation (Upper Cretaceous, early Campanian), northwestern New Mexico, USA". PalZ. 95 (2): 291–335. doi:10.1007/s12542-021-00555-w. S2CID 234351502.
  163. ^ Gallina PA, Canale JI, Carballido JL (2021-02-28). "The Earliest Known Titanosaur Sauropod Dinosaur". Ameghiniana. 58 (1): 35–51. doi:10.5710/AMGH.20.08.2020.3376. ISSN 1851-8044. S2CID 226680080.
  164. ^ McDonald AT, Wolfe DG, Freedman Fowler EA, Gates TA (2021). "A new brachylophosaurin (Dinosauria: Hadrosauridae) from the Upper Cretaceous Menefee Formation of New Mexico". PeerJ. 9: e11084. doi:10.7717/peerj.11084. PMC 8020878. PMID 33859873.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  165. ^ Santos-Cubedo A, de Santisteban C, Poza B, Meseguer S (2021). "A new styracosternan hadrosauroid (Dinosauria: Ornithischia) from the Early Cretaceous of Portell, Spain". PLOS ONE. 16 (7): e0253599. doi:10.1371/journal.pone.0253599. PMC 8262792. PMID 34232957.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  166. ^ Turner AH, Montanari S, Norell MA (2021). "A new dromaeosaurid from the Late Cretaceous Khulsan locality of Mongolia". American Museum Novitates (3965): 1–48. doi:10.1206/3965.1. hdl:2246/7251. S2CID 231597229.
  167. ^ Sellés AG, Vila B, Brusatte SL, Currie PJ, Galobart À (March 2021). "A fast-growing basal troodontid (Dinosauria: Theropoda) from the latest Cretaceous of Europe". Scientific Reports. 11 (1): 4855. Bibcode:2021NatSR..11.4855S. doi:10.1038/s41598-021-83745-5. PMC 7921422. PMID 33649418.
  168. ^ Ramírez-Velasco ÁA, Aguilar FJ, Hernández-Rivera R, Gudiño Maussán JL, Rodriguez ML, Alvarado-Ortega J (2021). "Tlatolophus galorum, gen. et sp. nov., a parasaurolophini dinosaur from the upper Campanian of the Cerro del Pueblo Formation, Coahuila, northern Mexico". Cretaceous Research. 126: Article 104884. doi:10.1016/j.cretres.2021.104884.
  169. ^ Kobayashi Y, Takasaki R, Kubota K, Fiorillo AR (2021). "A new basal hadrosaurid (Dinosauria: Ornithischia) from the latest Cretaceous Kita-ama Formation in Japan implies the origin of hadrosaurids". Scientific Reports. 11 (1): Article number 8547. Bibcode:2021NatSR..11.8547K. doi:10.1038/s41598-021-87719-5. PMC 8076177. PMID 33903622.
  170. ^ "A new unenlagiine (Theropoda, Dromaeosauridae) from the Upper Cretaceous of Brazil". Papers in Palaeontology. 2021. doi:10.1002/spp2.1375. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  171. ^ Pei R, Pittman M, Goloboff PA, Dececchi TA, Habib MB, Kaye TG, et al. (October 2020). "Potential for Powered Flight Neared by Most Close Avialan Relatives, but Few Crossed Its Thresholds". Current Biology. 30 (20): 4033–4046.e8. doi:10.1016/j.cub.2020.06.105. PMID 32763170. S2CID 221015472.
  172. ^ Serrano FJ, Chiappe LM (2021). "Independent origins of powered flight in paravian dinosaurs?". Current Biology. 31 (8): R370–R372. doi:10.1016/j.cub.2021.03.058. PMID 33905689. S2CID 233428158.
  173. ^ Pittman M, Habib MB, Dececchi TA, Larsson HC, Pei R, Kaye TG, et al. (2021). "Response to Serrano and Chiappe". Current Biology. 31 (8): R372–R373. doi:10.1016/j.cub.2021.03.059. PMID 33905690. S2CID 233429338.
  174. ^ Yu Y, Zhang C, Xu X (March 2021). "Deep time diversity and the early radiations of birds". Proceedings of the National Academy of Sciences of the United States of America. 118 (10): e2019865118. doi:10.1073/pnas.2019865118. PMC 7958206. PMID 33619176.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  175. ^ Watanabe A, Balanoff AM, Gignac PM, Gold ME, Norell MA (2021). "Novel neuroanatomical integration and scaling define avian brain shape evolution and development". eLife. 10: e68809. doi:10.7554/eLife.68809. PMC 8260227. PMID 34227464.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  176. ^ Wu Y (2021). "Molecular phyloecology suggests a trophic shift concurrent with the evolution of the first birds". Communications Biology. 4 (1): Article number 547. doi:10.1038/s42003-021-02067-4. PMC 8119460. PMID 33986452.
  177. ^ Miller CV, Pittman M (2021). "The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction". Biological Reviews. in press. doi:10.1111/brv.12743. PMID 34240530.
  178. ^ Wang M, Lloyd GT, Zhang C, Zhou Z (February 2021). "The patterns and modes of the evolution of disparity in Mesozoic birds". Proceedings. Biological Sciences. 288 (1944): 20203105. doi:10.1098/rspb.2020.3105. PMC 7893231. PMID 33529566.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  179. ^ Zhou YC, Sullivan C, Zhou ZH, Zhang FC (2021). "Evolution of tooth crown shape in Mesozoic birds, and its adaptive significance with respect to diet". Palaeoworld. in press. doi:10.1016/j.palwor.2020.12.008.
  180. ^ Brocklehurst N, Field DJ (March 2021). "Macroevolutionary dynamics of dentition in Mesozoic birds reveal no long-term selection towards tooth loss". iScience. 24 (3): 102243. Bibcode:2021iSci...24j2243B. doi:10.1016/j.isci.2021.102243. PMC 7973866. PMID 33763634.
  181. ^ Monfroy QT, Kundrát M (2021). "The osteohistological variability in the evolution of basal avialans". Acta Zoologica. in press. doi:10.1111/azo.12396.
  182. ^ Bell A, Marugán-Lobón J, Navalón G, Nebreda SM, DiGuildo J, Chiappe LM (2021). "Quantitative Analysis of Morphometric Data of Pre-modern Birds: Phylogenetic Versus Ecological Signal". Frontiers in Earth Science. 9: Article 663342. doi:10.3389/feart.2021.663342.
  183. ^ Kaye TG, Pittman M, Wahl WR (2020). "Archaeopteryx feather sheaths reveal sequential center-out flight-related molting strategy". Communications Biology. 3 (1): Article number 745. doi:10.1038/s42003-020-01467-2. PMC 7722847. PMID 33293660.
  184. ^ Kiat Y, Pyle P, Balaban A, O'Connor JK (2021). "Reinterpretation of purported molting evidence in the Thermopolis Archaeopteryx". Communications Biology. 4 (1): Article number 837. doi:10.1038/s42003-021-02349-x. PMC 8257594. PMID 34226661. S2CID 235738230.
  185. ^ Kaye TG, Pittman M (2021). "Reply to: Reinterpretation of purported molting evidence in the Thermopolis Archaeopteryx". Communications Biology. 4 (1): Article number 839. doi:10.1038/s42003-021-02367-9. PMC 8257677. PMID 34226634. S2CID 235738222.
  186. ^ Wu Q, Bailleul AM, Li Z, O'Connor JK, Zhou Z (2021). "Osteohistology of the Scapulocoracoid of Confuciusornis and Preliminary Analysis of the Shoulder Joint in Aves". Frontiers in Earth Science. 9: Article 617124. Bibcode:2021FrEaS...9..252W. doi:10.3389/feart.2021.617124. S2CID 233216074.
  187. ^ Wang M, Stidham TA, Li Z, Xu X, Zhou Z (2021). "Cretaceous bird with dinosaur skull sheds light on avian cranial evolution". Nature Communications. 12 (1): Article number 3890. doi:10.1038/s41467-021-24147-z. PMC 8222284. PMID 34162868.
  188. ^ Stidham TA, O'Connor JK (2021). "The evolutionary and functional implications of the unusual quadrate of Longipteryx chaoyangensis (Avialae: Enantiornithes) from the Cretaceous Jehol Biota of China". Journal of Anatomy. in press. doi:10.1111/joa.13487. PMID 34137030.
  189. ^ Liu S, Li Z, Bailleul AM, Wang M, O'Connor J (2021). "Investigating Possible Gastroliths in a Referred Specimen of Bohaiornis guoi (Aves: Enantiornithes)". Frontiers in Earth Science. 9: Article 635727. Bibcode:2021FrEaS...9...62L. doi:10.3389/feart.2021.635727. S2CID 231956411.
  190. ^ Atterholt J, Poust AW, Erickson GM, O'Connor JK (2021). "Intraskeletal Osteohistovariability Reveals Complex Growth Strategies in a Late Cretaceous Enantiornithine". Frontiers in Earth Science. 9: Article 640220. Bibcode:2021FrEaS...9..118A. doi:10.3389/feart.2021.640220. S2CID 232313411.
  191. ^ Foth C, Wang S, Spindler F, Lin Y, Rui Y (2021). "A Juvenile Specimen of Archaeorhynchus Sheds New Light on the Ontogeny of Basal Euornithines". Frontiers in Earth Science. 9: Article 604520. Bibcode:2021FrEaS...9..149F. doi:10.3389/feart.2021.604520. S2CID 233245857.
  192. ^ Ju S, Wang X, Liu Y, Wang Y (2021). "A reassessment of Iteravis huchzermeyeri and Gansus zheni from the Jehol Biota in western Liaoning, China". China Geology. 4 (2): 197–204. doi:10.31035/cg2020066.
  193. ^ Pérez-Pueyo M, Cruzado-Caballero P, Moreno-Azanza M, Vila B, Castanera D, Gasca JM, Puértolas-Pascual E, Bádenas B, Canudo JI (2021). "First record of a giant bird (Ornithuromorpha) from the uppermost Maastrichtian of the Southern Pyrenees, northeast Spain". Journal of Vertebrate Paleontology. in press: e1900210. doi:10.1080/02724634.2021.1900210.
  194. ^ Torres CR, Norell MA, Clarke JA (2021). "Bird neurocranial and body mass evolution across the end-Cretaceous mass extinction: The avian brain shape left other dinosaurs behind". Science Advances. 7 (31): eabg7099. doi:10.1126/sciadv.abg7099. PMID 34330706.
  195. ^ Acosta Hospitaleche C, Worthy TH (2021). "New data on the Vegavis iaai holotype from the Maastrichtian of Antarctica". Cretaceous Research. 124: Article 104818. doi:10.1016/j.cretres.2021.104818.
  196. ^ Mayr G, Zelenkov N (2021). "Extinct crane-like birds (Eogruidae and Ergilornithidae) from the Cenozoic of Central Asia are indeed ostrich precursors". Ornithology. in press. doi:10.1093/ornithology/ukab048.
  197. ^ Li ZH, Bailleul AM, Stidham TA, Wang M, Deng T (2021). "Exceptional preservation of an extinct ostrich from the Late Miocene Linxia Basin of China". Vertebrata PalAsiatica. 59 (3): 229–244. doi:10.19615/j.cnki.1000-3118.210309.
  198. ^ Buffetaut E, Angst D (2021). "A giant ostrich from the Lower Pleistocene Nihewan Formation of North China, with a review of the fossil ostriches of China". Diversity. 13 (2): Article 47. doi:10.3390/d13020047.
  199. ^ Wood JR, Vermeulen MJ, Bolstridge N, Briden S, Cole TL, Rivera-Perez J, Shepherd LD, Rawlence NJ, Wilmshurst JM (2021). "Mid-Holocene coprolites from southern New Zealand provide new insights into the diet and ecology of the extinct little bush moa (Anomalopteryx didiformis)". Quaternary Science Reviews. 263: Article 106992. Bibcode:2021QSRv..26306992W. doi:10.1016/j.quascirev.2021.106992.
  200. ^ Hume JP, Robertson C (2021). "Eggs of extinct dwarf island emus retained large size". Biology Letters. 17 (5): Article ID 20210012. doi:10.1098/rsbl.2021.0012. PMC 8150009. PMID 34034528.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  201. ^ Agnolin FL (2021). "Reappraisal on the Phylogenetic Relationships of the Enigmatic Flightless Bird (Brontornis burmeisteri) Moreno and Mercerat, 1891". Diversity. 13 (2): Article 90. doi:10.3390/d13020090.
  202. ^ Louchart A, Bhullar BA, Riamon S, Field DJ (2021). "The True Identity of Putative Tooth Alveoli in a Cenozoic Crown Bird, the Gastornithid Omorhamphus". Frontiers in Earth Science. 9: Article 661699. doi:10.3389/feart.2021.661699. S2CID 234487888.
  203. ^ Handley WD, Worthy TH (2021). "Endocranial Anatomy of the Giant Extinct Australian Mihirung Birds (Aves, Dromornithidae)". Diversity. 13 (3): Article 124. doi:10.3390/d13030124.
  204. ^ Chinsamy A, Worthy TH (2021). "Histovariability and Palaeobiological Implications of the Bone Histology of the Dromornithid, Genyornis newtoni". Diversity. 13 (5): Article 219. doi:10.3390/d13050219.
  205. ^ Shen W, Stidham TA, Li ZH (2021). "Reexamination of the oldest pigeon (Aves: Columbidae) from Asia: Columba congi from the Early Pleistocene of Zhoukoudian, Beijing, China". Vertebrata PalAsiatica. 59 (3): 245–256. doi:10.19615/j.cnki.1000-3118.210304.
  206. ^ Oswald JA, Terrill RS, Stucky BJ, LeFebvre MJ, Steadman DW, Guralnick RP, Allen JM (March 2021). "Ancient DNA from the extinct Haitian cave-rail (Nesotrochis steganinos) suggests a biogeographic connection between the Caribbean and Old World". Biology Letters. 17 (3): 20200760. doi:10.1098/rsbl.2020.0760. PMC 8086980. PMID 33726563. S2CID 232245569.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  207. ^ Mori Hm Miyata K (2021). "Early Plotopteridae Specimens (Aves) from the Itanoura and Kakinoura Formations (Latest Eocene to Early Oligocene), Saikai, Nagasaki Prefecture, Western Japan". Paleontological Research. 25 (2): 145–159. doi:10.2517/2020PR018. S2CID 233029559.
  208. ^ Piro A, Acosta Hospitaleche C (2021). "A new petrel (Aves: Procellariidae) from the early Miocene of Patagonia (Argentina)". Historical Biology: An International Journal of Paleobiology. in press: 1–11. doi:10.1080/08912963.2021.1903891.
  209. ^ Acosta Hospitaleche C, Paulina-Carabajal A, Yury-Yáñez R (February 2021). "The skull of the Miocene Spheniscus urbinai (Aves, Sphenisciformes): osteology, brain morphology, and the cranial pneumatic systems". Journal of Anatomy. 239 (1): 151–166. doi:10.1111/joa.13403. PMC 8197947. PMID 33576081. S2CID 231901493.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  210. ^ Degrange FJ, Tambussi CP, Taglioretti ML, Scaglia FA (2021). "Phylogenetic affinities and morphology of the Pliocene cathartiform Dryornis pampeanus Moreno & Mercerat". Papers in Palaeontology. in press. doi:10.1002/spp2.1361.
  211. ^ Cenizo M, Noriega JI, Vezzosi RI, Tassara D, Tomassini R (2021). "First Pleistocene South American Teratornithidae (Aves): new insights into the late evolutionary history of teratorns". Journal of Vertebrate Paleontology. in press: e1927064. doi:10.1080/02724634.2021.1927064.
  212. ^ Buffetaut E, Angst D (2021). "Macrornis tanaupus Seeley, 1866: an enigmatic giant bird from the upper Eocene of England". Geological Magazine. 158 (6): 1129–1134. Bibcode:2021GeoM..158.1129B. doi:10.1017/S0016756820001466. S2CID 226430023.
  213. ^ Degrange FJ (2021). "A Revision of Skull Morphology In Phorusrhacidae (Aves, Cariamiformes)". Journal of Vertebrate Paleontology. 40 (6): e1848855. doi:10.1080/02724634.2020.1848855. S2CID 234119602.
  214. ^ Mayr G, De Pietri V, Scofield RP (2021). "New bird remains from the early Eocene Nanjemoy Formation of Virginia (USA), including the first records of the Messelasturidae, Psittacopedidae, and Zygodactylidae from the Fisher/Sullivan site". Historical Biology: An International Journal of Paleobiology. in press: 1–13. doi:10.1080/08912963.2021.1910820.
  215. ^ Tsai CH, Mayr G (2021). "A phasianid bird from the Pleistocene of Tainan: the very first avian fossil from Taiwan". Journal of Ornithology. 162 (3): 919–923. doi:10.1007/s10336-021-01886-w.
  216. ^ Tennyson AJ, Tomotani BM (2021). "A new fossil species of kiwi (Aves: Apterygidae) from the mid-Pleistocene of New Zealand". Historical Biology: An International Journal of Paleobiology. Online edition: 1–9. doi:10.1080/08912963.2021.1916011.
  217. ^ Mayr G (2021). "An early Eocene fossil from the British London Clay elucidates the evolutionary history of the enigmatic Archaeotrogonidae (Aves, Strisores)". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1392.
  218. ^ a b c Campbell KE, Bocheński ZM (2021). "A review of the woodpeckers (Aves: Piciformes) from the asphalt deposits of Rancho La Brea, California, with the description of three new species". Palaeobiodiversity and Palaeoenvironments. in press. doi:10.1007/s12549-020-00444-1. S2CID 231716382.
  219. ^ Zelenkov NV (2021). "A revision of the Palaeocene-Eocene Mongolian Presbyornithidae (Aves: Anseriformes)". Paleontological Journal. 55 (3): 323–330. doi:10.1134/S0031030121030138. S2CID 235966578.
  220. ^ a b c d Zelenkov NV (2021). "New bird taxa (Aves: Galliformes, Gruiformes) from the early Eocene of Mongolia". Paleontological Journal. 55 (4).
  221. ^ Bocheński ZM, Tomek T, Bujoczek M, Salwa G (2021). "A new passeriform (Aves: Passeriformes) from the early Oligocene of Poland sheds light on the beginnings of Suboscines". Journal of Ornithology. 162 (2): 593–604. doi:10.1007/s10336-021-01858-0. S2CID 233416728.
  222. ^ El Adli JJ, Wilson Mantilla JA, Antar MS, Gingerich PD (2021). "The earliest recorded fossil pelican, recovered from the late Eocene of Wadi Al-Hitan, Egypt". Journal of Vertebrate Paleontology. Online edition: e1903910. doi:10.1080/02724634.2021.1903910.
  223. ^ Clark AD, O'Connor JK (2021). "Exploring the Ecomorphology of Two Cretaceous Enantiornithines With Unique Pedal Morphology". Frontiers in Ecology and Evolution. 9: Article 654156. doi:10.3389/fevo.2021.654156.
  224. ^ Jadwiszczak P, Reguero M, Mörs T (2021). "A new small-sized penguin from the late Eocene of Seymour Island with additional material of Mesetaornis polaris". GFF. Online edition: 1–9. doi:10.1080/11035897.2021.1900385.
  225. ^ Louchart A, Duhamel A (2021). "A new fossil from the early Oligocene of Provence (France) increases the diversity of early Gruoidea and adds constraint on the origin of cranes (Gruidae) and limpkin (Aramidae)". Journal of Ornithology. in press. doi:10.1007/s10336-021-01891-z.
  226. ^ Mayr G (2021). "A remarkably complete skeleton from the London Clay provides insights into the morphology and diversity of early Eocene zygodactyl near-passerine birds". Journal of Systematic Palaeontology. 18 (22): 1891–1906. doi:10.1080/14772019.2020.1862930. S2CID 231636890.
  227. ^ Boev ZN (2021). "An Early Pleistocene magpie (Pica praepica sp. n.) (Corvidae Leach, 1820) from Bulgaria". Bulletin of the Natural History Museum - Plovdiv. 6: 51–59.
  228. ^ Tennyson AJ, Tomotani BM (2021). "A new fossil species of Procellaria (Aves: Procellariiformes) from the Pliocene of New Zealand". Papéis Avulsos de Zoologia. 61: e20216116. doi:10.11606/1807-0205/2021.61.16.
  229. ^ Mayr M (2021). "A partial skeleton of a new species of Tynskya Mayr, 2000 (Aves, Messelasturidae) from the London Clay highlights the osteological distinctness of a poorly known early Eocene "owl/parrot mosaic"". PalZ. 95 (2): 337–357. doi:10.1007/s12542-020-00541-8.
  230. ^ Degrange FJ, Pol D, Puerta P, Wilf P (January 2021). "Unexpected larger distribution of paleogene stem-rollers (AVES, CORACII): new evidence from the Eocene of Patagonia, Argentina". Scientific Reports. 11 (1): 1363. Bibcode:2021NatSR..11.1363D. doi:10.1038/s41598-020-80479-8. PMC 7809110. PMID 33446824.
  231. ^ Naish D, Witton MP, Martin-Silverstone E (2021). "Powered flight in hatchling pterosaurs: evidence from wing form and bone strength". Scientific Reports. 11 (1): Article number 13130. doi:10.1038/s41598-021-92499-z. PMC 8298463. PMID 34294737.
  232. ^ Dalla Vecchia FM (2021). "A revision of the anatomy of the Triassic pterosaur Austriadraco dallavecchiai Kellner, 2015 and of its diagnosis". Rivista Italiana di Paleontologia e Stratigrafia. 127 (2): 427–452. doi:10.13130/2039-4942/15849.
  233. ^ Jiang S, Wang X, Zheng X, Cheng X, Zhang J, Wang X (2021). "An early juvenile of Kunpengopterus sinensis (Pterosauria) from the Late Jurassic in China". Anais da Academia Brasileira de Ciências. 93 (suppl 2): e20200734. doi:10.1590/0001-3765202120200734. PMID 33886742.
  234. ^ Pêgas RV, Costa FR, Kellner AW (2021). "Reconstruction of the adductor chamber and predicted bite force in pterodactyloids (Pterosauria)". Zoological Journal of the Linnean Society. Online edition. doi:10.1093/zoolinnean/zlaa163.
  235. ^ Averianov AO, Yarkov AA (2021). "The first record of a pteranodontid (Pterosauria, Pteranodontidae) from the Late Cretaceous of the Lower Volga Region". Paleontological Journal. 55 (1): 101–104. doi:10.1134/S0031030121010032. S2CID 232070839.
  236. ^ Yun CG (2021). "Boreopterid pterosaur fossils from South Korea reconsidered". New Mexico Museum of Natural History and Science Bulletin. 82: 567–568.
  237. ^ Averianov AO, Kolchanov VV, Zverkov NG, Aleksandrova GN, Yaroshenko OP (2021). "The wandering jaws of Istiodactylus latidens (Pterosauria, Istiodactylidae)". Cretaceous Research. 126: Article 104887. doi:10.1016/j.cretres.2021.104887.
  238. ^ Bantim RA, de Andrade RC, Ferreira JS, Saraiva AÁ, Kellner AW, Sayao JM (2021). "Osteohistology and growth pattern of a large pterosaur from the Lower Cretaceous Romualdo Formation of the Araripe Basin, Northeastern Brazil". Cretaceous Research. 118: Article 104667. doi:10.1016/j.cretres.2020.104667.
  239. ^ Solonin, Sergey V.; Martill, David M.; Smith, Roy E.; Vodorezov, Alexey V. (2021). "First occurrence of ornithocheirid pterosaur teeth in the Dmitrov Formation (Santonian) of Ryazan Oblast, Russia". Cretaceous Research. 127: Article 104943. doi:10.1016/j.cretres.2021.104943.
  240. ^ Augustin FJ, Matzke AT, Maisch MW, Pfretzschner HU (2021). "New information on Lonchognathosaurus (Pterosauria: Dsungaripteridae) from the Lower Cretaceous of the southern Junggar Basin (NW China)". Cretaceous Research. 124: Article 104808. doi:10.1016/j.cretres.2021.104808.
  241. ^ Li Y, Wang X, Jiang S (2021). "A new pterosaur tracksite from the Lower Cretaceous of Wuerho, Junggar Basin, China: inferring the first putative pterosaur trackmaker". PeerJ. 9: e11361. doi:10.7717/peerj.11361. PMC 8176908. PMID 34131515.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  242. ^ Augustin FJ, Matzke AT, Maisch MW, Csiki-Sava Z (2021). "Pterosaur remains from the Lower Cretaceous Lianmuxin Formation (upper Tugulu Group) of the southern Junggar Basin (NW China)". Historical Biology: An International Journal of Paleobiology. in press: 1–10. doi:10.1080/08912963.2021.1910819.
  243. ^ Williams CJ, Pani M, Bucchi A, Smith RE, Kao A, Keeble W, Ibrahim N, Martill DM (2021). "Helically arranged cross struts in azhdarchid pterosaur cervical vertebrae and their biomechanical implications". iScience. 24 (4): Article 102338. Bibcode:2021iSci...24j2338W. doi:10.1016/j.isci.2021.102338. PMC 8101050. PMID 33997669.
  244. ^ Farke AA (2021). "A large pterosaur limb bone from the Kaiparowits Formation (late Campanian) of Grand Staircase-Escalante National Monument, Utah, USA". PeerJ. 9: e10766. doi:10.7717/peerj.10766. PMC 7825364. PMID 33552741.
  245. ^ "A new azhdarchoid pterosaur from the Late Cretaceous Javelina Formation of Texas". Biologia. 2021. doi:10.1007/s11756-021-00841-7. {{cite journal}}: Cite uses deprecated parameter |authors= (help)
  246. ^ Zhou X, Pêgas RV, Ma W, Han G, Jin X, Leal ME, et al. (April 2021). "A new darwinopteran pterosaur reveals arborealism and an opposed thumb". Current Biology. 31 (11): 2429–2436.e7. doi:10.1016/j.cub.2021.03.030. PMID 33848460. S2CID 233215450.
  247. ^ Wei X, Pêgas RV, Shen C, Guo Y, Ma W, Sun D, Zhou X (2021). "Sinomacrops bondei, a new anurognathid pterosaur from the Jurassic of China and comments on the group". PeerJ. 9: e11161. doi:10.7717/peerj.11161. PMC 8019321. PMID 33850665.
  248. ^ Soto M, Montenegro F, Toriño P, Mesa V, Perea D (2021). "A new ctenochasmatid (Pterosauria, Pterodactyloidea) from the late Jurassic of Uruguay". Journal of South American Earth Sciences. 111: Article 103472. doi:10.1016/j.jsames.2021.103472.
  249. ^ Marchetti L, Collareta A, Belvedere M, Leonardi G (2021). "Ichnotaxonomy, biostratigraphy and palaeoecology of the Monti Pisani tetrapod ichnoassociation (Tuscany, Italy) and new insights on Middle Triassic Dinosauromorpha". Palaeogeography, Palaeoclimatology, Palaeoecology. 567: Article 110235. Bibcode:2021PPP...567k0235M. doi:10.1016/j.palaeo.2021.110235.
  250. ^ McCabe MB, Nesbitt SJ (2021). "The first pectoral and forelimb material assigned to the lagerpetid Lagerpeton chanarensis (Archosauria: Dinosauromorpha) from the upper portion of the Chañares Formation, Late Triassic". Palaeodiversity. 14 (1): 121–131. doi:10.18476/pale.v14.a5.
  251. ^ Mestriner G, LeBlanc A, Nesbitt SJ, Marsola JC, Irmis, RB, Da-Rosa ÁA, Ribeiro AM, Ferigolo J, Langer M (2021). "Histological analysis of ankylothecodonty in Silesauridae (Archosauria: Dinosauriformes) and its implications for the evolution of dinosaur tooth attachment". The Anatomical Record. in press. doi:10.1002/ar.24679. PMID 34021739.