Jump to content

2022 in paleoichthyology: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 126: Line 126:


===Jawless vertebrate research===
===Jawless vertebrate research===
* Chevrinais ''et al.'' (2022) describe the [[ontogeny]] of ''[[Euphanerops|Euphanerops longaevus]]''.<ref>{{Cite journal|last1=Chevrinais |first1=M. |last2=Morel |first2=C. |last3=Renaud |first3=C. B. |last4=Cloutier |first4=R. |year=2022 |title=Ontogeny of ''Euphanerops longaevus'' from the Upper Devonian Miguasha Fossil-Fish-Lagerstätte and comparison with the skeletogenesis of the Sea Lamprey ''Petromyzon marinus'' |journal=Canadian Journal of Earth Sciences |doi=10.1139/cjes-2022-0062 }}</ref>
* Meng ''et al.'' (2022) describe new fossil material of ''[[Pterogonaspis]] yuhaii'' from the Devonian [[Xujiachong Formation]] (Yunnan, China), providing new information on the cranial anatomy of this [[Galeaspida|galeaspid]], including the first fossil evidence for the position of the [[esophagus]] in galeaspids.<ref>{{Cite journal|last1=Meng |first1=X.-Y. |last2=Zhu |first2=M. |last3=Li |first3=Q. |last4=Gai |first4=Z.-K. |year=2022 |title=New data on the cranial anatomy of ''Pterogonaspis'' (Tridensaspidae, Galeaspida) from the lower Devonian of Yunnan, China and its evolutionary implications |journal=The Anatomical Record |doi=10.1002/ar.25098 |pmid=36271627 }}</ref>
* Meng ''et al.'' (2022) describe new fossil material of ''[[Pterogonaspis]] yuhaii'' from the Devonian [[Xujiachong Formation]] (Yunnan, China), providing new information on the cranial anatomy of this [[Galeaspida|galeaspid]], including the first fossil evidence for the position of the [[esophagus]] in galeaspids.<ref>{{Cite journal|last1=Meng |first1=X.-Y. |last2=Zhu |first2=M. |last3=Li |first3=Q. |last4=Gai |first4=Z.-K. |year=2022 |title=New data on the cranial anatomy of ''Pterogonaspis'' (Tridensaspidae, Galeaspida) from the lower Devonian of Yunnan, China and its evolutionary implications |journal=The Anatomical Record |doi=10.1002/ar.25098 |pmid=36271627 }}</ref>
* The first detailed description of the complex of external [[endolymph]]atic structures in headshields of members of the genus ''[[Tremataspis]]'' from the Silurian of [[Estonia]], with tiny platelets located within the openings of the endolymphatic duct and possibly functioning as a sieve that allowed or prevented material from entering the inner ear, is published by [[Tiiu Märss|Märss]], Wilson & Viljus (2022).<ref>{{Cite journal|last1=Märss |first1=T. |last2=Wilson |first2=M. V. H. |last3=Viljus |first3=M. |year=2022 |title=Endolymphatic structures in headshields of the osteostracan genus ''Tremataspis'' (Agnatha) from the Silurian of Estonia |journal=Estonian Journal of Earth Sciences |volume=71 |issue=3 |pages=135–156 |doi=10.3176/earth.2022.10 }}</ref>
* The first detailed description of the complex of external [[endolymph]]atic structures in headshields of members of the genus ''[[Tremataspis]]'' from the Silurian of [[Estonia]], with tiny platelets located within the openings of the endolymphatic duct and possibly functioning as a sieve that allowed or prevented material from entering the inner ear, is published by [[Tiiu Märss|Märss]], Wilson & Viljus (2022).<ref>{{Cite journal|last1=Märss |first1=T. |last2=Wilson |first2=M. V. H. |last3=Viljus |first3=M. |year=2022 |title=Endolymphatic structures in headshields of the osteostracan genus ''Tremataspis'' (Agnatha) from the Silurian of Estonia |journal=Estonian Journal of Earth Sciences |volume=71 |issue=3 |pages=135–156 |doi=10.3176/earth.2022.10 }}</ref>

Revision as of 17:45, 17 December 2022

List of years in paleoichthyology
In paleontology
2019
2020
2021
2022
2023
2024
2025
In paleobotany
2019
2020
2021
2022
2023
2024
2025
In arthropod paleontology
2019
2020
2021
2022
2023
2024
2025
In paleoentomology
2019
2020
2021
2022
2023
2024
2025
In paleomalacology
2019
2020
2021
2022
2023
2024
2025
In reptile paleontology
2019
2020
2021
2022
2023
2024
2025
In archosaur paleontology
2019
2020
2021
2022
2023
2024
2025
In mammal paleontology
2019
2020
2021
2022
2023
2024
2025

This list of fossil fish research presented in 2022 is a list of new taxa of jawless vertebrates, placoderms, acanthodians, fossil cartilaginous fishes, bony fishes, and other fishes that were described during the year, as well as other significant discoveries and events related to paleoichthyology that occurred in 2022.

Jawless vertebrates

Name Novelty Status Authors Age Type locality Location Notes Images

Anjiaspis ericius[1]

Sp. nov

In press

Shan et al.

Silurian (Telychian)

Qingshui Formation

 China

A member of Eugaleaspidiformes.

Jiangxialepis jiujiangensis[2]

Sp. nov

In press

Shan, Zhao & Gai

Silurian (Telychian)

Qingshui Formation

 China

A member of Eugaleaspidiformes.

Qingshuiaspis[1]

Gen. et sp. nov

In press

Shan et al.

Silurian (Telychian)

Qingshui Formation

 China

A member of Eugaleaspidiformes belonging to the family Shuyuidae. The type species is Q. junqingi.

Tujiaaspis[3]

Gen. et sp. nov

Valid

Gai et al.

Silurian (Telychian)

Huixingshao Formation

 China

A member of Eugaleaspidiformes; the anatomy of its articulated remains indicates that galeaspids possessed three unpaired dorsal fins, an approximately symmetrical hypochordal tail and a pair of continuous ventrolateral fins. The type species is T. vividus.

Xitunaspis[4]

Gen. et sp. nov

Valid

Sun et al.

Devonian (Lochkovian)

Xitun Formation

 China

A member of Eugaleaspidiformes belonging to the family Eugaleaspidae. The type species is X. magnus.

Yongdongaspis[5]

Gen. et sp. nov

Valid

Chen et al.

Silurian (Llandovery)

Huixingshao Formation

 China

A member of Eugaleaspidiformes. Genus includes new species Y. littoralis.

Jawless vertebrate research

  • Chevrinais et al. (2022) describe the ontogeny of Euphanerops longaevus.[6]
  • Meng et al. (2022) describe new fossil material of Pterogonaspis yuhaii from the Devonian Xujiachong Formation (Yunnan, China), providing new information on the cranial anatomy of this galeaspid, including the first fossil evidence for the position of the esophagus in galeaspids.[7]
  • The first detailed description of the complex of external endolymphatic structures in headshields of members of the genus Tremataspis from the Silurian of Estonia, with tiny platelets located within the openings of the endolymphatic duct and possibly functioning as a sieve that allowed or prevented material from entering the inner ear, is published by Märss, Wilson & Viljus (2022).[8]

Placoderms

Name Novelty Status Authors Age Type locality Location Notes Images

Amazichthys[9]

Gen. et sp. nov

Valid

Jobbins et al.

Devonian (Famennian)

 Morocco

A member of the family Selenosteidae. The type species is A. trinajsticae.

Xiushanosteus[10]

Gen. et sp. nov

Valid

Zhu, Li, Ahlberg & Zhu in Zhu et al.

Silurian (Telychian)

Huixingshao Formation

 China

The type species is X. mirabilis.

Placoderm research

  • A study on the morphology and function of the antiarch jaw apparatus is published by Lebedev et al. (2022).[11]
  • Wang & Zhu (2022) describe the squamation and scale morphology of Parayunnanolepis xitunensis, recognize at least thirteen morphotypes of scales in P. xitunensis, and interpret their findings as indicative of the high regionalization of squamation at the root of jawed vertebrates.[12]
  • Zhu et al. (2022) redescribe the pelvic region of the holotype of Parayunnanolepis xitunensis, and report that, instead of having two large plates previously designated as dermal pelvic girdles, P. xitunensis had three pairs of lateral pelvic plates and one large oval median pelvic plate.[13]
  • Trinajstic et al. (2022) report preservation of a three-dimensionally mineralized heart, thick-walled stomach and bilobed liver from members of Arthrodira from the Devonian Gogo Formation (Australia), and interpret this finding as indicative of the presence of a flat S-shaped heart separated from the liver and other abdominal organs, and of the absence of lungs in members of Arthrodira.[14]

Acanthodians

Name Novelty Status Authors Age Type locality Location Notes Images

Fanjingshania[15]

Gen. et sp. nov

Valid

Andreev, Sansom, Li, Zhao & Zhu in Andreev et al.

Silurian (probably Aeronian)

Rongxi Formation

 China

A probable relative of climatiid "acanthodians". The type species is F. renovata.

Acanthodian research

  • A study aiming to quantify the completeness of the acanthodian fossil record is published by Schnetz et al. (2022).[16]
  • A study on the biomechanical properties and likely function of bony spines in front of the fins of members of the genus Machaeracanthus is published by Ferrón et al. (2022).[17]

Cartilaginous fishes

Name Novelty Status Authors Age Type locality Location Notes Images

Carcharhinus dicelmai[18]

Sp. nov

Valid

Collareta et al.

Miocene (Burdigalian)

Chilcatay Formation

 Peru

A species of Carcharhinus.

Cretascymnus beauryi[19]

Sp. nov

Feichtinger et al.

Late Cretaceous (Maastrichtian)

Gerhartsreit Formation

 Austria

A member of the family Somniosidae.

Dalatias orientalis[20]

Sp. nov

Malyshkina et al.

Miocene

Duho Formation

 South Korea

A species of Dalatias.

Dallasiella brachyodon[21]

Sp. nov

Valid

Siversson, Cederström & Ryan

Late Cretaceous (Campanian)

Kristianstad Basin

 Sweden

A member of Lamniformes.

Dracipinna[22]

Gen. et sp. nov

Valid

Pollerspöck & Straube

Late Oligocene and early Miocene

Ebelsberg Formation

 Austria
 Germany

A member of the family Dalatiidae. Genus includes new species D. bracheri.

Eoetmopterus davidi[19]

Sp. nov

Feichtinger et al.

Late Cretaceous (Maastrichtian)

Gerhartsreit Formation

 Austria

A member of the family Etmopteridae.

Fredipristis[19]

Gen et sp. nov

Feichtinger et al.

Late Cretaceous (Maastrichtian)

Gerhartsreit Formation

 Austria

A member of Squaliformes of uncertain affinities. The type species is F. eximia.

Gzhelodus[23]

Gen. et sp. nov

Valid

Ivanov

Carboniferous (KasimovianGzhelian)

 Russia
( Moscow Oblast
 Samara Oblast
 Volgograd Oblast)

A member of Euselachii belonging to the family Protacrodontidae. The type species is G. serratus.

Heslerodoides[23]

Gen. et sp. nov

Valid

Ivanov

Carboniferous (Bashkirian–Gzhelian)

Zilim Formation

 Brazil
 Russia
( Bashkortostan
 Moscow Oblast)

A member of Ctenacanthiformes belonging to the family Heslerodidae. The type species is H. triangularis.

Parvodus huizodus[24]

Sp. nov

Wen et al.

Early Triassic

Dongchuan Formation

 China

A member of Hybodontiformes.

Proetmopterus lukasi[19]

Sp. nov

Feichtinger et al.

Late Cretaceous (Maastrichtian)

Gerhartsreit Formation

 Austria

A member of the family Etmopteridae.

Protoxynotus mayrmelnhofi[25]

Sp. nov

Feichtinger et al.

Late Cretaceous (Maastrichtian)

Gerhartsreit Formation

 Austria

A member of the family Somniosidae.

Samarodus[23]

Gen. et sp. nov

Valid

Ivanov

Carboniferous (Moscovian–Gzhelian)

 Russia
( Bashkortostan
 Moscow Oblast
 Samara Oblast
Pechora Sea)

A shark of uncertain affinities. The type species is S. flexus.

Scyliorhinus weemsi[26]

Sp. nov

Valid

Cicimurri, Knight & Ebersole

Oligocene (Rupelian)

Ashley Formation

 United States
( South Carolina)

A species of Scyliorhinus.

Strophodus rebecae[27]

Sp. nov

Valid

Carrillo-Briceño & Cadena

Early Cretaceous (Valanginian-Hauterivian)

Rosablanca Formation

 Colombia

A member of Hybodontiformes belonging to the family Acrodontidae.

Taeniurops tosii[28]

Sp. nov

Adnet & Charpentier

Miocene (Aquitanian)

 Oman

A stingray, a species of Taeniurops.

Cartilaginous fish research

  • Duffin, Lauer & Lauer (2022) describe chimaeroid egg cases from the Upper Jurassic (Tithonian) Altmühltal Formation (Germany), probably produced by Ischyodus quenstedti, and name a new ichnotaxon Chimaerotheca schernfeldensis.[29]
  • Revision of the fossil material originally attributed to Bibractopiscis niger and Orthacanthus commailli, and a study on the implications of these fossils for the knowledge of the evolution of neurocranium in "ctenacanthiforms" and xenacanthiforms, is published by Luccisano et al. (2022).[30]
  • A study on the evolutionary history of members of the genus Orthacanthus from France and on their relationships with the other European species is published by Luccisano et al. (2022).[31]
  • Taxonomic reassessment of a hybodontiform dental assemblage from the lower Kimmeridgian of Czarnogłowy (Poland), and a study on the implications of this assemblage for the knowledge of ecology and biogeography of cartilaginous fishes prior to the Jurassic/Cretaceous transition, is published by Stumpf, Meng & Kriwet (2022)[32]
  • Fossil teeth of sharks belonging to the groups Hexanchiformes, Echinorhiniformes, Squaliformes and Lamniformes, including the first record of Protosqualus in northwestern Pacific reported to date, are described from the Upper Cretaceous Nishichirashinai and Omagari formations (Yezo Group, Japan) by Kanno et al. (2022).[33]
  • New fossil material of Xampylodon dentatus, including more complete teeth or specimens representing teeth of different positions than most previous records, and the oldest fossil material of Rolfodon tatere reported to date is described from the Upper Cretaceous (Campanian) of James Ross Island (Antarctica) by dos Santos et al. (2022).[34]
  • Herraiz et al. (2022) describe teeth of a member of the genus Trigonognathus from the El Ferriol outcrop (Miocene of Spain), representing the first known record of this genus from the Mediterranean realm.[35]
  • Revision of the fossil record of the genus Echinorhinus in South America is published by Bogan & Agnolín (2022), who consider Echinorhinus pozzi and Echinorhinus maremagnum to be valid species, and consider E. maremagnum to be distinct from Echinorhinus lapaoi.[36]
  • A study on the anatomy, growth and ecology of Cretodus crassidens, based on data from a specimen from the Turonian "Lastame" lithofacies of the Scaglia Rossa Veneta (Lessini Mountains, Veneto, northeastern Italy), is published by Amalfitano et al. (2022).[37]
  • A tooth of Cetorhinus huddlestoni, as well as gill rakers differing from previously described cetorhinids and referred to the same species as the tooth, are described from the Miocene Duho Formation (South Korea) by Malyshkina, Nam & Kwon (2022).[38]
  • A study aiming to determine whether the observed body forms of lamniform sharks are influenced by thermophysiology, and reevaluating the body form of Otodus megalodon proposed by Cooper et al. (2020),[39] is published by Sternes, Wood & Shimada (2022).[40]
  • A study on the putative nursery areas and body size patterns across different populations of Otodus megalodon is published by Shimada et al. (2022), who report that specimens of O. megalodon are on average larger in cooler water than those in warmer water, and argue that the previously identified nursery areas may reflect temperature-dependent trends rather than the inferred reproductive strategy.[41]
  • McCormack et al. (2022) demonstrate the use of zinc isotopes to assess the trophic level in extant and extinct sharks, and interpret their findings as indicative of dietary shifts throughout the Neogene in sharks belonging to the genera Otodus and Carcharodon, and indicating that Early Pliocene sympatric great white sharks and Otodus megalodon likely occupied a similar mean trophic level.[42]
  • Evidence from nitrogen isotope ratios in fossil teeth of members of the genus Otodus, indicating that O. megalodon occupied a higher trophic level than is known for any marine species, extinct or extant, is presented by Kast et al. (2022).[43]
  • Cooper et al. (2022) create the first three-dimensional model of the body of Otodus megalodon and use it to infer its movement and feeding ecology, interpreting it as likely able to swim great distances and to feed on prey as large as modern apex predators.[44]
  • A study on tooth marks on physeteroid bones from the Miocene Pisco Formation (Peru) is published by Benites-Palomino et al. (2022), who interpret their findings as indicating that Miocene sharks were actively targeting the foreheads of physeteroids to feed on their lipid-rich nasal complexes, with the shape and distribution of the bite marks suggesting a series of consecutive scavenging events by members of different shark species.[45]
  • Greenfield, Delsate & Candoni (2022) coin a new name Toarcibatidae for the family of Toarcian batomorphs previously referred to as Archaeobatidae.[46]
  • A study on the microstructure of rostral denticles of Ischyrhiza mira is published by Cook et al. (2022)[47]
  • New record of large dermal tubercles and bucklers, including tubercles similar in morphology to "Ceratoptera unios" and dermal bucklers similar in morphology to those of the extant roughtail stingray, is reported from the Lower Pleistocene Waccamaw Formation (South Carolina, United States) by Boessenecker & Gibson (2022), who interpret this findings as likely fossils of large stingrays in excess of 3 m disc width.[48]
  • A study on the phylogenetic relationships of extant and fossil rays and skates is published by Villalobos-Segura et al. (2022).[49]
  • A study on the completeness of the chondrichthyan fossil record from Florida, aiming to determine patterns in taxonomic and ecomorphological diversity of Eocene to Pleistocene chondrichthyans from the Florida Platform, is published by Perez (2022).[50]
  • Fossil material of a diverse shark and ray fauna is reported from the early Pleistocene of Taiwan by Lin, Lin & Shimada (2022).[51]

Ray-finned fishes

Name Novelty Status Authors Age Type locality Location Notes Images

Acentrogobius matsya[52]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Acentrogobius.

Acipenser amnisinferos[53]

Sp. nov

Valid

Hilton & Grande

Late Cretaceous (Maastrichtian)

Hell Creek Formation

 United States
( North Dakota)

A species of Acipenser.

Acipenser praeparatorum[53]

Sp. nov

Valid

Hilton & Grande

Late Cretaceous (Maastrichtian)

Hell Creek Formation

 United States
( North Dakota)

A species of Acipenser.

Allocyclostoma[54]

Gen. et sp. nov

In press

Schwarzhans, Stringer & Welton

Early Cretaceous (Albian)

Pawpaw Formation

 United States
( Texas)

Possibly a member of Polymixiiformes. The type species is A. alienus.

Amblyeleotris kireedam[52]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Amblyeleotris.

Ancistrogobius indicus[52]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Ancistrogobius.

Anisotremus rambo[55]

Sp. nov

Valid

Lin & Nolf

Eocene

 United States
( Alabama
 Louisiana
 Texas)

A species of Anisotremus.

Archaeotolithus doppelsteini[56]

Sp. nov

Valid

Schwarzhans & Keupp

Early Jurassic (Pliensbachian)

Amaltheenton Formation

 Germany

A member of Actinopterygii of uncertain affinities.

Arconiapogon[57]

Gen. et sp. nov

Valid

Marramà, Giusberti & Carnevale

Oligocene (Rupelian)

 Italy

A member of the family Apogonidae belonging to the subfamily Apogoninae. The type species is A. deangelii.

Argentina? texana[54]

Sp. nov

In press

Schwarzhans, Stringer & Welton

Early Cretaceous (Albian)

Pawpaw Formation

 United States
( Texas)

Possibly a species of Argentina.

Armigatus felixi[58]

Sp. nov

In press

Than-Marchese & Alvarado-Ortega

Early Cretaceous (Albian)

Tlayúa Formation

 Mexico

Astroscopus compactus[55]

Sp. nov

Valid

Lin & Nolf

Eocene

Gosport Sand

 United States
( Alabama
 Mississippi)

A species of Astroscopus.

Atractosteus grandei[59]

Sp. nov

Brownstein & Lyson

Paleogene (Danian)

Fort Union Formation

 United States
( North Dakota)

A gar, a species of Atractosteus.

Bellottia verecunda[60]

Sp. nov

Valid

Carnevale & Schwarzhans

Miocene (Messinian)

 Italy

A species of Bellottia.

Benthosema taurinense[60]

Sp. nov

Valid

Carnevale & Schwarzhans

Miocene (Tortonian and Messinian)

 Italy

A species of Benthosema.

Blennius vernyhorovae[61]

Sp. nov

Schwarzhans, Klots & Kovalchuk in Schwarzhans et al.

Miocene

 Ukraine

A species of Blennius.

Bolinichthys higashibesshoensis[62]

Sp. nov

Valid

Schwarzhans et al.

Miocene

Higashibessho Formation

 Japan

A species of Bolinichthys.

Bostrychus marsilii[60]

Sp. nov

Valid

Carnevale & Schwarzhans

Miocene (Messinian)

 Italy

A species of Bostrychus.

Caboellimma[63]

Gen. et comb. nov

De Figueiredo & Gallo

Early Cretaceous

Cabo Formation

 Brazil

A member of Clupeomorpha belonging to the group Ellimmichthyiformes; a new genus for "Ellimma" cruzae Santos (1990).

Callionymus vyali[52]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Callionymus.

Calypsoichthys[64]

Gen. et sp. nov

Valid

Argyriou et al.

Late Cretaceous (Maastrichtian)

 Greece

A member of the family Enchodontidae. The type species is C. pavlakiensis.

Cantarius ohei[65]

Sp. nov

Schwarzhans et al.

Miocene

Pebas Formation

 Peru

A member of the family Ariidae.

Capassopiscis[66]

Gen. et sp. nov

Valid

Taverne

Late Cretaceous (Cenomanian)

 Lebanon

A member of the family Pantodontidae. The type species is C. pankowskii.

Centroberyx vaalsensis[67]

Sp. nov

In press

Schwarzhans & Jagt

Late Cretaceous (Campanian)

Vaals Formation

 Netherlands

A species of Centroberyx.

Ceratoscopelus brevis[62]

Sp. nov

Valid

Schwarzhans et al.

Miocene

Takakura Formation

 Japan

A species of Ceratoscopelus.

Chaetodon wattsi[57]

Sp. nov

Valid

Marramà, Giusberti & Carnevale

Oligocene (Rupelian)

 Italy

A species of Chaetodon.

Cichlasoma bluntschlii[65]

Sp. nov

Schwarzhans et al.

Miocene

Pebas Formation

 Peru

A species of Cichlasoma.

Cirripectes biconvexus[52]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Cirripectes.

"Citharus" varians[55]

Sp. nov

Valid

Lin & Nolf

Eocene

Cook Mountain Formation

 United States
( Alabama
 Texas)

A member of the family Citharidae.

Concentrilepis[68]

Gen. et sp. nov

Valid

Stack & Gottfried

Permian (Kungurian)

Minnekahta Limestone

 United States
( South Dakota)

An early ray-finned fish with anatomical features of the paraphyletic "paleoniscoids". The type species is C. minnekahtaensis.

Coreoperca chosun[69]

Sp. nov

In press

Nam, Nazarkin & Bannikov

Early Miocene

Geumgwangdong Formation

 South Korea

A species of Coreoperca.

Coris medoboryensis[61]

Sp. nov

Schwarzhans, Klots & Kovalchuk in Schwarzhans et al.

Miocene

 Ukraine

A species of Coris.

Cuneatus maximus[70]

Sp. nov

Valid

Brownstein

Late Paleocene to early Eocene

Willwood Formation

 United States
( Wyoming)

A gar.

Diaphus epipedus[62]

Sp. nov

Valid

Schwarzhans et al.

Miocene

Takakura Formation

 Japan

A species of Diaphus.

Diaphus watatsumi[62]

Sp. nov

Valid

Schwarzhans et al.

Miocene

Takakura Formation

 Japan

A species of Diaphus.

Dicentrarchus oligocenicus[71]

Sp. nov

In press

Grădianu, Bordeianu & Codrea

Oligocene

Bituminous Marls Formation

 Romania

A species of Dicentrarchus.

Drombus thackerae[52]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Drombus.

Elopothrissus bernardlemorti[55]

Sp. nov

Valid

Lin & Nolf

Eocene

 United States
( Alabama
 Texas)

A member of Albuliformes.

Elopothrissus pawpawensis[54]

Sp. nov

In press

Schwarzhans, Stringer & Welton

Early Cretaceous (Albian)

Pawpaw Formation

 United States
( Texas)

Eosciaena[72]

Gen. et sp. nov

Valid

Stringer, Parmley & Quinn

Eocene (Bartonian)

Clinchfield Formation

 United States
( Georgia (U.S. state)
 Louisiana[55])

A member of the family Sciaenidae. The type species is E. ebersolei.

Fibramia keralensis[52]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Fibramia.

Francischanos[73]

Gen. et comb. nov

In press

Ribeiro, Bockmann & Poyato-Ariza

Early Cretaceous (Aptian)

Quiricó Formation

 Brazil

A member of the family Chanidae; a new genus for "Dastilbe" moraesi Silva-Santos (1955).

Fusigobius? venadicus[52]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

Possibly a species of Fusigobius.

Genartina princeps[54]

Sp. nov

In press

Schwarzhans, Stringer & Welton

Early Cretaceous (Albian)

Pawpaw Formation

 United States
( Texas)

A teleost of uncertain affinities, possibly near Albuliformes.

Germanostomus[74]

Gen. et sp. nov

Valid

Cooper et al.

Early Jurassic (Toarcian)

Posidonia Shale

 Germany

A member of the family Pachycormidae belonging to the subfamily Asthenocorminae. The type species is G. pectopteri.

Gerres mlynskyi[75]

Sp. nov

Valid

Brzobohatý, Zahradníková & Hudáčková

Miocene

Vienna Basin

 Austria
 France
 Poland
 Slovakia

A species of Gerres.

"aff. Glyptophidium" stringeri[55]

Sp. nov

Valid

Lin & Nolf

Eocene

 United States
( Alabama
 Mississippi
 Texas)

A cusk-eel.

Gobiodon burdigalicus[52]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Gobiodon.

Gobius bratishkoi[61]

Sp. nov

Schwarzhans, Klots & Kovalchuk in Schwarzhans et al.

Miocene

 Ukraine

A species of Gobius.

Gobius ukrainicus[61]

Sp. nov

Schwarzhans, Klots & Kovalchuk in Schwarzhans et al.

Miocene

 Ukraine

A species of Gobius.

Harenaichthys[76]

Gen. et sp. nov

In press

Kim et al.

Late Cretaceous (Maastrichtian)

Nemegt Formation

 Mongolia

A member of Osteoglossomorpha. The type species is H. lui.

Ichthyotringa? cuneata[54]

Sp. nov

In press

Schwarzhans, Stringer & Welton

Early Cretaceous (Albian)

Pawpaw Formation

 United States
( Texas)

A member of Aulopiformes belonging to the family Ichthyotringidae.

Ichthyotringa pindica[64]

Sp. nov

Valid

Argyriou et al.

Late Cretaceous (Maastrichtian)

 Greece

Italopterus[77]

Gen. et comb. nov

Valid

Shen & Arratia

Triassic

 Italy

A member of the family Thoracopteridae. Genus includes "Thoracopterus" magnificus Tintori & Sassi (1987) and "Thoracopterus" martinisi Tintori & Sassi (1992).

Jaydia? quilonica[52]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

Possibly a species of Jaydia.

Jenynsia herbsti[78]

Sp. nov

Valid

Sferco et al.

Late Miocene

 Argentina

A species of Jenynsia.

Kaykay[79]

Gen. et sp. nov

Valid

Gouiric-Cavalli & Arratia

Jurassic (Oxfordian stage)

 Argentina

A member of Pachycormiformes. Genus includes new species K. lafken.

Lampadena exima[62]

Sp. nov

Valid

Schwarzhans et al.

Miocene

Takakura Formation

 Japan

A species of Lampadena.

Lampanyctus beczynensis[80]

Sp. nov

Valid

Schwarzhans & Radwańska

Miocene (Langhian)

 Poland

A species of Lampanyctus.

Lampanyctus lenticularis[62]

Sp. nov

Valid

Schwarzhans et al.

Miocene

Takakura Formation

 Japan

A species of Lampanyctus.

Lampanyctus tsuyamaensis[62]

Sp. nov

Valid

Schwarzhans et al.

Miocene

Takakura Formation

 Japan

A species of Lampanyctus.

Leptolepis buttenheimensis[56]

Sp. nov

Valid

Schwarzhans & Keupp

Early Jurassic (Pliensbachian)

Amaltheenton Formation

 Germany

Extinct species of ray finned fish.

Leptolepis steberae[56]

Sp. nov

Valid

Schwarzhans & Keupp

Early Jurassic (Pliensbachian)

Amaltheenton Formation

 Germany

Libyachromis[81]

Gen. et sp. nov

Valid

Přikryl, Kaur & Murray

Oligocene

 Libya

A cichlid belonging to the subfamily Pseudocrenilabrinae. The type species is L. fugacior.

Lophionotus parnaibensis[82]

Sp. nov

In press

Gallo et al.

Late Jurassic

Pastos Bons Formation

 Brazil

A member of the family Semionotidae.

Makaira colonense[83]

Sp. nov

Valid

De Gracia et al.

Late Miocene

Chagres Formation

 Panama

A species of Makaira.

Makaira fierstini[83]

Sp. nov

Valid

De Gracia et al.

Late Miocene

Gatún Formation

 Panama

A species of Makaira.

Marcopoloichthys furreri[84]

Sp. nov

Valid

Arratia

Middle Triassic (Ladinian)

Upper Prosanto Formation

  Switzerland

A member of Teleosteomorpha belonging to the family Marcopoloichthyidae.

Medoborichthys[61]

Gen. et 2 sp. nov

Schwarzhans, Klots & Kovalchuk in Schwarzhans et al.

Miocene

 Ukraine

A member of the family Gobiidae belonging to the Priolepis lineage within the subfamily Gobiinae. The type species is M. renesulcis; genus also includes M. podolicus.

Mene garviei[55]

Sp. nov

Valid

Lin & Nolf

Eocene

Cook Mountain Formation

 United States
( Texas)

A species of Mene.

Moldavigobius[85]

Gen. et sp. et comb. nov

Valid

Reichenbacher & Bannikov

Miocene

 Moldova
 Turkey

A member of the family Gobiidae. The type species is M. helenae; genus also includes "Knipowitschia" suavis Schwarzhans (2014).

Morgula[83]

Gen. et sp. nov

Valid

De Gracia et al.

Late Miocene

Chagres Formation

 Panama

A marlin. The type species is M. donosochagrense.

"Muraenesox" barrytownensis[55]

Sp. nov

Valid

Lin & Nolf

Eocene

Lisbon Formation

 United States
( Alabama
 Texas)

A member of the family Muraenesocidae.

Neoopisthopterus weltoni[55]

Sp. nov

Valid

Lin & Nolf

Eocene

Cook Mountain Formation

 United States
( Texas)

A species of Neoopisthopterus.

Nezumia prikryli[86]

Sp. nov

Valid

Schwarzhans

Miocene (Langhian)

 Czech Republic

A species of Nezumia.

Notogoneus maarvelis[87]

Sp. nov

Valid

Grande & Wilson in Grande et al.

Late Cretaceous (Campanian)

 Canada
( Northwest Territories)

A member of the family Gonorynchidae.

Nusaviichthys[88]

Gen. et sp. nov

In press

Alvarado-Ortega & Alves

Early Cretaceous (Albian)

 Mexico

A member of Crossognathiformes belonging to the family Notelopidae. The type species is N. nerivelai.

Oechsleria[89]

Gen. et sp. nov

In press

Micklich & Bannikov

Oligocene (Rupelian)

Bodenheim Formation

 Germany

A member of the family Veliferidae. The type species is O. unterfeldensis.

Oligophus bartonensis[90]

Sp. nov

Valid

Schwarzhans & Carnevale

Eocene (Bartonian)

Marne di Monte Piano Formation

 Italy

A lanternfish.

Oligopseudamia[57]

Gen. et sp. nov

Valid

Marramà, Giusberti & Carnevale

Oligocene (Rupelian)

 Italy

A member of the family Apogonidae belonging to the subfamily Pseudaminae. The type species is O. iancurtisi.

Oniketia[57]

Gen. et sp. nov

Valid

Marramà, Giusberti & Carnevale

Oligocene (Rupelian)

 Italy

A member of the family Gobiidae. The type species is O. akihitoi.

Pagellus pamunkeyensis[55]

Sp. nov

Valid

Lin & Nolf

Eocene

Piney Point Formation

 United States
( Virginia)

A species of Pagellus.

Palaeoneiros[91]

Gen. et sp. nov

Valid

Giles et al.

Devonian (Famennian)

Chadakoin Formation

 United States
( Pennsylvania)

An early ray-finned fish with affinities to post-Devonian species Wendyichthys dicksoni and Cyranorhis bergeraci. Genus includes new species P. clackorum.

Paleoschizothorax diluculum[92]

Sp. nov

Valid

Yang et al.

Oligocene

Shangganchaigou Formation

 China

A member of the family Cyprinidae related to Schizothorax.

Paraconger wechesensis[55]

Sp. nov

Valid

Lin & Nolf

Eocene

Weches Formation

 United States
( Texas)

A species of Paraconger.

Parascombrops yanceyi[55]

Sp. nov

Valid

Lin & Nolf

Eocene

 United States
( Texas)

A species of Parascombrops.

Paraulopus wichitae[54]

Sp. nov

In press

Schwarzhans, Stringer & Welton

Early Cretaceous (Albian)

Pawpaw Formation

 United States
( Texas)

A species of Paraulopus.

Parenypnias[61]

Gen. et 2 sp. nov

Schwarzhans, Klots & Kovalchuk in Schwarzhans et al.

Miocene

 Czech Republic
 Ukraine

A member of the family Gobiidae belonging to the subfamily Gobiinae and the tribe Gobiosomatini. The type species is P. inauditus; genus also includes P. kiselevi.

Pebasciaena[65]

Gen. et sp. nov

Schwarzhans et al.

Miocene

Pebas Formation

 Peru

A member of the family Sciaenidae. The type species is P. amazonensis.

Piratata[93]

Gen. et sp. nov

In press

Richter et al.

Permian (Cisuralian)

Pedra de Fogo Formation

 Brazil

A deep-scaled ray-finned fish. Genus includes new species P. rogersmithii.

Plagioscion peyeri[65]

Sp. nov

Schwarzhans et al.

Miocene

Pebas Formation

 Peru

A species of Plagioscion.

Pleuropholis germinalis[94]

Sp. nov

Valid

Olive, Taverne & Brito

Early Cretaceous (Barremian to Aptian)

Sainte-Barbe Clays Formation

 Belgium

Pogonias tetragonus[65]

Sp. nov

Schwarzhans et al.

Miocene

Pebas Formation

 Peru

A species of Pogonias.

Polyspinatus[95]

Gen. et sp. nov

Schrøder et al.

Eocene

Fur Formation

 Denmark

A beardfish. Genus includes new species P. fluere.

Protoholocentrus[67]

Gen. et sp. nov

In press

Schwarzhans & Jagt

Late Cretaceous (Campanian)

Vaals Formation

 Netherlands

A member of Holocentriformes of uncertain affinities. The type species is P. janjanssensi.

Prototetrapturus[83]

Gen. et comb. nov

Valid

De Gracia et al.

Miocene (Messinian)

 Algeria

A marlin. The type species is "Xiphiorhynchus" calvertensis Arambourg (1927).

Pseudophichthys texanus[55]

Sp. nov

Valid

Lin & Nolf

Eocene

Weches Formation

 United States
( Alabama
 Mississippi
 Texas
 Virginia)

A species of Pseudophichthys.

Saurichthys sui[96]

Sp. nov

In press

Fang & Wu

Late Triassic

Junggar Basin

 China

Saurichthys taotie[97]

Sp. nov

Fang et al.

Late Triassic (Carnian)

Xiaowa Formation

 China

Scomber collettei[98]

Sp. nov

Valid

Bannikov & Erebakan

Miocene

 Russia
( Krasnodar Krai)

A species of Scomber.

Seinstedtia[99]

Gen. et sp. nov

Valid

Schultze et al.

Late Triassic (Norian)

 Germany

A member of Teleosteomorpha of uncertain affinities. The type species is S. parva.

Sillaginocentrus crispus[67]

Sp. nov

In press

Schwarzhans & Jagt

Late Cretaceous (Campanian)

Vaals Formation

 Netherlands

A member of Holocentriformes of uncertain affinities.

Siphamia minor[52]

Sp. nov

In press

Carolin et al.

Miocene (Burdigalian)

Quilon Formation

 India

A species of Siphamia.

Smithconger[100]

Gen. et comb. nov

Valid

Carnevale et al.

Eocene

Lillebælt Clay Formation

 Denmark
 New Zealand

A member of the family Congridae. The type species is "Pseudoxenomystax" treldeensis Schwarzhans (2007); genus also includes "Bathycongrus" waihaoensis Schwarzhans (2019).

Somalichromis[101]

Gen. et sp. nov

Murray

Oligocene

Daban Series

Somaliland

A cichlid belonging to the subfamily Pseudocrenilabrinae. The type species is S. hadrocephalus.

Spathochoira[83]

Gen. et comb. nov

Valid

De Gracia et al.

Late Miocene

Eastover Formation

 United States
( Virginia)

A marlin. The type species is "Istiophorus" calvertensis Berry (1917).

Spinascutichthys[102]

Gen. et sp. nov

Valid

Murray, Chida & Holmes

Late Cretaceous (Cenomanian)

 Lebanon

A member of Aulopiformes belonging to the group Enchodontoidei. Genus includes new species S. pankowskiae.

Stenobrachius ohashii[62]

Sp. nov

Valid

Schwarzhans et al.

Miocene

Kurosedani Formation

 Japan

A species of Stenobrachius.

Stenobrachius sangsunii[103]

Sp. nov

Nam & Nazarkin

Miocene

Duho Formation

 South Korea

A species of Stenobrachius.

Sturisomatichthys podgornyi[104]

Sp. nov

Valid

Bogan & Agnolin

Late Miocene

 Argentina

A species of Sturisomatichthys.

Symmetrosulcus dockeryi[55]

Sp. nov

Valid

Lin & Nolf

Eocene

Weches Formation

 United States
( Alabama
 Mississippi
 Texas)

A cusk-eel.

Teffichthys elegans[105]

Sp. nov

Valid

Yuan et al.

Early Triassic (Induan)

Daye Formation

 China

A member of the family Perleididae.

Texoma[54]

Gen. et sp. nov

In press

Schwarzhans, Stringer & Welton

Early Cretaceous (Albian)

Pawpaw Formation

 United States
( Texas)

Possibly a member of Polymixiiformes. The type species is T. cyclogaster.

Thorogobius antirostratus[75]

Sp. nov

Valid

Brzobohatý, Zahradníková & Hudáčková

Miocene

Vienna Basin

 Slovakia

A species of Thorogobius.

Trachinus meridianus[106]

Sp. nov

Valid

Schwarzhans & Kovalchuk

Miocene

 Poland
 Ukraine

A species of Trachinus.

Umbrina pachaula[65]

Sp. nov

Schwarzhans et al.

Miocene

Pebas Formation

 Peru

A species of Umbrina.

Waitakia beelzebub[55]

Sp. nov

Valid

Lin & Nolf

Eocene

Piney Point Formation

 United States
( Alabama
 Virginia)

A member of the subfamily Hemerocoetinae.

Xinjiangodus[107]

Gen. et sp. nov

Junior homonym

Zhou et al.

Late Cretaceous

Donggou Formation

 China

A member of the family Pycnodontidae. Genus includes new species X. gyrodoides. The generic name is preoccupied by Xinjiangodus Yue & Gao (1992).

Ray-finned fish research

  • A new database of the occurrences of Paleozoic ray-finned fishes is presented by Henderson et al. (2022), who evaluate the impact of fossil record biases, as well as taxonomic and phylogenetic issues, on the knowledge of the early evolution of ray-finned fishes;[108] subsequently Henderson, Dunne & Giles (2022) use this database to study patterns of diversity of ray-finned fishes through the Paleozoic, taking the extent and impact of sampling biases into account.[109]
  • A novel mode of fang accommodation, with teeth of the lower jaw inserting into fenestrae of the upper jaw, is reported in Brazilichthys macrognathus by Figueroa & Andrews (2022).[110]
  • Redescription and a study on the affinities of Toyemia is published by Bakaev & Kogan (2022).[111]
  • Redescription of the anatomy and a study on the affinities of Brachydegma caelatum is published by Argyriou, Giles & Friedman (2022).[112]
  • Osteoderms providing evidence of presence of large sturgeons (within the upper size bracket for Acipenseridae) in early-middle Paleocene freshwater ecosystems of western North America are described from the Fort Union Formation (Montana, Unitd States) by Brownstein (2022).[113]
  • Fossil material of a member or a relative of the genus Eomesodon, representing the oldest record of pycnodonts from East Gondwana reported to date, is described from the Middle Jurassic (Bathonian) Jaisalmer Formation (Rajasthan, India) by Kumar et al. (2022).[114]
  • A study on the tooth replacement pattern and implantation in Serrasalmimus secans is published by Matsui & Kimura (2022), who interpret their findings as indicating that serrasalmimid pycnodont fish independently acquired a vertical replacement in true thecodont implantation, i.e. a characteristic tooth replacement pattern of mammals.[115]
  • Redescription and a study on the affinities of Saurostomus esocinus is published by Cooper & Maxwell (2022), who interpret this taxon as the basalmost transitional member of the suspension-feeding clade of pachycormids.[116]
  • A study on bone repair in response to damage in Leedsichthys problematicus is published by Johanson et al. (2022).[117]
  • Redescription and a study on the affinities of Thaumaturus intermedius is published by Micklich & Arratia (2022).[118]
  • Redescription of "Diplomystus" solignaci is published by Marramà, Khalloufi & Carnevale (2022), who interpret this fish as a paraclupeid ellimmichthyiform, and transfer it to the genus Paraclupea.[119]
  • A study on cranial morphological features that diagnose known families of catfishes, and on their implications for the knowledge of the affinities of catfishes from the Paleogene of Africa, is published by Murray & Holmes (2022), who reassess the familial placement of the Paleogene African catfishes and assign Eomacrones wilsoni to the family Bagridae sensu stricto.[120]
  • Description of new fossil material of Enchodus from the Cenomanian of Ukraine, and a revision of earlier records of Enchodus from Ukraine, is published by Kovalchuk, Barkaszi & Anfimova (2022).[121]
  • Redescription and a study on the phylogenetic affinities of Protosyngnathus sumatrensis is published by Murray (2022).[122]
  • A study on the phylogenetic affinities of fossil gobioids is published by Gierl et al. (2022).[123]
  • New specimen of Mene rhombea with extensive soft tissue preservation and striking colour patterning is described from the Eocene (Ypresian) Monte Bolca Lagerstätte (Italy) by Rossi et al. (2022).[124]
  • A study on patterns of body size evolution of tetraodontiforms in relation to paleoclimate events is published by Troyer et al. (2022).[125]

Lobe-finned fishes

Name Novelty Status Authors Age Type locality Location Notes Images

Ceratodus guanganensis[126]

Sp. nov

Valid

Wang et al.

Late Jurassic

Shaximiao Formation

 China

Announced in 2021; the final version of the article naming it was published in 2022.

Dianodipterus[127]

Gen. et sp. nov

Valid

Luo et al.

Devonian (Eifelian)

Qujing Formation

 China

A lungfish. The type species is D. huizeensis.

Diplurus enigmaticus[128]

Sp. nov

Brownstein & Bissell

Triassic

 United States
( New Jersey)

A coelacanth.

Langlieria smalingi[129]

Sp. nov

Valid

Downs & Daeschler

Devonian (Frasnian)

Catskill Formation

 United States
( Pennsylvania)

A member of the family Tristichopteridae.

Libys callolepis[130]

Sp. nov

Valid

Ferrante, Menkveld-Gfeller & Cavin

Early Jurassic (Toarcian)

Stadelgraben Formation

  Switzerland

A coelacanth belonging to the family Latimeriidae.

Qikiqtania[131]

Gen. et sp. nov

Valid

Stewart et al.

Devonian (Frasnian)

Fram Formation

 Canada
( Nunavut)

An elpistostegalian. The type species is Q. wakei.

Rhizodus serpukhovensis[132]

Sp. nov

Valid

Smirnova

Carboniferous (Serpukhovian)

 Russia
( Moscow Oblast)

Rinconodus[133]

Gen. et sp. nov

Valid

Panzeri et al.

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

 Argentina

A lungfish belonging to the family Ceratodontidae. The type species is R. salvadori.

Lobe-finned fish research

  • Review of the phylogenetic analyses of onychodont relationships, aiming to determine the sources of discrepancies in the different phylogenetic hypotheses, is published by Ciudad Real et al. (2022).[134]
  • A study on the histology of the median fin bones and life history of Miguashaia bureaui is published by Mondéjar Fernandez et al. (2022).[135]
  • Toriño et al. (2022) describe a large mawsoniid coelacanth from the Upper Jurassic Kimmeridge Clay (United Kingdom), interpret its morphology as unexpectedly similar to the morphology of Mawsonia, and consider the studied coelacanth to be either an unknown Mawsonia-like form or a member of the lineage of Trachymetopon with some morphological characters previously assumed as diagnostic for Mawsonia.[136]
  • Description of cranial endocasts of six Paleozoic lungfish (Iowadipterus halli, Gogodipterus paddyensis, Pillararhynchus longi, Griphognathus whitei, Orlovichthys limnatis, Rhinodipterus ulrichi), and a study on the evolution of crania, brains and sensory abilities of lungfish, is published by Clement et al. (2022).[137]
  • Description of two well-preserved specimens of Youngolepis praecursor from the Devonian Xitun Formation (China), and a study on the implications of these specimens for the knowledge of the evolution of the specialized lungfish feeding mechanism, is published by Cui et al. (2022).[138]
  • A study on the anatomy of the neurocrania of Scaumenacia curta and Pentlandia macroptera is published by Boirot, Challands & Cloutier (2022), who report that the neurocranium of P. macroptera was at least partially ossified, while S. curta had a cartilaginous neurocranium, and evaluate the implications of their findings for the knowledge of paedomorphosis in lungfish evolution.[139]
  • A study on the histology of the tooth plates of Metaceratodus baibianorum from the Upper Cretaceous La Colonia Formation (Argentina) is published by Panzeri, Pereyra & Cione (2022).[140]
  • A study on the anatomy and affinities of Palaeospondylus gunni is published by Hirasawa et al. (2022), who interpret this taxon as a sarcopterygian, and likely a stem-tetrapod.[141]

Other

Name Novelty Status Authors Age Type locality Location Notes Images

Permodontodus[142]

Gen. et sp. nov

Valid

McMenamin

Permian (Kungurian)

Wellington Formation

 United States
( Oklahoma)

A bony fish of uncertain affinities, possibly a lobe-finned fish. Genus includes new species P. waurikensis.

Qianodus[143]

Gen. et sp. nov

Valid

Andreev, Sansom, Li, Zhao & Zhu in Andreev et al.

Silurian (probably Aeronian)

Rongxi Formation

 China

An early jawed vertebrate, likely a stem-chondrichthyan. The type species is Q. duplicis.

Shenacanthus[10]

Gen. et sp. nov

Valid

Zhu, Li, Ahlberg & Zhu in Zhu et al.

Silurian (Telychian)

Huixingshao Formation

 China

A stem-chondrichthyan. The type species is S. vermiformis.

General research

  • A study on the evolution of swimming speed in early vertebrates, inferred from caudal fin morphology of Paleozoic cyclostomes (Myxinidae and Petromyzontidae), jawless stem gnathostomes (Conodonta, Anaspida, Pteraspidomorphi, Thelodonti and Osteostraci) and placoderms, is published by Ferrón & Donoghue (2022), who interpret their findings as indicating that microsquamous taxa (thelodonts and anaspids) had higher swimming capabilities than vertebrates with rigid bony carapaces (including placoderms), that demonstrating that the rise of active nektonic vertebrates long-predated the Devonian.[144]
  • A study on the morphological similarities of Silurian and Devonian jawless and jawed vertebrates, aiming to determine which groups were most and least likely to have competed (and whether competition with jawed vertebrates was likely to cause the extinction of the majority of jawless vertebrates), is published by Scott & Anderson (2022), who don't find support for overall competitive exclusion of jawless vertebrates by jawed vertebrates.[145]
  • A study on the evolution of the vertebrate spiracular region from jawless vertebrates to tetrapods is published by Gai et al. (2022).[146]
  • A study on the mandibular morphology of Silurian and Devonian jawed vertebrates, and on the functional capabilities of their jaws, is published by Deakin et al. (2022).[147]
  • Description of the ichthyolith assemblage from the Upper Triassic Luning Formation (Nevada, United States), increasing known diversity of marine vertebrates in the western United States in the Late Triassic from four to at least 14 genera, is published by Tackett, Zierer & Clement (2022), who report evidence of the presence of taxa that were previously known only from Europe during the Late Triassic.[148]
  • Revision of the marine fish fauna from the Upper Cretaceous (Campanian) Rybushka Formation (Saratov Oblast, Russia) is published by Ebersole et al. (2022).[149]
  • A study aiming to reconstruct the fish community and oceanographic conditions off the coast of Peru during the last interglacial, based on data from sediments from the northern Humboldt Current system, is published by Salvatteci et al. (2022).[150]

References

  1. ^ a b Shan, X.; Gai, Z.; Lin, X.; Chen, Y.; Zhu, M.; Zhao, W. (2022). "The oldest eugaleaspiform fishes from the Silurian red beds in Jiangxi, South China and their stratigraphic significance". Journal of Asian Earth Sciences. 229: Article 105187. doi:10.1016/j.jseaes.2022.105187.
  2. ^ Shan, X.; Zhao, W.; Gai, Z. (2022). "A New Species of Jiangxialepis (Galeaspida) from the Lower Telychian (Silurian) of Jiangxi and its Biostratigraphic Significance". Acta Geologica Sinica (English Edition). doi:10.1111/1755-6724.15009.
  3. ^ Gai, Z.; Li, Q.; Ferrón, H. G.; Keating, J. N.; Wang, J.; Donoghue, P. C. J.; Zhu, M. (2022). "Galeaspid anatomy and the origin of vertebrate paired appendages". Nature. 609 (7929): 959–963. doi:10.1038/s41586-022-04897-6. PMID 36171376.
  4. ^ Sun, H.-R.; Gai, Z.-K.; Cai, J.-C.; Li, Q.; Zhu, M.; Zhao, W.-J. (2022). "Xitunaspis, a new eugaleaspid fish (Eugaleaspiformes, Galeaspida) from the Lower Devonian of Qujing, Yunnan". Vertebrata PalAsiatica. 60 (3): 169–183. doi:10.19615/j.cnki.2096-9899.220412.
  5. ^ Chen, Y.; Gai, Z.; Li, Q.; Wang, J.; Peng, L.; Wei, G.; Zhu, M. (2022). "A New Family of Galeaspids (Jawless Stem-Gnathostomata) from the Early Silurian of Chongqing, Southwestern China". Acta Geologica Sinica (English Edition). 96 (2): 430–439. doi:10.1111/1755-6724.14909.
  6. ^ Chevrinais, M.; Morel, C.; Renaud, C. B.; Cloutier, R. (2022). "Ontogeny of Euphanerops longaevus from the Upper Devonian Miguasha Fossil-Fish-Lagerstätte and comparison with the skeletogenesis of the Sea Lamprey Petromyzon marinus". Canadian Journal of Earth Sciences. doi:10.1139/cjes-2022-0062.
  7. ^ Meng, X.-Y.; Zhu, M.; Li, Q.; Gai, Z.-K. (2022). "New data on the cranial anatomy of Pterogonaspis (Tridensaspidae, Galeaspida) from the lower Devonian of Yunnan, China and its evolutionary implications". The Anatomical Record. doi:10.1002/ar.25098. PMID 36271627.
  8. ^ Märss, T.; Wilson, M. V. H.; Viljus, M. (2022). "Endolymphatic structures in headshields of the osteostracan genus Tremataspis (Agnatha) from the Silurian of Estonia". Estonian Journal of Earth Sciences. 71 (3): 135–156. doi:10.3176/earth.2022.10.
  9. ^ Jobbins, M.; Rücklin, M.; Ferrón, H. G.; Klug, C. (2022). "A new selenosteid placoderm from the Late Devonian of the eastern Anti-Atlas (Morocco) with preserved body outline and its ecomorphology". Frontiers in Ecology and Evolution. 10. 969158. doi:10.3389/fevo.2022.969158.
  10. ^ a b Zhu, Y.; Li, Q.; Lu, J.; Chen, Y.; Wang, J.; Gai, Z.; Zhao, W.; Wei, G.; Yu, Y.; Ahlberg, P. E.; Zhu, M. (2022). "The oldest complete jawed vertebrates from the early Silurian of China". Nature. 609 (7929): 954–958. doi:10.1038/s41586-022-05136-8. PMID 36171378.
  11. ^ Lebedev, O. A.; Johanson, Z.; Kuznetsov, A. N.; Tsessarsky, A.; Trinajstic, K.; Isakhodzayev, F. B. (2022). "Feeding in the Devonian antiarch placoderm fishes: a study based upon morphofunctional analysis of jaws". Journal of Paleontology. 96 (6): 1413–1430. doi:10.1017/jpa.2022.54.
  12. ^ Wang, Y.; Zhu, M. (2022). "Squamation and scale morphology at the root of jawed vertebrates". eLife. 11: e76661. doi:10.7554/eLife.76661. PMC 9177148. PMID 35674421.
  13. ^ Zhu, Y.-A.; Wang, Y.-J.; Qu, Q.-M.; Lu, J.; Zhu, M. (2022). "The pelvic morphology of Parayunnanolepis (Placodermi, Antiarcha) revealed by tomographic data". Vertebrata PalAsiatica. doi:10.19615/j.cnki.2096-9899.221126.
  14. ^ Trinajstic, K.; Long, J. A.; Sanchez, S.; Boisvert, C. A.; Snitting, D.; Tafforeau, P.; Dupret, V.; Clement, A. M.; Currie, P. D.; Roelofs, B.; Bevitt, J. J.; Lee, M. S. Y.; Ahlberg, P. E. (2022). "Exceptional preservation of organs in Devonian placoderms from the Gogo lagerstätte". Science. 377 (6612): 1311–1314. doi:10.1126/science.abf3289. PMID 36107996.
  15. ^ Andreev, P. S.; Sansom, I. J.; Li, Q.; Zhao, W.; Wang, J.; Wang, C.-C.; Peng, L.; Jia, L.; Qiao, T.; Zhu, M. (2022). "Spiny chondrichthyan from the lower Silurian of South China". Nature. 609 (7929): 969–974. doi:10.1038/s41586-022-05233-8. PMID 36171377.
  16. ^ Schnetz, L.; Butler, R. J.; Coates, M. I.; Sansom, I. J. (2022). "Skeletal and soft tissue completeness of the acanthodian fossil record". Palaeontology. 65 (4): e12616. doi:10.1111/pala.12616.
  17. ^ Ferrón, H. G.; Ballell, A.; Botella, H.; Martínez-Pérez, C. (2022). "Biomechanics of Machaeracanthus pectoral fin spines provide evidence for distinctive spine function and lifestyle among early chondrichthyans". Journal of Vertebrate Paleontology. 41 (6): e2090260. doi:10.1080/02724634.2021.2090260.
  18. ^ Collareta, A.; Kindlimann, R.; Baglioni, A.; Landini, W.; Sarti, G.; Altamirano, A.; Urbina, M.; Bianucci, G. (2022). "Dental Morphology, Palaeoecology and Palaeobiogeographic Significance of a New Species of Requiem Shark (Genus Carcharhinus) from the Lower Miocene of Peru (East Pisco Basin, Chilcatay Formation)". Journal of Marine Science and Engineering. 10 (10). 1466. doi:10.3390/jmse10101466.
  19. ^ a b c d Feichtinger, I.; Pollerspöck, J.; Harzhauser, M.; Auer, G.; Ćorić, S.; Kranner, M.; Guinot, G. (2022). "Shifts in composition of northern Tethyan elasmobranch assemblages during the last millennia of the Cretaceous". Cretaceous Research. 105414. doi:10.1016/j.cretres.2022.105414.
  20. ^ Malyshkina, T. P.; Ward, D. J.; Nazarkin, M. V.; Nam, G.-S.; Kwon, S.-H.; Lee, J.-H.; Kim, T.-W.; Kim, D.-K.; Baek, D.-S. (2022). "Miocene Elasmobranchii from the Duho Formation, South Korea". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2022.2110870.
  21. ^ Siversson, M.; Cederström, P.; Ryan, H. E. (2022). "A new dallasiellid shark from the lower Campanian (Upper Cretaceous) of Sweden". GFF. 144 (2): 118–125. doi:10.1080/11035897.2022.2097737.
  22. ^ Pollerspöck, J.; Straube, N. (2022). "Phylogenetic placement and description of an extinct genus and species of kitefin shark based on tooth fossils (Squaliformes: Dalatiidae)". Journal of Systematic Palaeontology. 19 (15): 1083–1096. doi:10.1080/14772019.2021.2012537. S2CID 246398258.
  23. ^ a b c Ivanov, A. O. (2022). "New late Carboniferous chondrichthyans from the European Russia". Bulletin of Geosciences. 97 (2): 219–234. doi:10.3140/bull.geosci.1845.
  24. ^ Wen, W.; Kriwet, J.; Zhang, Q.; Benton, M. J.; Duffin, C. J.; Huang, J.; Zhou, C.; Hu, S.; Ma, Z. (2022). "Hybodontiform shark remains (Chondrichthyes, Elasmobranchii) from the Lower Triassic of Yunnan Province, China, with comments on hybodontiform diversity across the PTB". Journal of Vertebrate Paleontology. 42 (1): e2108712. doi:10.1080/02724634.2022.2108712.
  25. ^ Feichtinger, I.; Guinot, G.; Straube, N.; Harzhauser, M.; Auer, G.; Ćorić, S.; Kranner, M.; Schellhorn, S.; Ladwig, J.; Thies, D.; Pollerspöck, J. (2022). "Revision of the Cretaceous shark Protoxynotus (Chondrichthyes, Squaliformes) and early evolution of somniosid sharks". Cretaceous Research. 140: Article 105331. doi:10.1016/j.cretres.2022.105331.
  26. ^ Cicimurri, D. J.; Knight, J. L.; Ebersole, J. A. (2022). "Early Oligocene (Rupelian) fishes (Chondrichthyes, Osteichthyes) from the Ashley Formation (Cooper Group) of South Carolina, USA". PaleoBios. 39 (1): ucmp_paleobios_56976. doi:10.5070/P939056976.
  27. ^ Carrillo-Briceño, J. D.; Cadena, E.-A. (2022). "A new hybodontiform shark (Strophodus Agassiz 1838) from the Lower Cretaceous (Valanginian-Hauterivian) of Colombia". PeerJ. 10: e13496. doi:10.7717/peerj.13496. PMC 9167585. PMID 35673391.
  28. ^ Adnet, S.; Charpentier, V. (2022). "A new elasmobranch fauna from the early Miocene of Sharbithat (Sultanate of Oman) reveals the teeth of an ancient fantail stingray". Geologica Acta. 20: 1–13. doi:10.1344/GeologicaActa2022.20.2.
  29. ^ Duffin, C. J.; Lauer, B.; Lauer, R. (2022). "Chimaeroid egg cases from the Late Jurassic of the Solnhofen area (S Germany)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 306 (2): 161–175. doi:10.1127/njgpa/2022/1101.
  30. ^ Luccisano, V.; Rambert-Natsuaki, M.; Cuny, G.; Amiot, R.; Pouillon, J.-M.; Pradel, A. (2022). "Phylogenetic implications of the systematic reassessment of Xenacanthiformes and 'Ctenacanthiformes' (Chondrichthyes) neurocrania from the Carboniferous–Permian Autun Basin (France)". Journal of Systematic Palaeontology. 19 (23): 1623–1642. doi:10.1080/14772019.2022.2073279.
  31. ^ Luccisano, V.; Pradel, A.; Amiot, R.; Pouillon, J.-M.; Kindlimann, R.; Steyer, J.-S.; Cuny, G. (2022). "Systematics, ontogeny and palaeobiogeography of the genus Orthacanthus (Diplodoselachidae, Xenacanthiformes) from the lower Permian of France". Papers in Palaeontology. 8 (6): e1470. doi:10.1002/spp2.1470.
  32. ^ Stumpf, S.; Meng, S.; Kriwet, J. (2022). "Diversity Patterns of Late Jurassic Chondrichthyans: New Insights from a Historically Collected Hybodontiform Tooth Assemblage from Poland". Diversity. 14 (2): Article 85. doi:10.3390/d14020085.
  33. ^ Kanno, S.; Tokumaru, S.; Nakagaki, S.; Nakajima, Y.; Misaki, A.; Hikida, Y.; Sato, T. (2022). "Santonian-Campanian neoselachian faunas of the Upper Cretaceous Yezo Group in Nakagawa Town, Hokkaido, Japan". Cretaceous Research. 133: Article 105139. doi:10.1016/j.cretres.2022.105139. S2CID 245831871.
  34. ^ dos Santos, R. O.; Riff, D.; Amenábar, C. R.; Ramos, R. R. C.; Rodrigues, I. F.; Scheffler, S. M.; Carvalho, M. A. (2022). "New records of hexanchiform sharks (Elasmobranchii: Neoselachii) from the Late Cretaceous of Antarctica with comments on previous reports and described taxa". New Zealand Journal of Geology and Geophysics. doi:10.1080/00288306.2022.2143382.
  35. ^ Herraiz, J. L.; Carrillo-Briceño, J. D.; Ferrón, H. G.; Adnet, S.; Botella, H.; Martínez-Pérez, C. (2022). "First fossil record (Middle Miocene) of the viper shark Trigonognathus Mochizuki and Ohe, 1990, in the Mediterranean realm". Journal of Vertebrate Paleontology. 42 (1). e2114360. doi:10.1080/02724634.2022.2114360.
  36. ^ Bogan, S.; Agnolín, F. L. (2022). "The fossil record of the Bramble-shark Echinorhinus (Echinorhiniformes, Echinorhinidae) in South America". Journal of South American Earth Sciences. 120. 104083. doi:10.1016/j.jsames.2022.104083.
  37. ^ Amalfitano, J.; Dalla Vecchia, F. M.; Carnevale, G.; Fornaciari, E.; Roghi, G.; Giusberti, L. (2022). "Morphology and paleobiology of the Late Cretaceous large-sized shark Cretodus crassidens (Dixon, 1850) (Neoselachii; Lamniformes)". Journal of Paleontology. 96 (5): 1166–1188. doi:10.1017/jpa.2022.23.
  38. ^ Malyshkina, T. P.; Nam, G.-S.; Kwon, S. H. (2022). "Basking shark remains (Lamniformes, Cetorhinidae) from the Miocene of South Korea". Journal of Vertebrate Paleontology. 41 (5): e2037625. doi:10.1080/02724634.2021.2037625.
  39. ^ Cooper, J. A.; Pimiento, C.; Ferrón, H. G.; Benton, M. J. (2020). "Body dimensions of the extinct giant shark Otodus megalodon: a 2D reconstruction". Scientific Reports. 10 (1): Article number 14596. Bibcode:2020NatSR..1014596C. doi:10.1038/s41598-020-71387-y. PMC 7471939. PMID 32883981.
  40. ^ Sternes, P. C.; Wood, J. J.; Shimada, K. (2022). "Body forms of extant lamniform sharks (Elasmobranchii: Lamniformes), and comments on the morphology of the extinct megatooth shark, Otodus megalodon, and the evolution of lamniform thermophysiology". Historical Biology: An International Journal of Paleobiology. in press: 1–13. doi:10.1080/08912963.2021.2025228. S2CID 246655344.
  41. ^ Shimada, K.; Maisch, H. M.; Perez, V. J.; Becker, M. A.; Griffiths, M. L. (2022). "Revisiting body size trends and nursery areas of the Neogene megatooth shark, Otodus megalodon (Lamniformes: Otodontidae), reveals Bergmann's rule possibly enhanced its gigantism in cooler waters". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2022.2032024.
  42. ^ McCormack, J.; Griffiths, M. L.; Kim, S. L.; Shimada, K.; Karnes, M.; Maisch, H.; Pederzani, S.; Bourgon, N.; Jaouen, K.; Becker, M. A.; Jöns, N.; Sisma-Ventura, G.; Straube, N.; Pollerspöck, J.; Hublin, J.-J.; Eagle, R. A.; Tütken, T. (2022). "Trophic position of Otodus megalodon and great white sharks through time revealed by zinc isotopes". Nature Communications. 13 (1): Article number 2980. doi:10.1038/s41467-022-30528-9. PMC 9156768. PMID 35641494.
  43. ^ Kast, E. R.; Griffiths, M. L.; Kim, S. L.; Rao, Z. C.; Shimada, K.; Becker, M. A.; Maisch, H. M.; Eagle, R. A.; Clarke, C. A.; Neumann, A. N.; Karnes, M. E.; Lüdecke, T.; Leichliter, J. N.; Martínez-García, A.; Akhtar, A. A.; Wang, X. T.; Haug, G. H.; Sigman, D. M. (2022). "Cenozoic megatooth sharks occupied extremely high trophic positions". Science Advances. 8 (25): eabl6529. doi:10.1126/sciadv.abl6529. PMC 9217088. PMID 35731884.
  44. ^ Cooper, J. A.; Hutchinson, J. R.; Bernvi, D. C.; Cliff, G.; Wilson, R. P.; Dicken, M. L.; Menzel, J.; Wroe, S.; Pirlo, J.; Pimiento, C. (2022). "The extinct shark Otodus megalodon was a transoceanic superpredator: Inferences from 3D modeling". Science Advances. 8 (33): eabm9424. doi:10.1126/sciadv.abm9424. PMC 9385135. PMID 35977007.
  45. ^ Benites-Palomino, A.; Velez-Juarbe, J.; Altamirano-Sierra, A.; Collareta, A.; Carrillo-Briceño, J. D.; Urbina, M. (2022). "Sperm whales (Physeteroidea) from the Pisco Formation, Peru, and their trophic role as fat sources for late Miocene sharks". Proceedings of the Royal Society B: Biological Sciences. 289 (1977): Article ID 20220774. doi:10.1098/rspb.2022.0774. PMC 9240678. PMID 35765834.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  46. ^ Greenfield, T.; Delsate, D.; Candoni, L. (2022). "Toarcibatidae fam. nov., a replacement for the unavailable name Archaeobatidae Delsate & Candoni, 2001 (Chondrichthyes, Batomorphii)". Zootaxa. 5195 (5): 499–500. doi:10.11646/zootaxa.5195.5.8.
  47. ^ Cook, T. D.; Prothero, J.; Brudy, M.; Magraw, J. A. (2022). "Complex enameloid microstructure of †Ischyrhiza mira rostral denticles". Journal of Anatomy. 241 (3): 616–627. doi:10.1111/joa.13676. PMC 9358731. PMID 35445396.
  48. ^ Boessenecker, R. W.; Gibson, M. L. (2022). "Dermal tubercles and bucklers of gigantic stingrays (Dasyatidae) from the Pleistocene of South Carolina and the stratigraphic origin of "Ceratoptera unios" Leidy, 1877". PalZ. 96 (2): 267–273. doi:10.1007/s12542-021-00592-5. S2CID 246082139.
  49. ^ Villalobos-Segura, E.; Marramà, G.; Carnevale, G.; Claeson, K. M.; Underwood, C. J.; Naylor, G. J. P.; Kriwet, J. (2022). "The Phylogeny of Rays and Skates (Chondrichthyes: Elasmobranchii) Based on Morphological Characters Revisited". Diversity. 14 (6): Article 456. doi:10.3390/d14060456. PMC 7612883. PMID 35747489.
  50. ^ Perez, V. J. (2022). "The chondrichthyan fossil record of the Florida Platform (Eocene–Pleistocene)". Paleobiology. 48 (4): 622–654. doi:10.1017/pab.2021.47.
  51. ^ Lin, Chia-Yen; Lin, Chien-Hsiang; Shimada, Kenshu (2022). "A previously overlooked, highly diverse early Pleistocene elasmobranch assemblage from southern Taiwan". PeerJ. 10: e14190. doi:10.7717/peerj.14190. PMC 9588305. PMID 36285333.
  52. ^ a b c d e f g h i j k Carolin, N.; Bajpai, S.; Maurya, A. S.; Schwarzhans, W. (2022). "New perspectives on late Tethyan Neogene biodiversity development of fishes based on Miocene (~ 17 Ma) otoliths from southwestern India". PalZ. doi:10.1007/s12542-022-00623-9.
  53. ^ a b Hilton, E. J.; Grande, L. (2022). "Late Cretaceous sturgeons (Acipenseridae) from North America, with two new species from the Tanis site in the Hell Creek Formation of North Dakota". Journal of Paleontology: 1–29. doi:10.1017/jpa.2022.81.
  54. ^ a b c d e f g Schwarzhans, W.; Stringer, G. L.; Welton, B. (2022). "Oldest Teleostean Otolith Assemblage from North America (Pawpaw Formation, Lower Cretaceous, upper Albian, northeast Texas, USA)". Cretaceous Research. 140: Article 105307. doi:10.1016/j.cretres.2022.105307.
  55. ^ a b c d e f g h i j k l m n o Lin, C.-H.; Nolf, D. (2022). "Middle and late Eocene fish otoliths from the eastern and southern USA". European Journal of Taxonomy (814): 1–122. doi:10.5852/ejt.2022.814.1745.
  56. ^ a b c Schwarzhans, W; Keupp, H. (2022). "Early teleost otolith morphogenesis observed in the Jurassic of Franconia, Bavaria, southern Germany". Zitteliana. 96: 51–67. doi:10.3897/zitteliana.96.81737.
  57. ^ a b c d Marramà, G.; Giusberti, L.; Carnevale, G. (2022). "A Rupelian coral reef fish assemblage from the Venetian Southern Alps (Berici Hills, Ne Italy)". Rivista Italiana di Paleontologia e Stratigrafia. 128 (2): 469–513. doi:10.54103/2039-4942/16601.
  58. ^ Than-Marchese, B. A.; Alvarado-Ortega, J. (2022). "Armigatus felixi sp. nov. An Albian double armored herring (Clupeomorpha, Ellimmichthyiformes) from the Tlayúa lagerstätte, Mexico". Journal of South American Earth Sciences. 118: Article 103905. doi:10.1016/j.jsames.2022.103905.
  59. ^ Brownstein, C. D.; Lyson, T. R. (2022). "Giant gar from directly above the Cretaceous–Palaeogene boundary suggests healthy freshwater ecosystems existed within thousands of years of the asteroid impact". Biology Letters. 18 (6): Article ID 20220118. doi:10.1098/rsbl.2022.0118. PMC 9198771. PMID 35702983.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  60. ^ a b c Carnevale, G.; Schwarzhans, W. (2022). "Marine life in the Mediterranean during the Messinian salinity crisis: a paleoichthyological perspective". Rivista Italiana di Paleontologia e Stratigrafia. 128 (2): 283–324. doi:10.54103/2039-4942/15964.
  61. ^ a b c d e f Schwarzhans, W.; Klots, O.; Ryabokon, T.; Kovalchuk, O. (2022). "A rare window into a back-reef fish community from the middle Miocene (late Badenian) Medobory Hills barrier reef in western Ukraine, reconstructed mostly by means of otoliths". Swiss Journal of Palaeontology. 141 (1). 18. doi:10.1186/s13358-022-00261-3.
  62. ^ a b c d e f g h Schwarzhans, W.; Ohe, F.; Tsuchiya, Y.; Ujihara, A. (2022). "Lanternfish otoliths (Myctophidae, Teleostei) from the Miocene of Japan". Zitteliana. 96: 103–134. doi:10.3897/zitteliana.96.83571.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  63. ^ de Figueiredo, F. J.; Gallo, V. (2022). "Caboellimma, a new genus for "Ellimma" cruzae Santos, 1990, an ellimmichthyiform fish (Teleostei: Clupeomorpha) from the Cabo Formation (Lower Cretaceous) of the Pernambuco-Paraíba Basin, north-east Brazil". Cretaceous Research. 105393. doi:10.1016/j.cretres.2022.105393.
  64. ^ a b Argyriou, T.; Alexopoulos, A.; Carrillo-Briceño, J. D.; Cavin, L. (2022). "A fossil assemblage from the mid–late Maastrichtian of Gavdos Island, Greece, provides insights into the pre-extinction pelagic ichthyofaunas of the Tethys". PLOS ONE. 17 (4): e0265780. doi:10.1371/journal.pone.0265780. PMC 9007369. PMID 35417474.
  65. ^ a b c d e f Schwarzhans, W. W.; Aguilera, O. A.; Scheyer, T. M.; Carrillo-Briceño, J. D. (2022). "Fish otoliths from the middle Miocene Pebas Formation of the Peruvian Amazon". Swiss Journal of Palaeontology. 141 (1): Article 2. doi:10.1186/s13358-022-00243-5.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  66. ^ Taverne, L. (2022). "The Pantodontidae (Teleostei, Osteoglossomorpha) from the marine Cenomanian (Upper Cretaceous) of Lebanon. 4°. Capassopiscis pankowskii gen. and sp. nov" (PDF). Geo-Eco-Trop. 46 (1): 149–158.
  67. ^ a b c Schwarzhans, W.; Jagt, J. W. M. (2022). "Silicified bony fish otoliths from the Vaals Formation (lower Campanian) of Vaals-Eschberg, the Netherlands". Cretaceous Research. 139: Article 105312. doi:10.1016/j.cretres.2022.105312.
  68. ^ Stack, J.; Gottfried, M. D. (2022). "A new, exceptionally well-preserved Permian actinopterygian fish from the Minnekahta Limestone of South Dakota, USA". Journal of Systematic Palaeontology. 19 (18): 1271–1302. doi:10.1080/14772019.2022.2036837.
  69. ^ Nam, G.-S.; Nazarkin, M. V.; Bannikov, A. F. (2022). "A new Chinese perch (Perciformes, Sinipercidae) from the early Miocene of South Korea". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2022.2056842.
  70. ^ Brownstein, C. D. (2022). "Unappreciated Cenozoic ecomorphological diversification of stem gars revealed by a new large species". Acta Palaeontologica Polonica. 67 (3): 559–568. doi:10.4202/app.00957.2021.
  71. ^ Grădianu, I.; Bordeianu, M.; Codrea, V. (2022). "†Dicentrarchus oligocenicus, sp. nov. (Perciformes, Moronidae): the first record of an Oligocene Sea Bass skeleton from Romania, with a revision of †Morone major (Agassiz) from Piatra-Neamţ (Eastern Carpathians)". Historical Biology: An International Journal of Paleobiology. in press: 1–10. doi:10.1080/08912963.2021.2022136. S2CID 246524168.
  72. ^ Stringer, G.; Parmley, D.; Quinn, A. (2022). "Eocene teleostean otoliths, including a new taxon, from the Clinchfield Formation (Bartonian) in Georgia, USA, with biostratigraphic, biogeographic, and paleoecologic implications". Palæovertebrata. 45 (1): e1. doi:10.18563/pv.45.1.e1. S2CID 245714502.
  73. ^ Ribeiro, A. C.; Bockmann, F. A.; Poyato-Ariza, F. J. (2022). "Francischanos, a replacement genus for Dastilbe moraesi Silva-Santos, 1955, from the Quiricó Formation, Lower Cretaceous of the Sanfranciscana basin, Brazil (Ostariophysi: Gonorynchiformes)". Cretaceous Research. 135: Article 105212. doi:10.1016/j.cretres.2022.105212.
  74. ^ Cooper, S. L. A.; Giles, S.; Young, H.; Maxwell, E. E. (2022). "A New Large †Pachycormiform (Teleosteomorpha: †Pachycormiformes) from the Lower Jurassic of Germany, with Affinities to the Suspension-Feeding Clade, and Comments on the Gastrointestinal Anatomy of Pachycormid Fishes". Diversity. 14 (12). 1026. doi:10.3390/d14121026.
  75. ^ a b Brzobohatý, R.; Zahradníková, B.; Hudáčková, N. (2022). "Fish otoliths and foraminifera from the Borský Mikuláš section (Slovakia, Middle Miocene, Upper Badenian, Vienna Basin) and their paleoenvironmental significance". Rivista Italiana di Paleontologia e Stratigrafia. 128 (2): 515–537. doi:10.54103/2039-4942/15773.
  76. ^ Kim, S.-H.; Lee, Y.-N.; Park, J.-Y.; Lee, S.; Winkler, D. A.; Jacobs, L. L.; Barsbold, R. (2022). "A new species of Osteoglossomorpha (Actinopterygii: Teleostei) from the Upper Cretaceous Nemegt Formation of Mongolia: paleobiological and paleobiogeographic implications". Cretaceous Research. 135: Article 105214. doi:10.1016/j.cretres.2022.105214.
  77. ^ Shen, C.; Arratia, G. (2022). "Re-description of the sexually dimorphic peltopleuriform fish Wushaichthys exquisitus (Middle Triassic, China): taxonomic implications and phylogenetic relationships". Journal of Systematic Palaeontology. 19 (19): 1317–1342. doi:10.1080/14772019.2022.2029595.
  78. ^ Sferco, E.; Aguilera, G.; Góngora, J. M.; Mirande, J. M. (2022). "The eldest grandmother, late Miocene †Jenynsia herbsti sp. nov. (Teleostei, Cyprinodontiformes), and the early diversification of the Anablepidae". Journal of Vertebrate Paleontology. 41 (6): e2039168. doi:10.1080/02724634.2022.2039168.
  79. ^ Gouiric-Cavalli, S.; Arratia, G. (2022). "A new †Pachycormiformes (Actinopterygii) from the Upper Jurassic of Gondwana sheds light on the evolutionary history of the group". Journal of Systematic Palaeontology. 19 (21): 1517–1550. doi:10.1080/14772019.2022.2049382.
  80. ^ Schwarzhans, W.; Radwańska, U. (2022). "A review of lanternfish otoliths (Myctophidae, Teleostei) of the early Badenian (Langhian, middle Miocene) from Bęczyn, southern Poland". Cainozoic Research. 22 (1): 9–24.
  81. ^ Přikryl, T.; Kaur, J.; Murray, A. M. (2022). "New Oligocene Pseudocrenilabrinae cichlid fishes (Teleostei, Cichlidae) from freshwater deposits of Libya". Journal of Systematic Palaeontology. 19 (19): 1343–1366. doi:10.1080/14772019.2022.2033861.
  82. ^ Gallo, V.; de Paiva, H. C. L.; Petra, R.; Brito, P. (2022). "Lophionotus parnaibensis, sp. nov. (Semionotiformes, Semionotidae) in the Upper Jurassic of the Parnaíba Basin, Northeastern Brazil". Journal of Vertebrate Paleontology. 41 (4). e1994983. doi:10.1080/02724634.2021.1994983.
  83. ^ a b c d e De Gracia, C.; Correa-Metrio, A.; Carvalho, M.; Velez-Juarbe, J.; Přikryl, T.; Jaramillo, C.; Kriwet, J. (2022). "Towards a unifying systematic scheme of fossil and living billfishes (Teleostei, Istiophoridae)". Journal of Systematic Palaeontology. 20 (1): Article 2091959. doi:10.1080/14772019.2022.2091959.
  84. ^ Arratia, G. (2022). "The outstanding suction-feeder Marcopoloichthys furreri new species (Actinopterygii) from the Middle Triassic Tethys Realm of Europe and its implications for early evolution of neopterygian fishes". Fossil Record. 25 (2): 231–261. doi:10.3897/fr.25.85621.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  85. ^ Reichenbacher, B.; Bannikov, A. F. (2022). "Diversity of gobioid fishes in the late middle Miocene of northern Moldova, Eastern Paratethys—Part II: description of †Moldavigobius helenae gen. et sp. nov". PalZ. doi:10.1007/s12542-022-00639-1.
  86. ^ Schwarzhans, W. (2022). "A review of Procházka's otoliths from Lower Badenian deposits from Moravia, Czech Republic (Langhian, Middle Miocene), primarily from Borač". Geologica Carpathica. 73 (2): 159–171. doi:10.31577/GeolCarp.73.2.4.
  87. ^ Grande, T. C.; Wilson, M. V. H.; Reyes, A. V.; Buryak, S. D.; Wolfe, A. P.; Siver, P. A. (2022). "A new, Late Cretaceous gonorynchiform fish in the genus †Notogoneus from drill core of crater-lake deposits in a kimberlite maar, Northwest Territories, Canada". Cretaceous Research. 135: Article 105176. doi:10.1016/j.cretres.2022.105176.
  88. ^ Alvarado-Ortega, J.; Alves, Y. M. (2022). "Nusaviichthys nerivelai gen. and sp. nov., an Albian crossognathiform fish from the Tlayúa lagerstätte, Mexico". Cretaceous Research. 135: Article 105189. doi:10.1016/j.cretres.2022.105189.
  89. ^ Micklich, N.; Bannikov, A. F. (2022). "Oechsleria unterfeldensis, gen. et sp. nov., a sailfin velifer fish (Lampridiformes, Veliferidae) from the Oligocene of the Unterfeld ("Frauenweiler") clay pit". PalZ. doi:10.1007/s12542-022-00633-7.
  90. ^ Schwarzhans, W.; Carnevale, G. (2022). "Bathyal fish otoliths from the Bartonian (Eocene) of the Turin Hill (Piedmont, Italy)". Rivista Italiana di Paleontologia e Stratigrafia. 128 (3): 575–583. doi:10.54103/2039-4942/17086.
  91. ^ Giles, S.; Feilich, K.; Warnock, R. C. M.; Pierce, S. E.; Friedman, M. (2022). "A Late Devonian actinopterygian suggests high lineage survivorship across the end-Devonian mass extinction". Nature Ecology & Evolution: 1–10. doi:10.1038/s41559-022-01919-4. PMID 36396970.
  92. ^ Yang, T.; Liang, W.; Cai, J.; Gu, H.; Han, L.; Chen, H.; Wang, H.; Bao, L.; Yan, D. (2022). "A new cyprinid from the Oligocene of Qaidam Basin, north-eastern Tibetan plateau, and its implications". Journal of Systematic Palaeontology. 19 (17): 1161–1182. doi:10.1080/14772019.2021.2015470. S2CID 246400371.
  93. ^ Richter, M.; Cisneros, J. C.; Kammerer, C. F.; Pardo, J.; Marsicano, C. A.; Fröbisch, J.; Angielczyk, K. D. (2022). "Deep-scaled fish (Osteichthyes: Actinopterygii) from the lower Permian (Cisuralian) lacustrine deposits of the Parnaíba Basin, NE Brazil". Journal of African Earth Sciences. 194: Article 104639. doi:10.1016/j.jafrearsci.2022.104639.
  94. ^ Olive, S.; Taverne, L.; Brito, P. M. (2022). "Pleuropholis germinalis n. sp., a new Pleuropholidae (Neopterygii, Teleostei) from the Early Cretaceous of Bernissart, Belgium". Geodiversitas. 44 (17): 505–514. doi:10.5252/geodiversitas2022v44a17.
  95. ^ Schrøder, A. E.; Rasmussen, J. A.; Møller, P. R.; Carnevale, G. (2022). "A new beardfish (Teleostei, Polymixiiformes) from the Eocene Fur Formation, Denmark". Journal of Vertebrate Paleontology. e2142914. doi:10.1080/02724634.2022.2142914.
  96. ^ Fang, G.; Wu, F. (2022). "The predatory fish Saurichthys reflects a complex underwater ecosystem of the Late Triassic Junggar Basin, Xinjiang, China". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2022.2098023.
  97. ^ Fang, G.-Y.; Sun, Y.-L.; Ji, C.; Wu, F.-X. (2022). "First record of Saurichthys (Actinopterygii: Saurichthyidae) from the Late Triassic of eastern Paleo-Tethys". Vertebrata PalAsiatica. doi:10.19615/j.cnki.2096-9899.221013.
  98. ^ Bannikov, A. F.; Erebakan, I. G. (2022). "A new species of mackerel (Scomber, Scombroidei) from the Tarkhanian (lowermost Middle Miocene) of the northwestern Caucasus". Paleontological Journal. 56 (5): 574–582. doi:10.1134/S0031030122050057.
  99. ^ Schultze, H.-P.; Arratia, G.; Hauschke, N.; Wilde, V. (2022). "Osteichthyan Fishes from the Uppermost Norian (Triassic) of the Fuchsberg near Seinstedt, Lower Saxony (Germany)". Diversity. 14 (11). 901. doi:10.3390/d14110901.
  100. ^ Carnevale, G.; Schwarzhans, W.; Schrøder, A. N.; Lindow, B. E. K. (2022). "An Eocene conger eel (Teleostei, Anguilliformes) from the Lillebælt Clay Formation, Denmark". Bulletin of the Geological Society of Denmark. 70: 53–67. doi:10.37570/bgsd-2022-70-05.
  101. ^ Murray, A. M. (2022). "Cenozoic Cichlids of Africa (Cichlidae: Pseudocrenilabrinae) With the Description of a New Species From the Oligocene of Somalia". Frontiers in Earth Science. 10: Article 892301. doi:10.3389/feart.2022.892301.
  102. ^ Murray, A. M.; Chida, M.; Holmes, R. B. (2022). "New enchodontoid fish (Teleostei: Aulopiformes) from the Late Cretaceous of Lebanon". Journal of Vertebrate Paleontology. 42 (1): e2101370. doi:10.1080/02724634.2022.2101370.
  103. ^ Nam, G.-S.; Nazarkin, M. V. (2022). "A new lanternfish (Myctophiformes, Myctophidae) from the Middle Miocene Duho Formation, South Korea". Journal of Vertebrate Paleontology. 42 (1). e2121924. doi:10.1080/02724634.2022.2121924.
  104. ^ Bogan, S.; Agnolin, F. L. (2022). "The first fossil from the superdiverse clade Loricariinae (Siluriformes, Loricariidae): a new species of the Armored Catfish from the late Miocene of Paraná, Argentina". PalZ. 96 (2): 259–266. doi:10.1007/s12542-022-00613-x.
  105. ^ Yuan, Z.; Xu, G.; Dai, X.; Wang, F.; Liu, X.; Jia, E.; Miao, L.; Song, H. (2022). "A new perleidid neopterygian fish from the Early Triassic (Dienerian, Induan) of South China, with a reassessment of the relationships of Perleidiformes". PeerJ. 10: e13448. doi:10.7717/peerj.13448. PMC 9121871. PMID 35602899.
  106. ^ Schwarzhans, W.; Kovalchuk, O. (2022). "New data on fish otoliths from the late Badenian (Langhian, Middle Miocene) back reef environment in the Carpathian Foredeep (Horodok, western Ukraine)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 303 (3): 317–326. doi:10.1127/njgpa/2022/1051.
  107. ^ Zhou, X.; You, J.; Jin, J.; Feng, Q.; Luo, Z.; Hu, J.; Li, Y. (2022). "A minute freshwater pycnodont fish from the Late Cretaceous on the southern margin of the Junggar Basin: Palaeoecological implications". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2022.2099274.
  108. ^ Henderson, S.; Dunne, E. M.; Fasey, S. A.; Giles, S. (2022). "The early diversification of ray-finned fishes (Actinopterygii): hypotheses, challenges and future prospects". Biological Reviews. doi:10.1111/brv.12907. PMID 36192821.
  109. ^ Henderson, S.; Dunne, E. M.; Giles, S. (2022). "Sampling biases obscure the early diversification of the largest living vertebrate group". Proceedings of the Royal Society B: Biological Sciences. 289 (1985). 20220916. doi:10.1098/rspb.2022.0916. PMC 9579763. PMID 36259213.
  110. ^ Figueroa, R. T.; Andrews, J. V. (2022). "Fitting fangs in a finite face: A novel fang accommodation strategy in a 280-million-year-old ray-finned fish". Journal of Anatomy. doi:10.1111/joa.13798. PMID 36434746.
  111. ^ Bakaev, A. S.; Kogan, I. (2022). "Squamation of the Permian actinopterygian Toyemia Minich, 1990: evenkiid (Scanilepiformes) affinities and implications for the origin of polypteroid scales". Bulletin of Geosciences. 97 (2): 235–259. doi:10.3140/bull.geosci.1841.
  112. ^ Argyriou, T.; Giles, S.; Friedman, M. (2022). "A Permian fish reveals widespread distribution of neopterygian-like jaw suspension". eLife. 11: e58433. doi:10.7554/eLife.58433. PMC 9345605. PMID 35579418.
  113. ^ Brownstein, C. D. (2022). "Evidence of large sturgeons in the Paleocene of North America". Journal of Paleontology: 1–5. doi:10.1017/jpa.2022.87.
  114. ^ Kumar, K.; Bajpai, S.; Ghosh, T.; Pandey, P.; Bhattacharya, D. (2022). "Oldest East Gondwanan pycnodont fishes (Neopterygii, Pycnodontiformes) from the Middle Jurassic (Bathonian) of Jaisalmer, western India". PalZ. 96 (4): 795–804. doi:10.1007/s12542-022-00619-5.
  115. ^ Matsui, K.; Kimura, Y. (2022). "A "Mammalian-like" Pycnodont Fish: Independent Acquisition of Thecodont Implantation, True Vertical Replacement, and Carnassial Dentitions in Carnivorous Mammals and a Peculiar Group of Pycnodont Fish". Life. 12 (2): Article 250. doi:10.3390/life12020250. PMC 8878644. PMID 35207537.
  116. ^ Cooper, S. L. A.; Maxwell, E. E. (2022). "Revision of the pachycormid fish Saurostomus esocinus Agassiz from the Early Jurassic (Toarcian) of Europe, with new insight into the origins of suspension-feeding in Pachycormidae". Papers in Palaeontology. 8 (6). e1467. doi:10.1002/spp2.1467.
  117. ^ Johanson, Z.; Liston, J.; Davesne, D.; Challands, T.; Smith, M. M. (2022). "Mechanisms of dermal bone repair after predatory attack in the giant stem-group teleost Leedsichthys problematicus Woodward, 1889a (Pachycormiformes)". Journal of Anatomy. 241 (2): 393–406. doi:10.1111/joa.13689. PMC 9296021. PMID 35588137.
  118. ^ Micklich, N.; Arratia, G. (2022). "The enigmatic teleostean fish, Thaumaturus intermedius Weitzel, 1933 from the Eocene of Lake Messel (Hessen, S Germany). Part I: Anatomy and taxonomy revised". Palaeontographica Abteilung A. 323 (1–3): 1–73. doi:10.1127/pala/2022/0125.
  119. ^ Marramà, G.; Khalloufi, B.; Carnevale, G. (2022). "Redescription of 'Diplomystus' solignaci Gaudant & Gaudant, 1971 from the Cretaceous of Tunisia, and a new hypothesis of double-armored herring relationships". Historical Biology: An International Journal of Paleobiology. in press: 1–22. doi:10.1080/08912963.2021.2025230. S2CID 246669579.
  120. ^ Murray, A. M.; Holmes, R. B. (2022). "Osteology of the cranium and Weberian apparatus of African catfish families (Teleostei: Ostariophysi: Siluriformes) with an assessment of genera from the Palaeogene of Africa". Vertebrate Anatomy Morphology Palaeontology. 9 (1): 156–191. doi:10.18435/vamp29382.
  121. ^ Kovalchuk, O.; Barkaszi, Z.; Anfimova, G. (2022). "Records of Enchodus (Teleostei, Aulopiformes) from the Cenomanian of Ukraine in the light of European distribution of enchodontid fishes". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 303 (3): 295–307. doi:10.1127/njgpa/2022/1049.
  122. ^ Murray, A. M. (2022). "Re-description and phylogenetic relationships of †Protosyngnathus sumatrensis (Teleostei: Syngnathoidei), a freshwater pipefish from the Eocene of Sumatra, Indonesia". Journal of Systematic Palaeontology. 20 (1). 2113832. doi:10.1080/14772019.2022.2113832.
  123. ^ Gierl, C.; Dohrmann, M.; Keith, P.; Humphreys, W.; Esmaeili, H. R.; Vukić, J.; Šanda, R.; Reichenbacher, B. (2022). "An integrative phylogenetic approach for inferring relationships of fossil gobioids (Teleostei: Gobiiformes)". PLOS ONE. 17 (7): e0271121. doi:10.1371/journal.pone.0271121. PMC 9269936. PMID 35802740.
  124. ^ Rossi, V.; Unitt, R.; McNamara, M.; Zorzin, R.; Carnevale, G. (2022). "Skin patterning and internal anatomy in a fossil moonfish from the Eocene Bolca Lagerstätte illuminate the ecology of ancient reef fish communities". Palaeontology. 65 (3): e12600. doi:10.1111/pala.12600.
  125. ^ Troyer, E. M.; Betancur-R, R.; Hughes, L. C.; Westneat, M.; Carnevale, G.; White, W. T.; Pogonoski, J. J.; Tyler, J. C.; Baldwin, C. C.; Ortí, G.; Brinkworth, A.; Clavel, J.; Arcila, D. (2022). "The impact of paleoclimatic changes on body size evolution in marine fishes". Proceedings of the National Academy of Sciences of the United States of America. 119 (29): e2122486119. doi:10.1073/pnas.2122486119. PMC 9308125. PMID 35858316.
  126. ^ Wang, Z.; Jiang, X.; Wang, X.; Gao, J.; Zhu, S. (2022). "Tooth Plates of Ceratodus (Dipnoi, Ceratodontidae) from the Upper Jurassic Shaximiao Formation of Guang'an, Sichuan Province, China". Acta Geologica Sinica (English Edition). 96 (3): 766–775. doi:10.1111/1755-6724.14774. S2CID 237853795.
  127. ^ Luo, Y.; Cui, X.; Qiao, T.; Zhu, M. (2022). "A new dipnoan genus from the Middle Devonian of Huize, Yunnan, China". Journal of Systematic Palaeontology. 19 (18): 1303–1315. doi:10.1080/14772019.2022.2042409.
  128. ^ Brownstein, C. D.; Bissell, I. C. (2022). "Species delimitation and coexistence in an ancient, depauperate vertebrate clade". BMC Ecology and Evolution. 22 (1): Article number 90. doi:10.1186/s12862-022-02043-4. PMC 9277872. PMID 35820797.
  129. ^ Downs, J. P.; Daeschler, E. B. (2022). "Second species of Langlieria (Tristichopteridae, Sarcopterygii) from the Upper Devonian Catskill Formation of Pennsylvania, U.S.A., and a new phylogenetic consideration of Tristichopteridae". Proceedings of the Academy of Natural Sciences of Philadelphia. 167: 241–260. doi:10.1635/053.167.0115.
  130. ^ Ferrante, C.; Menkveld-Gfeller, U.; Cavin, L. (2022). "The first Jurassic coelacanth from Switzerland". Swiss Journal of Palaeontology. 141 (1). 15. doi:10.1186/s13358-022-00257-z. PMC 9499918. PMID 36164559.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  131. ^ Stewart, T. A.; Lemberg, J. B.; Daly, A.; Daeschler, E. B.; Shubin, N. H. (2022). "A new elpistostegalian from the Late Devonian of the Canadian Arctic". Nature. 608 (7923): 563–568. doi:10.1038/s41586-022-04990-w. PMC 9385497. PMID 35859171.
  132. ^ Smirnova, A. Yu. (2022). "A new species of rhizodontiform sarcopterygian fish (Sarcopterygii: Rhizodontiformes) from the Lower Carboniferous of the Moscow Region". Paleontological Journal. 56 (4): 431–440. doi:10.1134/S0031030122040128.
  133. ^ Panzeri, K. M.; Gouiric Cavalli, S.; Cione, A. L.; Filippi, L. S. (2022). "Description of the first Cretaceous (Santonian) articulated skeletal lungfish remains from South America, Argentina". Comptes Rendus Palevol. 21 (37): 815–835. doi:10.5852/cr-palevol2022v21a37.
  134. ^ Ciudad Real, M.; Mondéjar Fernández, J.; Vidal, D.; Botella, H. (2022). "Is Onychodontida (Osteichthyes, Sarcopterygii) monophyletic? Assessing discordant phylogenies with quantitative comparative cladistics". Spanish Journal of Palaeontology. 37 (1): 87–100. doi:10.7203/sjp.24256.
  135. ^ Mondéjar Fernández, J.; Meunier, F. J.; Cloutier, R.; Clément, G.; Laurin, M. (2022). "Life history and ossification patterns in Miguashaia bureaui reveal the early evolution of osteogenesis in coelacanths". PeerJ. 10: e13175. doi:10.7717/peerj.13175. PMC 8994491. PMID 35411253.
  136. ^ Toriño, P.; Gausden, S. F.; Etches, S.; Rankin, K.; Marshall, J. E. A.; Gostling, N. J. (2022). "An enigmatic large mawsoniid coelacanth (Sarcopterygii, Actinistia) from the Upper Jurassic Kimmeridge Clay Formation of England". Journal of Vertebrate Paleontology. 42 (1). e2125813. doi:10.1080/02724634.2022.2125813.
  137. ^ Clement, A. M.; Challands, T. J.; Cloutier, R.; Houle, L.; Ahlberg, P. E.; Collin, S. P.; Long, J. A. (2022). "Morphometric analysis of lungfish endocasts elucidates early dipnoan palaeoneurological evolution". eLife. 11: e73461. doi:10.7554/eLife.73461. PMC 9275822. PMID 35818828.
  138. ^ Cui, X.; Friedman, M.; Qiao, T.; Yu, Y.; Zhu, M. (2022). "The rapid evolution of lungfish durophagy". Nature Communications. 13 (1): Article number 2390. doi:10.1038/s41467-022-30091-3. PMC 9061808. PMID 35501345.
  139. ^ Boirot, M.; Challands, T.; Cloutier, R. (2022). "Paedomorphosis and neurocranial ossification in two Devonian lungfishes". Acta Palaeontologica Polonica. 67 (2): 283–295. doi:10.4202/app.00841.2020.
  140. ^ Panzeri, K. M.; Pereyra, M. E.; Cione, A. L. (2022). "The South American longfish Metaceratodus baibianorum (Dipnoi, Ceratodontidae) from the Upper Cretaceous La Colonia Formation, Patagonia, Argentina: an approach from the histology of the tooth plates". Cretaceous Research. 133: Article 105144. doi:10.1016/j.cretres.2022.105144. S2CID 246121918.
  141. ^ Hirasawa, T.; Hu, Y.; Uesugi, K.; Hoshino, M.; Manabe, M.; Kuratani, S. (2022). "Morphology of Palaeospondylus shows affinity to tetrapod ancestors". Nature. 606 (7912): 109–112. doi:10.1038/s41586-022-04781-3. PMID 35614222.
  142. ^ McMenamin, M. A. S. (2022). "Permodontodus waurikensis n. gen. n. sp., an Unusual Osteichthyan from Permian Oklahoma, USA". Zootaxa. 5188 (2): 121–132. doi:10.11646/zootaxa.5188.2.2.
  143. ^ Andreev, P. S.; Sansom, I. J.; Li, Q.; Zhao, W.; Wang, J.; Wang, C.-C.; Peng, L.; Jia, L.; Qiao, T.; Zhu, M. (2022). "The oldest gnathostome teeth". Nature. 609 (7929): 964–968. doi:10.1038/s41586-022-05166-2. PMID 36171375.
  144. ^ Ferrón, H. G.; Donoghue, P. C. J. (2022). "Evolutionary analysis of swimming speed in early vertebrates challenges the 'New Head Hypothesis'". Communications Biology. 5 (1): Article number 863. doi:10.1038/s42003-022-03730-0. PMC 9402584. PMID 36002583.
  145. ^ Scott, B. R.; Anderson, P. S. L. (2022). "Examining competition during the agnathan/gnathostome transition using distance-based morphometrics". Paleobiology: 1–16. doi:10.1017/pab.2022.32.
  146. ^ Gai, Z.; Zhu, M.; Ahlberg, P. E.; Donoghue, P. C. J. (2022). "The Evolution of the Spiracular Region From Jawless Fishes to Tetrapods". Frontiers in Ecology and Evolution. 10: Article 887172. doi:10.3389/fevo.2022.887172.
  147. ^ Deakin, W. J.; Anderson, P. S. L.; den Boer, W.; Smith, T. J.; Hill, J. J.; Rücklin, M.; Donoghue, P. C. J.; Rayfield, E. J. (2022). "Increasing morphological disparity and decreasing optimality for jaw speed and strength during the radiation of jawed vertebrates". Science Advances. 8 (11): eabl3644. doi:10.1126/sciadv.abl3644. PMC 8932669. PMID 35302857.
  148. ^ Tackett, L. S.; Zierer, D.; Clement, A. C. (2022). "Actinopterygian and chondrichthyan ichthyoliths reveal enhanced cosmopolitanism in Late Triassic marine ecosystems". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2022.2131405.
  149. ^ Ebersole, J. A.; Solonin, S. V.; Cicimurri, D. J.; Arkhangelsky, M. S.; Martynovich, N. V. (2022). "Marine fishes (Chondrichthyes, Holocephali, Actinopterygii) from the Upper Cretaceous (Campanian) Rybushka Formation near Beloe Ozero, Saratov Oblast, Russia". Rivista Italiana di Paleontologia e Stratigrafia. 128 (2): 369–409. doi:10.54103/2039-4942/16954.
  150. ^ Salvatteci, R.; Schneider, R. R.; Galbraith, E.; Field, D.; Blanz, T.; Bauersachs, T.; Crosta, X.; Martinez, P.; Echevin, V.; Scholz, F.; Bertrand, A. (2022). "Smaller fish species in a warm and oxygen-poor Humboldt Current system". Science. 375 (6576): 101–104. doi:10.1126/science.abj0270. PMID 34990239. S2CID 245828321.