2019 in archosaur paleontology: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 239: Line 239:
* A study aiming to quantify the habitat of latest Cretaceous North American dinosaurs, based on data from fossil occurrences and climatic and environmental modelling, and evaluating its implications for inferring whether dinosaur diversity was in decline prior to the [[Cretaceous–Paleogene extinction event]], is published by Chiarenza ''et al.'' (2019).<ref>{{cite journal |author1=Alfio Alessandro Chiarenza |author2=Philip D. Mannion |author3=Daniel J. Lunt |author4=Alex Farnsworth |author5=Lewis A. Jones |author6=Sarah-Jane Kelland |author7=Peter A. Allison |year=2019 |title=Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction |journal=Nature Communications |volume=10 |pages=Article number 1091 |doi=10.1038/s41467-019-08997-2 |pmid=30842410 |pmc=6403247 }}</ref>
* A study aiming to quantify the habitat of latest Cretaceous North American dinosaurs, based on data from fossil occurrences and climatic and environmental modelling, and evaluating its implications for inferring whether dinosaur diversity was in decline prior to the [[Cretaceous–Paleogene extinction event]], is published by Chiarenza ''et al.'' (2019).<ref>{{cite journal |author1=Alfio Alessandro Chiarenza |author2=Philip D. Mannion |author3=Daniel J. Lunt |author4=Alex Farnsworth |author5=Lewis A. Jones |author6=Sarah-Jane Kelland |author7=Peter A. Allison |year=2019 |title=Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction |journal=Nature Communications |volume=10 |pages=Article number 1091 |doi=10.1038/s41467-019-08997-2 |pmid=30842410 |pmc=6403247 }}</ref>
* A review and evaluation of studies on molecular data from Mesozoic dinosaur fossils is published by [[Mary Higby Schweitzer|Schweitzer]] ''et al.'' (2019).<ref>{{cite journal |author1=Mary Higby Schweitzer |author2=Elena R. Schroeter |author3=Timothy P. Cleland |author4=Wenxia Zheng |year=2019 |title=Paleoproteomics of Mesozoic dinosaurs and other Mesozoic fossils |journal=Proteomics |volume=in press |pages= |doi=10.1002/pmic.201800251 |pmid=31172628 }}</ref>
* A review and evaluation of studies on molecular data from Mesozoic dinosaur fossils is published by [[Mary Higby Schweitzer|Schweitzer]] ''et al.'' (2019).<ref>{{cite journal |author1=Mary Higby Schweitzer |author2=Elena R. Schroeter |author3=Timothy P. Cleland |author4=Wenxia Zheng |year=2019 |title=Paleoproteomics of Mesozoic dinosaurs and other Mesozoic fossils |journal=Proteomics |volume=in press |pages= |doi=10.1002/pmic.201800251 |pmid=31172628 }}</ref>
* A study on the nature of putative remains of ancient proteins, blood vessels, and cells preserved with dinosaur fossils, based on data from fossils of ''[[Centrosaurus]] apertus'' from the [[Dinosaur Park Formation]] ([[Alberta]], [[Canada]]), is published by Saitta ''et al.'' (2019).<ref>{{cite journal |author1=Evan T. Saitta |author2=Renxing Liang |author3=Maggie C.Y. Lau |author4=Caleb M. Brown |author5=Nicholas R Longrich |author6=Thomas G. Kaye |author7=Ben J. Novak |author8=Steven L. Salzberg |author9=Mark A. Norell |author10=Geoffrey D. Abbott |author11=Marc R. Dickinson |author12=Jakob Vinther |author13=Ian D. Bull |author14=Richard A. Brooker |author15=Peter Martin |author16=Paul Donohoe |author17=Timothy D.J. Knowles |author18=Kirsty E.H. Penkman |author19=Tullis Onstott |year=2019 |title=Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities |journal=eLife |volume=8 |pages=e46205 |doi=10.7554/eLife.46205 }}</ref>
* A study on the [[olfactory bulb]] ratio (the size of the olfactory bulb relative to the cerebral hemisphere) in dinosaurs, and on its implication for inferring olfactory acuity of dinosaurs, is published by Hughes & Finarelli (2019).<ref>{{Cite journal|author1=Graham M. Hughes |author2=John A. Finarelli |year=2019 |title=Olfactory receptor repertoire size in dinosaurs |journal=Proceedings of the Royal Society B: Biological Sciences |volume=286 |issue=1904 |pages=Article ID 20190909 |doi=10.1098/rspb.2019.0909 |pmid=31185870 }}</ref>
* A study on the [[olfactory bulb]] ratio (the size of the olfactory bulb relative to the cerebral hemisphere) in dinosaurs, and on its implication for inferring olfactory acuity of dinosaurs, is published by Hughes & Finarelli (2019).<ref>{{Cite journal|author1=Graham M. Hughes |author2=John A. Finarelli |year=2019 |title=Olfactory receptor repertoire size in dinosaurs |journal=Proceedings of the Royal Society B: Biological Sciences |volume=286 |issue=1904 |pages=Article ID 20190909 |doi=10.1098/rspb.2019.0909 |pmid=31185870 }}</ref>
* A study on the structure of eggshells of eggs produced by ''[[Lufengosaurus]]'', ''[[Massospondylus]]'' and ''[[Mussaurus]]'', representing the oldest confirmed [[amniote]] eggshells reported so far, is published by Stein ''et al.'' (2019).<ref>{{Cite journal|author1=Koen Stein |author2=Edina Prondvai |author3=Timothy Huang |author4=Jean-Marc Baele |author5=P. Martin Sander |author6=Robert Reisz |year=2019 |title=Structure and evolutionary implications of the earliest (Sinemurian, Early Jurassic) dinosaur eggs and eggshells |journal=Scientific Reports |volume=9 |pages=Article number 4424 |doi=10.1038/s41598-019-40604-8 |pmid=30872623 |pmc=6418122 }}</ref>
* A study on the structure of eggshells of eggs produced by ''[[Lufengosaurus]]'', ''[[Massospondylus]]'' and ''[[Mussaurus]]'', representing the oldest confirmed [[amniote]] eggshells reported so far, is published by Stein ''et al.'' (2019).<ref>{{Cite journal|author1=Koen Stein |author2=Edina Prondvai |author3=Timothy Huang |author4=Jean-Marc Baele |author5=P. Martin Sander |author6=Robert Reisz |year=2019 |title=Structure and evolutionary implications of the earliest (Sinemurian, Early Jurassic) dinosaur eggs and eggshells |journal=Scientific Reports |volume=9 |pages=Article number 4424 |doi=10.1038/s41598-019-40604-8 |pmid=30872623 |pmc=6418122 }}</ref>
Line 312: Line 313:
* New fossil material of ornithopod dinosaurs is described from the Cretaceous Flat Rocks locality ([[Wonthaggi Formation]], [[Australia]]) by Herne ''et al.'' (2019), who also revise ''[[Qantassaurus]] intrepidus'' and study the phylogenetic relationships of the [[Victoria (Australia)|Victorian]] ornithopods.<ref name=Galleonosaurus />
* New fossil material of ornithopod dinosaurs is described from the Cretaceous Flat Rocks locality ([[Wonthaggi Formation]], [[Australia]]) by Herne ''et al.'' (2019), who also revise ''[[Qantassaurus]] intrepidus'' and study the phylogenetic relationships of the [[Victoria (Australia)|Victorian]] ornithopods.<ref name=Galleonosaurus />
* Description of the anatomy of the skeleton of ''[[Talenkauen]] santacrucensis'' will be published by Rozadilla, Agnolín & [[Fernando Novas|Novas]] (2019).<ref>{{cite journal |author1=Sebastián Rozadilla |author2=Federico Lisandro Agnolín |author3=Fernando Emilio Novas |year=2019 |title=Osteology of the Patagonian ornithopod ''Talenkauen santacrucensis'' (Dinosauria, Ornithischia) |journal=Journal of Systematic Palaeontology |volume=in press |issue= |pages= 1–47|doi=10.1080/14772019.2019.1582562 }}</ref>
* Description of the anatomy of the skeleton of ''[[Talenkauen]] santacrucensis'' will be published by Rozadilla, Agnolín & [[Fernando Novas|Novas]] (2019).<ref>{{cite journal |author1=Sebastián Rozadilla |author2=Federico Lisandro Agnolín |author3=Fernando Emilio Novas |year=2019 |title=Osteology of the Patagonian ornithopod ''Talenkauen santacrucensis'' (Dinosauria, Ornithischia) |journal=Journal of Systematic Palaeontology |volume=in press |issue= |pages= 1–47|doi=10.1080/14772019.2019.1582562 }}</ref>
* Skeletal pathologies affecting a subadult specimen of ''[[Tenontosaurus]] tilletti'' from the [[Antlers Formation]] of southeastern [[Oklahoma]] are described by Hunt ''et al.'' (2019).<ref>{{cite journal |author1=T. C. Hunt |author2=J. E. Peterson |author3=J. A. Frederickson |author4=J. E. Cohen |author5=J. L. Berry |year=2019 |title=First documented pathologies in ''Tenontosaurus tilletti'' with comments on infection in non-avian dinosaurs |journal=Scientific Reports |volume=9 |pages=Article number 8705 |doi=10.1038/s41598-019-45101-6 }}</ref>
* A study on patterns and processes of morphological evolution of [[Hadrosauroidea|hadrosauroid]] dinosaurs is published by Stubbs ''et al.'' (2019).<ref>{{cite journal |author1=Thomas L. Stubbs |author2=Michael J. Benton |author3=Armin Elsler |author4=Albert Prieto-Márquez |year=2019 |title=Morphological innovation and the evolution of hadrosaurid dinosaurs |journal=Paleobiology |volume=45 |issue=2 |pages=347–362 |doi=10.1017/pab.2019.9 }}</ref>
* A study on patterns and processes of morphological evolution of [[Hadrosauroidea|hadrosauroid]] dinosaurs is published by Stubbs ''et al.'' (2019).<ref>{{cite journal |author1=Thomas L. Stubbs |author2=Michael J. Benton |author3=Armin Elsler |author4=Albert Prieto-Márquez |year=2019 |title=Morphological innovation and the evolution of hadrosaurid dinosaurs |journal=Paleobiology |volume=45 |issue=2 |pages=347–362 |doi=10.1017/pab.2019.9 }}</ref>
* A study on the nature of the [[Fluvial processes|fluvial]] systems of [[Laramidia]] during the Late Cretaceous, as indicated by data from vertebrate and invertebrate fossils from the [[Kaiparowits Formation]] of southern [[Utah]], and on the behavior of [[hadrosaurid]] dinosaurs over these landscapes, will be published by Crystal ''et al.'' (2019).<ref>{{cite journal |author1=Victoria F. Crystal |author2=Erica S.J. Evans |author3=Henry Fricke |author4=Ian M. Miller |author5=Joseph J.W. Sertich |year=2019 |title=Late Cretaceous fluvial hydrology and dinosaur behavior in southern Utah, USA: Insights from stable isotopes of biogenic carbonate |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=516 |pages=152–165 |doi=10.1016/j.palaeo.2018.11.022 |bibcode=2019PPP...516..152C }}</ref>
* A study on the nature of the [[Fluvial processes|fluvial]] systems of [[Laramidia]] during the Late Cretaceous, as indicated by data from vertebrate and invertebrate fossils from the [[Kaiparowits Formation]] of southern [[Utah]], and on the behavior of [[hadrosaurid]] dinosaurs over these landscapes, will be published by Crystal ''et al.'' (2019).<ref>{{cite journal |author1=Victoria F. Crystal |author2=Erica S.J. Evans |author3=Henry Fricke |author4=Ian M. Miller |author5=Joseph J.W. Sertich |year=2019 |title=Late Cretaceous fluvial hydrology and dinosaur behavior in southern Utah, USA: Insights from stable isotopes of biogenic carbonate |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=516 |pages=152–165 |doi=10.1016/j.palaeo.2018.11.022 |bibcode=2019PPP...516..152C }}</ref>

Revision as of 15:39, 18 June 2019

List of years in archosaur paleontology
In paleontology
2016
2017
2018
2019
2020
2021
2022
In science
2016
2017
2018
2019
2020
2021
2022
+...

This article records new taxa of fossil archosaurs of every kind that are scheduled described during the year 2019, as well as other significant discoveries and events related to paleontology of archosaurs that are scheduled to occur in the year 2019.

General research

  • A study on patterns of evolutionary integration among regions of the archosaur skull, based on data from extant and fossil taxa, is published by Felice et al. (2019).[1]
  • A review of the biogeographic history of crocodyliforms, sauropod dinosaurs, nonavian theropod dinosaurs and mammals from the Mesozoic of Gondwana is published by Krause et al. (2019).[2]
  • A study on the biogeography of Cretaceous terrestrial tetrapods, including terrestrial crocodyliforms, non-avian dinosaurs, birds and pterosaurs, is published by Kubo (2019).[3]
  • A study on assemblages of nesting ring-billed gulls, California gulls, American white pelicans and double-crested cormorants at Bowdoin National Wildlife Refuge (Montana, United States), evaluating their utility as taphonomic models for interpreting nesting sites of fossils archosaurs, will be published by Ferguson, Varricchio & Ferguson (2019).[4]
  • A study on size and shape differences between brains and endocasts of extant American alligator and domestic chicken, and on its implications for inferring whether endocasts are a reliable proxy for brain morphology in archosaurs in general, is published by Watanabe et al. (2019).[5]
  • A study comparing the mechanical properties of teeth of Suchomimus tenerensis and Sarcosuchus imperator is published by Kundanati et al. (2019).[6]
  • A study on the distribution of medullary bone in the skeletons of living birds, aiming to refine the set of criteria used to evaluate purported records of medullary bone tissue in fossil avemetatarsalians, is published by Canoville, Schweitzer & Zanno (2019).[7]
  • A study comparing the anatomy of hindlimbs of cursorial birds, non-avian theropod dinosaurs and other cursorial animals, aiming to determine whether cursorial birds are good kinematic model for reconstructions of theropod dinosaur locomotion, is published by Grossi et al. (2019).[8]
  • A study on the microstructure of eggshells in birds and non-avian maniraptoran dinosaurs is published by Choi, Han & Lee (2019).[9]

Pseudosuchians

Research

  • A study on the bone histology of Coahomasuchus chathamensis, and on its implications for inferring ontogeny and growth strategy of this species, will be published by Hoffman, Heckert & Zanno (2019).[10]
  • A study on the age of sandstones of the Badong Formation preserving fossils of Lotosaurus adentus is published by Wang et al. (2019).[11]
  • A study on the anatomy of the best-preserved skeleton of Prestosuchus chiniquensis, as well as on the phylogenetic relationships of this species, will be published by Roberto-Da-Silva et al. (2019).[12]
  • Description of the anatomy of the skull of a new specimen of Prestosuchus chiniquensis from the Dinodontosaurus Assemblage Zone of the Pinheiros-Chiniquá Sequence, Santa Maria Super sequence (Brazil) is published by Mastrantonio et al. (2019), who also present the first description of a rauisuchian cranial endocast.[13]
  • A study on habitat shifts during the evolutionary history of Crocodylomorpha is published by Wilberg, Turner & Brochu (2019).[14]
  • A study on the quality of the fossil record of non‐marine crocodylomorphs is published by Mannion et al. (2019).[15]
  • New fossil material (an isolated left dentary) of Orthosuchus stormbergi is described from the Upper Elliot Formation (South Africa) by Dollman, Viglietti & Choiniere (2019), who also examine the stratigraphic positions of all valid crocodylomorph specimens from the main Karoo Basin.[16]
  • Teleosaurid and metriorhynchid teeth will be described from, respectively, the Middle Jurassic (Aalenian) and Upper Jurassic (Tithonian) of Slovakia by Čerňanský et al. (2019), representing the first record of members of both families from the country.[17]
  • A study on teeth morphology and tooth enamel microstructure in Mariliasuchus amarali is published by Augusta & Zaher (2019).[18]
  • A study on the arrangement and morphology of the osteoderms of baurusuchids is published by Montefeltro (2019).[19]
  • Description of new fossil material of Pepesuchus from the Upper Cretaceous Adamantina Formation (Brazil) and a study on the phylogenetic relationships of this taxon is published by Geroto & Bertini (2019).[20]
  • Partial dyrosaurid skeleton discovered in the 1930s in Paleocene (Danian) strata along the Atlantic coast of Senegal is described by Martin, Sarr & Hautier (2019).[21]
  • Description of new dyrosaurid specimens from the Late Cretaceous–early Paleogene of New Jersey (United States), and a study on their implications for the validity of the species Hyposaurus rogersii, will be published by Souza et al. (2019).[22]
  • Revision of the large-sized neosuchians Kansajsuchus and "Turanosuchus" from the Late Cretaceous of Central Asia is published by Kuzmin et al. (2019), who interpret Kansajsuchus as a member of Paralligatoridae, and consider Turanosuchus aralensis to be a member of the genus Kansajsuchus belonging or related to the species K. extensus.[23]
  • A study on the inner cavities of the skull of the holotype specimen of Lohuecosuchus megadontos is published by Serrano-Martínez et al. (2019).[24]
  • Revision of the fossil material of Allodaposuchus precedens from Vălioara (Romania) will be published by Narváez et al. (2019), who emend the diagnosis for this species.[25]
  • A tooth of a juvenile specimen of Deinosuchus, providing new information on the ontogeny of this reptile, is described by Brownstein (2019).[26]
  • A well-preserved braincase of Diplocynodon tormis is described from the middle Eocene site of ‘Teso de la Flecha’ (Salamanca, Spain) by Serrano-Martínez et al. (2019).[27]
  • New crocodylian fossils, documenting the presence of four previously unrecognised alligatoroids, are described from the Lower Miocene Castillo Formation (Venezuela) by Solórzano et al. (2019).[28]
  • Redescription of the holotype specimen of Mourasuchus arendsi from the Urumaco Formation of Venezuela will be published by Cidade et al. (2019).[29]
  • Ten late Miocene specimens of Mourasuchus, tentatively assigned to the species M. arendsi, are described from Bolivia and from the Solimões Formation of Brazil by Cidade et al. (2019), who also discuss the morphology of Mourasuchus and paleogeographic distribution of this genus in the Miocene of South America.[30]
  • A study on the histology of long bones of extant yacare caiman and fossil caimans from the Upper Miocene–Pliocene Solimões Formation (Brazil) will be published by Andrade et al. (2019).[31]
  • Fossils of a specimen of Asiatosuchus depressifrons from the late Paleocene of Mont de Berru (France), representing the oldest European crocodyloid remains reported so far, will be described by Delfino et al. (2019).[32]
  • A review of the taxonomic diversity of the crocodiles from the early Pliocene of Kanapoi (Kenya) will be published by Brochu (2019).[33]
  • A study on geographical origin, historical biogeography and evolution of traits aiding dispersal of members of the genus Crocodylus is published by Nicolaï & Matzke (2019).[34]
  • Evidence of gavialine‐specific atavistic characters in the skeletons of fossil tomistomines Penghusuchus pani and Toyotamaphimeia machikanensis is presented by Iijima & Kobayashi (2019).[35]
  • Skull and mandibular elements of a tomistomine (probably belonging to the genus Maomingosuchus) are described from the late Eocene lignite seams of Krabi (Thailand) by Martin et al. (2019), providing evidence of tomistomines living in the tropics in the late Eocene.[36]
  • A revision of members of the genus Gavialis described on the basis of fossils from the Sivalik Hills of India and Pakistan will be published by Martin (2019).[37]
  • A study on the systematics of crocodilians known from the Oligocene fossil locality of Monteviale (Italy) is published by Macaluso et al. (2019).[38]
  • A revision of fossil record of Cenozoic crocodilians from Sardinia (Italy) is published by Zoboli et al. (2019).[39]
  • A review of the fossil crocodylomorph fauna of the Cenozoic of South America is published by Cidade, Fortier & Hsiou (2019).[40]
  • A method for the quantification of size- and shape-heterodonty in members of Crocodylia is presented by D’Amore et al. (2019), who apply their method to extant and fossil crocodylomorphs.[41]
  • A study testing whether the bone ornamentation may play a role in terms of load-bearing capacity and mechanical strength of pseudosuchian osteoderms, based on data from five osteoderms of crocodylomorphs (representing four species: Caiman crocodilus, Osteolaemus tetraspis, Hyposaurus rogersii, Sarcosuchus imperator) and one aetosaur osteoderm (Aetosaurus sp.), is published by Clarac et al. (2019).[42]
  • A study on the utility of head width as a body size proxy in extant crocodylians, and on its implications for estimates of body size of extinct crocodyliforms, is published by O’Brien et al. (2019).[43]
  • A study comparing skull anatomy and inferred head musculature, stress distribution in skulls and feeding mechanisms in members of the genera Pelagosaurus and Gavialis, and evaluating changes in mandibular function and feeding through time in the macroevolution of Crocodylomorpha, is published by Ballell et al. (2019).[44]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Acresuchus[45]

Gen. et sp. nov

Valid

Souza-Filho et al.

Late Miocene

Solimões Formation

 Brazil

A caiman. Genus includes new species A. pachytemporalis.

Aprosuchus[46]

Gen. et sp. nov

Valid

Venczel & Codrea

Late Cretaceous (Maastrichtian)

Hațeg Basin

 Romania

A Theriosuchus-like crocodyliform. Genus includes new species A. ghirai.

Barrosasuchus[47]

Gen. et sp. nov

Valid

Coria et al.

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

 Argentina

A peirosaurid crocodyliform. Genus includes new species B. neuquenianus.

Bathysuchus[48]

Gen. et comb. nov

Valid

Foffa et al.

Late Jurassic (Kimmeridgian)

Kimmeridge Clay Formation

 England
 France

A teleosaurid thalattosuchian. The type species is "Teleosaurus" megarhinus Hulke (1871).

Coloradisuchus[49]

Gen. et sp. nov

Valid

Martínez, Alcober & Pol

Late Triassic (Norian)

Los Colorados Formation

 Argentina

A protosuchid crocodyliform. Genus includes new species C. abelini.

Cricosaurus bambergensis[50]

Sp. nov

Valid

Sachs et al.

Late Jurassic (Kimmeridgian)

Torleite Formation

 Germany

A new species of the metriorhynchid Cricosaurus from southern Germany, known from a nearly complete skeleton.

Indosinosuchus[51]

Gen. et sp. nov

Valid

Martin et al.

Probably Middle or Late Jurassic

Phu Kradung Formation

 Thailand

A member of the family Teleosauridae. Genus includes new species I. potamosiamensis.

Jiangxisuchus[52]

Gen. et sp. nov

Valid

Li, Wu & Rufolo

Late Cretaceous (Maastrichtian)

Nanxiong Formation

 China

A member of Crocodyloidea. Genus includes new species J. nankangensis.

Scolomastax[53]

Gen. et sp. nov

In press

Noto et al.

Late Cretaceous (Cenomanian)

Woodbine Formation

 United States
( Texas)

A crocodyliform belonging to the family Paralligatoridae. Genus includes new species S. sahlsteini.

Non-avian dinosaurs

Research

  • A study aiming to identify the most likely area for the geographic origin of dinosaurs will be published by Lee et al. (2019).[54]
  • A study evaluating the impact of new fossil discoveries and changing phylogenetic hypotheses on biogeographical scenarios for dinosaur origins is published by Marsola et al. (2019).[55]
  • A study on the chronostratigraphic position of the uppermost Cretaceous dinosaur localities from south-western Europe, and on their implications for inferring the course of the Maastrichtian dinosaur turnover, is published by Fondevilla et al. (2019).[56]
  • A study aiming to quantify the habitat of latest Cretaceous North American dinosaurs, based on data from fossil occurrences and climatic and environmental modelling, and evaluating its implications for inferring whether dinosaur diversity was in decline prior to the Cretaceous–Paleogene extinction event, is published by Chiarenza et al. (2019).[57]
  • A review and evaluation of studies on molecular data from Mesozoic dinosaur fossils is published by Schweitzer et al. (2019).[58]
  • A study on the nature of putative remains of ancient proteins, blood vessels, and cells preserved with dinosaur fossils, based on data from fossils of Centrosaurus apertus from the Dinosaur Park Formation (Alberta, Canada), is published by Saitta et al. (2019).[59]
  • A study on the olfactory bulb ratio (the size of the olfactory bulb relative to the cerebral hemisphere) in dinosaurs, and on its implication for inferring olfactory acuity of dinosaurs, is published by Hughes & Finarelli (2019).[60]
  • A study on the structure of eggshells of eggs produced by Lufengosaurus, Massospondylus and Mussaurus, representing the oldest confirmed amniote eggshells reported so far, is published by Stein et al. (2019).[61]
  • Description of dinosaur egg fossils from the late Early Cretaceous Chaochuan Formation (Zhejiang, China) is published by Zhang et al. (2019), who name a new ootaxon Multifissoolithus chianensis.[62]
  • Dinosaurs eggs assigned to the oofamily Dendroolithidae are described from the Late Cretaceous Zhaoying Formation (China) by He et al. (2019), who name a new ootaxon Pionoolithus quyuangangensis.[63]
  • Dinosaurs eggs assigned to the oofamily Faveoloolithidae are described from the Upper Cretaceous (ConiacianSantonian) siltstones within the Daeri Andesite of the Wido Volcanics (South Korea) by Kim et al. (2019), who name a new ootaxon Propagoolithus widoensis. [64]
  • Description of an intact dinosaur egg from the Cretaceous Wayan Formation (Idaho, United States) assigned to the oogenus Macroelongatoolithus is published by Simon et al. (2019), who interpret this specimen as evidence of presence of a Gigantoraptor-sized oviraptorosaur in western North America.[65]
  • A study on the embryonic metabolism of Troodon formosus, Protoceratops andrewsi and Hypacrosaurus stebingeri, and on its implications for the knowledge of the incubation times for dinosaur eggs, is published by Lee (2019).[66]
  • A study on the phylogenetic placement of Chilesaurus diegosuarezi and its implications for the phylogenetic relationships of major dinosaur groups will be published by Müller & Dias-da-Silva (2019).[67]
  • A study aiming to evaluate whether the maximum body size of theropod dinosaurs increased across the Triassic-Jurassic boundary is published by Griffin & Nesbitt (2019).[68]
  • A revision of theropod dinosaur fossils from the Late Jurassic to mid-Cretaceous of Southeast Asia is published by Samathi, Chanthasit & Sander (2019).[69]
  • Description of two fragmentary neotheropod specimens from the Upper Triassic Bull Canyon Formation (New Mexico, United States), and a study on their implications for the knowledge of body size evolution among early theropods, is published by Griffin (2019).[70]
  • A study on range of motion and functions of the forelimbs of Dilophosaurus wetherilli is published by Senter & Sullivan (2019).[71]
  • Partially preserved ilium of an indeterminate abelisaur theropod is reported from the Upper Cretaceous Kem Kem Beds (Morocco) by Zitouni et al. (2019).[72]
  • Isolated spinosaurid teeth are described from the Lower Cretaceous of Kut Island (Thailand) by Buffetaut et al. (2019).[73]
  • New spinosaurid specimens are described from the Kem Kem Beds (Morocco) by Arden et al. (2019), who interpret these specimens as providing evidence of aquatic adaptations in the skulls of spinosaurids, and name a new clade Spinosaurini;[74] the study is subsequently criticized by Hone & Holtz (2019).[75]
  • New fossil material of juvenile spinosaurids is described from the Kem Kem Beds by Lakin & Longrich (2019).[76]
  • New theropod fossils, including partial tail vertebra of a member of Megaraptora and an association of tail vertebrae and pelvic elements displaying a combination of characteristics that are present in megaraptorid and carcharodontosaurid theropods, are described from the early Late Cretaceous Griman Creek Formation at Lightning Ridge, New South Wales (Australia) by Brougham, Smith & Bell (2019).[77]
  • Partial postcranial skeleton of a probable carcharodontosaurian theropod is described from the Upper Jurassic (Tithonian) Freixial Formation (Portugal) by Malafaia et al. (2019).[78]
  • Description of the anatomy of the axial skeleton of Concavenator corcovatus is published by Cuesta, Ortega & Sanz (2019).[79]
  • A study on the anatomy of Murusraptor barrosaensis, and on its implications for inferring the phylogenetic placement of megaraptorans within Theropoda, is published by Rolando, Novas & Agnolín (2019).[80]
  • The first neurocranial and paleoneurological description of Dilong paradoxus, comparing it with large tyrannosaurids, will be published by Kundrát et al. (2019).[81]
  • A study on the agility and turning capability of tyrannosaurids and other large theropods is published by Snively et al. (2019), who argue that tyrannosaurids could turn with greater agility, thus pivoting more quickly, than other large theropods, which enhanced their ability to pursue and subdue prey.[82]
  • A study on the tooth replacement patterns in tyrannosaurid theropods, as indicated by data from a juvenile specimen of Tarbosaurus bataar, is published by Hanai & Tsuihiji (2019).[83]
  • A study on teeth of Tarbosaurus bataar and its potential prey species from the Nemegt Formation (Mongolia), aiming to infer the diet of this dinosaur and seasonal climatic variations in the area of Mongolia in the early Maastrichtian on the basis of stable isotope data from tooth enamel, is published by Owocki et al. (2019).[84]
  • A study on the complexity and modularity of the skull of Tyrannosaurus rex is published by Werneburg et al. (2019).[85]
  • Traces preserved on a tail vertebra of a hadrosaurid dinosaur from the Upper Cretaceous Hell Creek Formation (Montana, United States) are described by Peterson & Daus (2019), who interpret their finding as feeding traces produced by a late-stage juvenile Tyrannosaurus rex.[86]
  • A large specimen of Tyrannosaurus rex (RSM P2523.8) with an estimated body mass exceeding other known T. rex specimens and representatives of all other gigantic terrestrial theropods is described by Persons, Currie & Erickson (2019).[87]
  • Description of an ornithomimid specimen UALVP 16182, putatively assigned to the genus Dromiceiomimus, and a study on the validity of this genus is published by Macdonald & Currie (2019).[88]
  • A study on the morphometrics of teeth of Richardoestesia asiatica from the Upper Cretaceous Khodzhakul, Bissekty and Aitym formations of Uzbekistan is published by Averianov & Sues (2019).[89]
  • A study on the bone histology of a metatarsal bone of the holotype specimen of Xixianykus zhangi will be published by Qin, Zhao & Xu (2019).[90]
  • A study on the anatomy of the skull of Beipiaosaurus inexpectus is published by Liao & Xu (2019).[91]
  • A study on the wing performance of Caudipteryx is published by Talori et al. (2019).[92]
  • An ungual phalanx of a dromaeosaurid theropod is described from the Blagoveshchensk area (Russia) by Bolotskii, Bolotskii & Sorokin (2019).[93]
  • Histological analysis of the forelimb bones of Daliansaurus liaoningensis is presented by Shen et al. (2019).[94]
  • Evidence indicating that the pennaceous feathers of Anchiornis were composed of both feather β-keratins and α-keratins is presented by Pan et al. (2019).[95]
  • Isolated theropod teeth, interpreted as most likely representing at least two species, are described from the Middle Jurassic Valtos Sandstone and Lealt Shale Formations of Skye (Scotland) by Young et al. (2019).[96]
  • A study aiming to explain high diversity of early evolutionary branches of sauropodomorph dinosaurs will be published by Müller & Garcia (2019).[97]
  • A study on the anatomy and phylogenetic relationships of Pampadromaeus barberenai is published by Langer et al. (2019).[98]
  • A dinosauriform femur, possibly of a juvenile specimen of the species Pampadromaeus barberenai, is described from the Late Triassic of southern Brazil by Müller et al. (2019).[99]
  • A study on the anatomy of the braincase of Saturnalia tupiniquim is published by Bronzati, Langer & Rauhut (2019).[100]
  • A study on the phylogenetic relationships of Unaysaurus tolentinoi will be published by McPhee et al. (2019).[101]
  • A study on the bony labyrinth scale and geometry through ontogeny in Massospondylus carinatus, evaluating whether the putative gait change from quadrupedal juvenile to bipedal adult is reflected in labyrinth morphology, will be published by Neenan et al. (2019).[102]
  • Description of the anatomy of the postcranial skeleton of the neotype specimen of Massospondylus carinatus is published by Barrett et al. (2019).[103]
  • Redescription of the anatomy of the skull of Jingshanosaurus xinwaensis is published by Zhang et al. (2019), who consider Chuxiongosaurus lufengensis to be a junior synonym of J. xinwaensis.[104]
  • A study on changes of body mass and center of mass of Mussaurus patagonicus during its ontogeny, and on their potential relationship with the locomotor stance of this dinosaur, is published by Otero et al. (2019).[105]
  • A study on the leverage of forelimb muscles in the transition from the narrow‐gauge stance of basal sauropods to a wide‐gauge stance in titanosaurs is published by Klinkhamer et al. (2019).[106]
  • A study on the hind foot posture and biomechanical capabilities of Rhoetosaurus brownei is published by Jannel et al. (2019).[107]
  • An isolated tooth-crown of a member of Eusauropoda, possibly a member of Mamenchisauridae or Euhelopodidae, is described from the Upper Jurassic Qigu Formation (China) by Maisch & Matzke (2019), representing the first record of an eusauropod from this formation reported so far.[108]
  • A cervical vertebra of a member of the genus Omeisaurus is described from the Middle Jurassic Lower Member of the Shaximiao Formation (China) by Tan et al. (2019), providing new information on the skeletal morphology of this genus, and representing the easternmost occurrence of Omeisaurus reported so far.[109]
  • Redescription of the complete series of the neck vertebrae of Xinjiangtitan shanshanesis will be published by Zhang et al. (2019).[110]
  • Possible mamenchisaurid teeth are described from the Middle Jurassic Itat Formation (Russia) by Averianov et al. (2019).[111]
  • Partial vertebra of a sauropod dinosaur belonging to the group Turiasauria is described from the Lower Cretaceous Wealden Supergroup (United Kingdom) by Mannion (2019).[112]
  • Description of isolated sauropod vertebrae from the Oxford Clay Formation (United Kingdom), indicative of a higher sauropod biodiversity in this formation than previously recognised, is published by Holwerda, Evans & Liston (2019).[113]
  • A study on the phylogenetic relationships of the Late Jurassic sauropod dinosaurs from the Tendaguru Formation of Tanzania (Australodocus bohetii, Janenschia robusta and Tendaguria tanzaniensis) is published by Mannion et al. (2019).[114]
  • Description of the anatomy of the braincase of Malawisaurus dixeyi is published by Andrzejewski et al. (2019), who present digital reconstructions of the endocast and inner ear of this species based on CT scanning.[115]
  • A study on the anatomy and phylogenetic relationships of Uberabatitan ribeiroi is published by Silva et al. (2019).[116]
  • Ibiricu, Martínez & Casal (2019) present the reconstruction of the pelvic and hindlimb musculature of Epachthosaurus sciuttoi.[117]
  • Fossils of a titanosaur sauropod related to Rapetosaurus and the indeterminate Italian titanosaur specimen MSNM V7157 are described from the Algora vertebrate fossil site located in the Cenomanian strata of the Arenas de Utrillas Formation (Spain) by Mocho et al. (2019).[118]
  • Description of five articulated sauropod dorsal vertebrae from the Upper Cretaceous Nemegt Formation, possibly belonging to the species Nemegtosaurus mongoliensis, is published by Averianov & Lopatin (2019), who also study the anatomy of sauropod femora from the Nemegt Formation, and argue that N. mongoliensis is likely to be distinct from Opisthocoelicaudia skarzynskii.[119]
  • New reconstruction of the jaw musculature of ornithischian dinosaurs, rejecting the notion of presence of novel "cheek" muscle, is proposed by Nabavizadeh (2019).[120]
  • A study on the evolution of the femoral fourth trochanter in ornithischian dinosaurs is published by Persons & Currie (2019).[121]
  • A study on the taphonomy and histology of the ornithischian (ankylosaurian and ornithopod) fossils from the La Cantalera-1 site (Lower Cretaceous Blesa Formation, Spain) is published by Perales-Gogenola et al. (2019).[122]
  • A study on the holotype specimen of Bienosaurus lufengensis, and on the taxonomic validity and phylogenetic relationships of this dinosaur, is published by Raven et al. (2019).[123]
  • A study on the morphological diversity of stegosaurs through the evolutionary history of the group will be published by Romano (2019).[124]
  • A study on pathological characteristics of left femur of a specimen of Gigantspinosaurus sichuanensis from the Late Jurassic of China will be published by Hao et al. (2019), who interpret this specimen as probably affected by bone tumor.[125]
  • Plates of an armored dinosaur from the Lower Jurassic (Sinemurian-Pliensbachian) Lower Kota Formation (India) are redescribed by Galton (2019), who considers these fossils to be more similar to plates of ankylosaurians than basal thyreophorans, and interprets them as the earliest ankylosaurian fossils reported so far.[126]
  • Description of an assemblage of 12 partial, articulated or associated ankylosaurian skeletons and thousands of isolated bones and teeth from the Cretaceous (Santonian) Iharkút vertebrate locality (Hungary) will be published by Ősi et al. (2019).[127]
  • A study on the evolution of morphological traits associated with tail weaponry in ankylosaurs and glyptodonts, aiming to quantitatively test the hypothesis that tail weaponry of these groups is an example of convergent evolution, is published by Arbour & Zanno (2019).[128]
  • A study on the brain morphology and topography of cranial nerves of Bissektipelta archibaldi is published by Alifanov & Saveliev (2019).[129]
  • A study on the age of the Kulinda locality (south-eastern Siberia, Russia) which yielded fossils of Kulindadromeus zabaikalicus is published by Cincotta et al. (2019).[130]
  • First photogrammetric models of the type locality burrow of Oryctodromeus cubicularis will be presented by Wilson & Varricchio (2019).[131]
  • New fossil material of ornithopod dinosaurs is described from the Cretaceous Flat Rocks locality (Wonthaggi Formation, Australia) by Herne et al. (2019), who also revise Qantassaurus intrepidus and study the phylogenetic relationships of the Victorian ornithopods.[132]
  • Description of the anatomy of the skeleton of Talenkauen santacrucensis will be published by Rozadilla, Agnolín & Novas (2019).[133]
  • Skeletal pathologies affecting a subadult specimen of Tenontosaurus tilletti from the Antlers Formation of southeastern Oklahoma are described by Hunt et al. (2019).[134]
  • A study on patterns and processes of morphological evolution of hadrosauroid dinosaurs is published by Stubbs et al. (2019).[135]
  • A study on the nature of the fluvial systems of Laramidia during the Late Cretaceous, as indicated by data from vertebrate and invertebrate fossils from the Kaiparowits Formation of southern Utah, and on the behavior of hadrosaurid dinosaurs over these landscapes, will be published by Crystal et al. (2019).[136]
  • A study on the osteology and phylogenetic relationships of "Tanius laiyangensis" is published by Zhang et al. (2019).[137]
  • A study on the bone histology of tibiae of Maiasaura peeblesorum, focusing on the composition, frequency and cortical extent of localized vascular changes, is published by Woodward (2019).[138]
  • Three juvenile specimens of Prosaurolophus maximus, providing new information on the ontogeny of this taxon, are described from the Bearpaw Formation (Alberta, Canada) by Drysdale et al. (2019).[139]
  • A study on the impact of bone tissue structure, early diagenetic regimes and other taphonomic variables on the preservation potential of soft tissues in vertebrate fossils, as indicated by data from fossils of Edmontosaurus annectens from the Standing Rock Hadrosaur Site (Maastrichtian Hell Creek Formation, South Dakota), is published by Ullmann, Pandya & Nellermoe (2019), who report the first recovery of osteocytes and vessels from a fossil vertebral centrum and ossified tendons.[140]
  • A femur of an early juvenile hadrosaurid, probably belonging to the species Edmontosaurus annectens, is described from the Hell Creek Formation (Montana, United States) by Farke & Yip (2019), providing new information on ontogenetic changes in the skeleton of this dinosaur.[141]
  • The first definitive lambeosaurine fossil (an isolated skull bone) is described from the Liscomb Bonebed of the Prince Creek Formation (Alaska, United States) by Takasaki et al. (2019).[142]
  • A study on bone histology of Psittacosaurus lujiatunensis through its ontogeny is published by Zhao et al. (2019).[143]
  • A three-dimensional virtual endocast of a member of the genus Auroraceratops is reconstructed on the basis of a well-preserved skull by Zhang et al. (2019).[144]
  • A study on the nature of the observed variation in morphology and size of skulls of Bagaceratops rozhdestvenskyi will be published by Czepiński (2019), who considers the species Gobiceratops minutus, Lamaceratops tereschenkoi, Platyceratops tatarinovi and Magnirostris dodsoni to be junior synonyms of B. rozhdestvenskyi.[145]
  • The first postcranial skeleton of Bagaceratops reported so far is described from the Upper Cretaceous Barun Goyot Formation (Mongolia) by Kim, Yun & Lee (2019).[146]
  • A study on the bone histology and skeletal growth of Avaceratops and Yehuecauhceratops is published by Hedrick et al. (2019).[147]
  • New information on the anatomy of the skeleton of Pachyrhinosaurus perotorum is presented by Tykoski, Fiorillo & Chiba (2019), who also provide a new diagnosis of this species.[148]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Adynomosaurus[149]

Gen. et sp. nov

Valid

Prieto-Márquez et al.

Late Cretaceous

Tremp Formation

 Spain

A hadrosaurid ornithopod belonging to the subfamily Lambeosaurinae. Genus includes new species A. arcanus.

Ambopteryx[150]

Gen. et sp. nov

Valid

Wang et al.

Late Jurassic (Oxfordian)

Unnamed formation; equivalent to the Haifanggou Formation

 China

A scansoriopterygid theropod. Genus includes new species A. longibrachium.

Anhuilong[151]

Gen. et sp. nov

Valid

Ren, Huang & You

Middle Jurassic

Hongqin Formation

 China

A mamenchisaurid sauropod. Genus includes new species A. diboensis.

Bajadasaurus[152]

Gen. et sp. nov

Valid

Gallina et al.

Early Cretaceous (BerriasianValanginian)

Bajada Colorada Formation

 Argentina

A dicraeosaurid sauropod. The type species is B. pronuspinax.

Convolosaurus[153]

Gen. et sp. nov

Valid

Andrzejewski, Winkler & Jacobs

Early Cretaceous (Aptian)

Twin Mountains Formation

 United States
( Texas)

A basal ornithopod. The type species is C. marri.

Fostoria[154]

Gen. et sp. nov

Valid

Bell et al.

Cretaceous (Albian or Cenomanian)

Griman Creek Formation

 Australia

A non-hadrosauroid iguanodontian ornithopod. The type species is F. dhimbangunmal.

Galleonosaurus[132]

Gen. et sp. nov

Valid

Herne et al.

Early Cretaceous (Barremian)

Wonthaggi Formation

 Australia

A small-bodied ornithopod dinosaur. The type species is G. dorisae.

Gobihadros[155]

Gen. et sp. nov

Valid

Tsogtbaatar et al.

Late Cretaceous (CenomanianSantonian)

Bayan Shireh Formation

 Mongolia

A non-hadrosaurid hadrosauroid ornithopod. The type species is G. mongoliensis.

Gobiraptor[156]

Gen. et sp. nov

Valid

Lee et al.

Late Cretaceous

Nemegt Formation

 Mongolia

An oviraptorid theropod. The type species is G. minutus.

Imperobator[157]

Gen. et sp. nov

Valid

Ely & Case

Late Cretaceous (Maastrichtian)

Snow Hill Island Formation

 Antarctica

A large paravian theropod. Genus includes new species I. antarcticus.

Kaijutitan[158]

Gen. et sp. nov

Valid

Filippi, Salgado & Garrido

Late Cretaceous (Coniacian)

Sierra Barrosa Formation

 Argentina

A basal member of Titanosauria. Genus includes new species K. maui.

Laiyangosaurus[159]

Gen. et sp. nov

Valid

Zhang et al.

Late Cretaceous

Jingangkou Formation

 China

A hadrosaurid ornithopod belonging to the subfamily Saurolophinae and the tribe Edmontosaurini. The type species is L. youngi.

Lingyuanosaurus[160]

Gen. et sp. nov

Yao et al.

Early Cretaceous

Jehol Group (Yixian Formation or Jiufotang Formation), possibly the former

 China

An early member of Therizinosauria. The type species is L. sihedangensis.

Mahuidacursor[161]

Gen. et sp. nov

Valid

Cruzado-Caballero et al.

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

 Argentina

A basal ornithopod. Genus includes new species M. lipanglef.

Moros[162]

Gen. et sp. nov

Valid

Zanno et al.

Late Cretaceous (Cenomanian)

Cedar Mountain Formation

 United States
( Utah)

A tyrannosauroid theropod. The type species is M. intrepidus.

Mnyamawamtuka[163]

Gen. et sp. nov

Valid

Gorscak & O’Connor

Cretaceous (AptianCenomanian)

Galula Formation

 Tanzania

A lithostrotian titanosaur sauropod. The type species is M. moyowamkia.

Nhandumirim[164]

Gen. et sp. nov

Valid

Marsola et al.

Late Triassic (Carnian)

Santa Maria Formation

 Brazil

An early dinosaur, possibly one of the earliest members of Theropoda. Genus includes new species N. waldsangae.

Oceanotitan[165]

Gen. et sp. nov

Valid

Mocho, Royo-Torres & Ortega

Late Jurassic (Carnian)

Praia da Amoreira-Porto Novo Formation

 Portugal

A titanosauriform sauropod. Genus includes new species O. dantasi.

Pareisactus[166]

Gen. et sp. nov

Valid

Párraga & Prieto-Márquez

Late Cretaceous (Maastrichtian)

Conques Formation

 Spain

A rhabdodontid ornithopod. The type species is P. evrostos.

Phuwiangvenator[167]

Gen. et sp. nov

Valid

Samathi, Chanthasit & Sander

Early Cretaceous (probably Barremian)

Sao Khua Formation

 Thailand

A megaraptoran theropod. The type species is P. yaemniyomi.

Pilmatueia[168]

Gen. et sp. nov

Valid

Coria et al.

Early Cretaceous (Valanginian)

Mulichinco Formation

 Argentina

A dicraeosaurid sauropod. The type species is P. faundezi.

Sektensaurus[169]

Gen. et sp. nov

Valid

Ibiricu et al.

Late Cretaceous (Coniacian-Maastrichtian)

Lago Colhue Huapi Formation

 Argentina

A non-hadrosaurid ornithopod, probably a member of Elasmaria. Genus includes new species S. sanjuanboscoi.

Suskityrannus[170]

Gen. et sp. nov

Valid

Nesbitt et al.

Late Cretaceous (Turonian)

Moreno Hill Formation

 United States
( New Mexico)

A tyrannosauroid theropod. Genus includes new species S. hazelae.

Thanos[171]

Gen. et sp. nov

Valid

Delcourt & Iori

Late Cretaceous (Santonian)

São José do Rio Preto Formation

 Brazil

An abelisaurid theropod. Genus includes new species T. simonattoi.

Vayuraptor[167]

Gen. et sp. nov

Valid

Samathi, Chanthasit & Sander

Early Cretaceous (probably Barremian)

Sao Khua Formation

 Thailand

A basal member of Coelurosauria of uncertain exact phylogenetic placement within this group. The type species is V. nongbualamphuensis.

Wamweracaudia[114]

Gen. et sp. nov

Valid

Mannion et al.

Late Jurassic

Tendaguru Formation

 Tanzania

A mamenchisaurid sauropod. Genus includes new species W. keranjei.

Xingtianosaurus[172]

Gen. et sp. nov

Qiu et al.

Early Cretaceous

Yixian Formation

 China

A caudipterid oviraptorosaur theropod. The type species is X. ganqi.

Birds

Research

  • A study on the impact of varying oxygen concentrations, global temperatures and air densities on the flight performance of extinct birds and on major diversification events which took place during the evolution of birds is published by Serrano et al. (2019).[173]
  • A study aiming to determine whether there is a relationship between the volume of lacunae of osteocytes derived from static osteogenesis and biological parameters such as genome size, body mass, growth rate, metabolic rate or red blood cell size in extant birds is published by Grunmeier & D'Emic (2019), who evaluate the implications of their finding for inferring physiological paraments in extinct birds, and potentially other vertebrates, on the basis of osteocyte lacunar volumes.[174]
  • A study on the expression patterns of the anterior genes Gli3 and Alx4 in limb buds of emu, chicken and zebra finch embryos, and on their implications for the knowledge of evolution of the avian digital pattern, is published by Kawahata et al. (2019).[175]
  • A study on the total mass of the dentition of Mesozoic birds, and on the impact of the reduction and loss of teeth on total body mass of Mesozoic birds, is published by Zhou, Sullivan & Zhang (2019).[176]
  • A review of the available evidence of the diet of Mesozoic birds, especially those known from the Lower Cretaceous Jehol Lagerstätte (China), is published by O’Connor (2019).[177]
  • A study on the early evolution of the diel activity patterns in diapsid lineages, focusing on the common ancestor branch of living birds, is published by Yu & Wang (2019).[178]
  • A study on the diversity of melanosome morphology in iridescent feathers of extant birds, and on its implications for inferring iridescence in fossil feathers in general and in Eocene birds cf. Primotrogon and Scaniacypselus in particular, is published by Nordén et al. (2019).[179]
  • Amino acids are detected in two specimens of fossil feathers from the Cretaceous amber from Myanmar and Eocene Baltic amber by McCoy et al. (2019).[180]
  • A study on Praeornis sharovi from the Late Jurassic of Kazakhstan will be published by Agnolin, Rozadilla & Carvalho (2019), who interpret the fossil as a tail feather of a basal bird.[181]
  • A geochemical halo of the calamus of the holotype feather of Archaeopteryx lithographica, detected using Laser-Stimulated Fluorescence, is reported by Kaye et al. (2019), who also assess the implications of their findings for the identification of this feather.[182]
  • A study on the postcranial skeleton of the Berlin specimen of Archaeopteryx lithographica, reporting pneumatic structures visible under ultraviolet light and confirming that numerous postcranial bones of Archaeopteryx were reduced in mass via hollow interiors, is published by Schwarz et al. (2019).[183]
  • A comparative study of all named taxa referred to Confuciusornithiformes, taxonomic revision of the group and a study on the phylogenetic relationships of members of the group is published by Wang, O'Connor & Zhou (2019).[184]
  • Fully fledged feathering is reported in a hatchling enantiornithine specimen from the Early Cretaceous Las Hoyas locality in Spain (first described by Knoll et al., 2018)[185] by Kate et al. (2019).[186]
  • A remarkably well-preserved foot of an enantiornithine bird, accompanied by part of the wing plumage, is described from the Cretaceous amber from Myanmar by Xing et al. (2019).[187]
  • A study on the bone microstructure of Yanornis, and on its implications for the knowledge of the growth strategy of this bird, is published by Wang et al. (2019).[188]
  • A study comparing the hindlimb morphology of hesperornithiforms and modern foot-propelled diving birds is published by Bell, Wu & Chiappe (2019).[189]
  • A study on the evolution of body size of palaeognath birds is published by Crouch & Clarke (2019).[190]
  • A fossil tinamou belonging to the genus Eudromia, exceeding the size range of living species of the genus, will be described from the Lujanian sediments in Marcos Paz County (Buenos Aires Province, Argentina) by Cenizo et al. (2019).[191]
  • A study aiming to evaluate whether introduced deers and hares fill the same ecological niches as extinct moa birds in New Zealand, as indicated by data from pollen extracted from moa coprolites and mammal feces, is published by Wood & Wilmshurst (2019).[192]
  • A study on the anatomy of the cancellous bone in the femur, tibiotarsus and fibula of three moa species will be published by Bishop, Scofield & Hocknull (2019).[193]
  • A study on the microstructure of the bones of Vegavis iaai is published by Garcia Marsà, Agnolín & Novas (2019).[194]
  • A study on the holotype specimen and other fossils attributed to the species Cayaoa bruneti is published by De Mendoza & Tambussi (2019), who present a revised diagnosis of this species.[195]
  • A study on the phylogenetic relationships of Cayaoa bruneti will be published by De Mendoza (2019).[196]
  • A study on the morphology of the postcranial skeleton of the Oligocene-Miocene galliform Palaeortyx, and on the phylogenetic relatioships of this taxon, is published by Zelenkov (2019).[197]
  • A study on the phylogenetic relationships of the adzebills, as indicated by data from near-complete mitochondrial genome sequences, is published by Boast et al. (2019).[198]
  • A study on the phylogenetic relationships of the adzebills, as indicated by morphological and molecular data, is published by Musser & Cracraft (2019).[199]
  • A study on two humeri of rails belonging to the genus Dryolimnas from the Pleistocene of the Picard Island (Seychelles) is published by Hume & Martill (2019), who interpret these humeri as bones of a flightless rail, and consider them to be evidence of repeated evolution flightlessness in members of the genus Dryolimnas inhabiting the Aldabra Atoll – before the atoll was completely submerged in the late Pleistocene, as well as after it emerged from the ocean again.[200]
  • A nearly complete tarsometatarsus of the least seedsnipe (Thinocorus rumicivorus) is described from the Ensenadan of Argentina by Picasso, De Mendoza & Gelfo (2019).[201]
  • Pedal phalanx of a penguin affected by osteomyelitis is described from the Eocene of West Antarctica by Jadwiszczak & Rothschild (2019).[202]
  • Globuli ossei (subspherical structures of endochondral origin, inserted in the hypertrophic cartilage of long bones) are reported for the first time in a bird (a fossil penguin Delphinornis arctowskii from Antarctica) by Garcia Marsà, Tambussi & Cerda (2019).[203]
  • A set of skeletal elements of a penguin attributable to the species Delphinornis larseni, providing new information on the anatomy of this species, is described from the Eocene Submeseta Formation (Seymour Island, Antarctica) by Jadwiszczak & Mörs (2019).[204]
  • A study on changes in the population size of the Adélie penguin colonies and relative krill abundance in the Prydz Bay (Antarctica) during the 2nd millennium, as indicated by data from ornithogenic sediment cores from the Vestfold Hills, will be published by Gao et al. (2019).[205]
  • Restudy of a putative bill of an ibis-like bird from the Eocene La Meseta Formation (Antarctica) described by Jadwiszczak, Gaździcki & Tatur (2008)[206] is published by Agnolin, Bogan & Rozadilla (2019), who consider this specimen to be more likely to be a dorsal spine of a chimaeroid cartilaginous fish.[207]
  • A study on the origin and evolution of the Haast's eagle and the Eyles's harrier, as indicated by complete mitochondrial genome data, is published by Knapp et al. (2019).[208]
  • Evidence from Neanderthal-associated sites in Europe indicating that Neanderthals practiced catching the golden eagles is presented by Finlayson et al. (2019).[209]
  • A study on the holotype specimen of Calcardea junnei is published by Mayr, Gingerich & Smith (2019), who reject the interpretation of this species as a heron, and claim that this bird resembled parrot-like taxon Vastanavis from the early Eocene of India.[210]
  • A study on the identity of a parakeet specimen held at National Museums Scotland, interpreted as most likely originating from Mauritius by Cheke & Jansen (2016),[211] is published by Jones et al. (2019), who consider this parakeet to be the only known skin specimen of extinct Réunion parakeet.[212]
  • A study on the phylogenetic relationships, biogeography and diversification rates of passerine birds throughout their evolutionary history, aiming to evaluate the impact of major events in Earth history on the evolution of passerines, is published by Oliveros et al. (2019).[213]
  • A study on drivers of bird distribution shifts throughout the Cenozoic is published by Saupe et al. (2019).[214]
  • A review of the bird fossil assemblage from the Paleocene locality of Menat (Puy-de-Dôme, France), including a new fossil specimen with exceptional soft tissue preservation, is published by Mayr, Hervet & Buffetaut (2019).[215]
  • New bird fossils, including the oldest European record of the Gastornithidae which is temporally well-constrained, are described from the Paleocene localities from the North Sea Basin in Belgium (Maret) and France (Templeuve and Rivecourt-Petit Pâtis) by Mayr & Smith (2019).[216]
  • A revision of bird fossils from the Eocene (Ypresian) fossil sites of the North American Okanagan Highlands, mainly in British Columbia (Canada), is published by Mayr et al. (2019), who report, among other findings, a skeleton of a possible member of the family Songziidae, and fossil wings which might constitute the earliest known record of Gaviiformes.[217]
  • An assemblage of 54 bird bones from early Eocene marine sediments of the Ampe quarry near Egem in Belgium is described by Mayr & Smith (2019).[218]
  • Remains of 32 species of seabirds and related taxa will be reported from the middle–late Pleistocene Shiriya local fauna (northeastern Japan) by Watanabe, Matsuoka & Hasegawa (2019).[219]
  • A study on the date of extinction of the Tristan moorhen, the Inaccessible Island finch and the Tristan albatross on the main island of the Tristan da Cunha archipelago, aiming to place these extinctions in the context of the changing island ecosystems of the nineteenth and early twentieth centuries, is published by Bond, Carlson & Burgio (2019).[220]
  • A study on the fossil bird remains from the Pliocene locality of Kanapoi (Kenya), indicating presence of many aquatic birds, will be published by Field (2019).[221]
  • A study on the impact of Plio-Pleistocene environmental changes on the bird fauna of New Zealand is published by Rawlence et al. (2019).[222]
  • Description of Late Pleistocene and Holocene bird remains from Jerimalai and Matja Kuru 1 sites in East Timor will be published by Meijer, Louys & O'Connor (2019).[223]
  • A study on the phylogenetic relationships of the dodo and the great auk, as indicated by data from proteins extracted from bone material, will be published by Horn et al. (2019).[224]
  • A study on bone surface modifications of Pleistocene bird fossils from Mata Menge site (Flores, Indonesia) is published by Meijer et al. (2019), who report no unambiguous evidence for exploitation of birds from Mata Menge by early hominins.[225]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Alcmonavis[226]

Gen. et sp. nov

Valid

Rauhut, Tischlinger & Foth

Late Jurassic (Tithonian)

Mörnsheim Formation

 Germany

A basal member of Avialae, more closely related to extant birds than to Archaeopteryx. The type species is A. poeschli.

Archaeopteryx albersdoerferi[227]

Sp. nov

Valid

Kundrát et al.

Late Jurassic (Tithonian)

Mörnsheim Formation

 Germany

Avimaia[228]

Gen. et sp. nov

Valid

Bailleul et al.

Early Cretaceous (Aptian)

Xiagou Formation

 China A member of Enantiornithes. The type species is A. schweitzerae. Noted as the first discovered fossil bird with an unlaid egg.[228]

Camptodontornis[229]

Nom. nov

Valid

Demirjian

Early Cretaceous

Jiufotang Formation

 China

A member of Enantiornithes; a replacement name for Camptodontus Li et al. (2010).

Conflicto[230]

Gen. et sp. nov

In press

Tambussi et al.

Early Paleocene

López de Bertodano Formation

Antarctica

A stem-anseriform. Genus includes new species C. antarcticus.

Dasyornis walterbolesi[231]

Sp. nov

In press

Nguyen

Early Miocene

Riversleigh World Heritage Area

 Australia

A bristlebird.

Eofringillirostrum[232]

Gen. et 2 sp. nov

Valid

Ksepka, Mayr & Grande

Early Eocene

Green River Formation
Messel pit

 Germany
 United States
( Wyoming)

A member of Pan-Passeriformes related to Psittacopes. The type species is E. boudreauxi; genus also includes E. parvulum.

Eudyptes warhami[233]

Sp. nov

Valid

Cole et al.

Holocene

 New Zealand

A crested penguin.

?Laurillardia smoleni[234]

Sp. nov

In press

Mayr et al.

Early Oligocene

 Poland

A stem-upupiform.

Megadyptes antipodes richdalei[233]

Subsp. nov

Valid

Cole et al.

Holocene

 New Zealand

A subspecies of the yellow-eyed penguin.

Naranbulagornis[235]

Gen. et sp. nov

Valid

Zelenkov

Paleocene

 Mongolia

An early, swan-sized member of Anseriformes. Genus includes new species N. khun.

Orienantius[236]

Gen. et sp. nov

Valid

Liu et al.

Early Cretaceous

Huajiying Formation

 China

A member of Enantiornithes. Genus includes new species O. ritteri.

Proardea? deschutteri[237]

Sp. nov

Valid

Mayr et al.

Early Oligocene

Borgloon Formation

 Belgium

A heron.

Shangyang[238]

Gen. et sp. nov

Valid

Wang & Zhou

Early Cretaceous

Jiufotang Formation

 China

A member of Enantiornithes. Genus includes new species S. graciles.

Taphophoyx[239]

Gen. et sp. nov

Valid

Steadman & Takano

Hemphillian

 United States
( Florida)

A heron. The type species is T. hodgei.

Xorazmortyx[240]

Gen. et sp. nov

In press

Zelenkov & Panteleyev

Eocene (LutetianBartonian)

 Uzbekistan

A stem-galliform bird belonging to the family Paraortygidae. Genus includes new species X. turkestanensis.

Zygodactylus ochlurus[241]

Sp. nov

Hieronymus, Waugh & Clarke

Early Oligocene

Renova Formation

 United States
( Montana)

A member of the family Zygodactylidae.

Pterosaurs

Research

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Coloborhynchus fluviferox [250]

Sp. nov

Valid

Jacobs et al.

Cretaceous

Kem Kem Beds

 Morocco

Iberodactylus [251]

Gen. et sp. nov

Valid

Holgado et al.

Early Cretaceous (Barremian)

Blesa Formation

 Spain

A member of Anhangueria assigned to the new family Hamipteridae. The type species is I. andreui.

Other archosaurs

Research

References

  1. ^ R. N. Felice; A. Watanabe; A. R. Cuff; E. Noirault; D. Pol; L. M. Witmer; M. A. Norell; P. M. O'Connor; A. Goswami (2019). "Evolutionary integration and modularity in the archosaur cranium". Integrative and Comparative Biology. in press. doi:10.1093/icb/icz052. PMID 31120528.
  2. ^ David W. Krause; Joseph J.W. Sertich; Patrick M. O'Connor; Kristina Curry Rogers; Raymond R. Rogers (2019). "The Mesozoic biogeographic history of Gondwanan terrestrial vertebrates: insights from Madagascar's fossil record". Annual Review of Earth and Planetary Sciences. 47: 519–553. doi:10.1146/annurev-earth-053018-060051.
  3. ^ Tai Kubo (2019). "Biogeographical network analysis of Cretaceous terrestrial tetrapods: a phylogeny-based approach". Systematic Biology. in press. doi:10.1093/sysbio/syz024. PMID 31135923.
  4. ^ Ashley L. Ferguson; David J. Varricchio; Alex J. Ferguson (2019). "Nest site taphonomy of colonial ground-nesting birds at Bowdoin National Wildlife Refuge, Montana". Historical Biology: An International Journal of Paleobiology. in press: 1–15. doi:10.1080/08912963.2018.1546699.
  5. ^ Akinobu Watanabe; Paul M. Gignac; Amy M. Balanoff; Todd L. Green; Nathan J. Kley; Mark A. Norell (2019). "Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny?". Journal of Anatomy. 234 (3): 291–305. doi:10.1111/joa.12918. PMID 30506962.
  6. ^ Lakshminath Kundanati; Mirco D'Incau; Massimo Bernardi; Paolo Scardi; Nicola M. Pugno (2019). "A comparative study of the mechanical properties of a dinosaur and crocodile fossil teeth". Journal of the Mechanical Behavior of Biomedical Materials. 97: 365–374. doi:10.1016/j.jmbbm.2019.05.025. PMID 31158580.
  7. ^ Aurore Canoville; Mary H. Schweitzer; Lindsay E. Zanno (2019). "Systemic distribution of medullary bone in the avian skeleton: ground truthing criteria for the identification of reproductive tissues in extinct Avemetatarsalia". BMC Evolutionary Biology. 19: 71. doi:10.1186/s12862-019-1402-7. PMC 6407237. PMID 30845911.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  8. ^ Bruno Grossi; Patricio Loncomilla; Mauricio Canals; Javier Ruiz-Del-Solar (2019). "Are cursorial birds good kinematic models of non-avian theropods?". International Journal of Morphology. 37 (2): 620–625. doi:10.4067/S0717-95022019000200620.
  9. ^ Seung Choi; Seokyoung Han; Yuong‐Nam Lee (2019). "Electron backscatter diffraction (EBSD) analysis of maniraptoran eggshells with important implications for microstructural and taphonomic interpretations". Palaeontology. in press. doi:10.1111/pala.12427.
  10. ^ Devin K. Hoffman; Andrew B. Heckert; Lindsay E. Zanno (2019). "Disparate growth strategies within Aetosauria: Novel histologic data from the aetosaur Coahomasuchus chathamensis". The Anatomical Record. in press. doi:10.1002/ar.24019. PMID 30408334.
  11. ^ Jun Wang; Rui Pei; Jianye Chen; Zhenzhu Zhou; Chongqin Feng; Su-Chin Chang (2019). "New age constraints for the Middle Triassic archosaur Lotosaurus: Implications for basal archosaurian appearance and radiation in South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 521: 30–41. Bibcode:2019PPP...521...30W. doi:10.1016/j.palaeo.2019.02.008.
  12. ^ Lúcio Roberto-Da-Silva; Rodrigo Temp Müller; Marco Aurélio Gallo de França; Sérgio Furtado Cabreira; Sérgio Dias-Da-Silva (2019). "An impressive skeleton of the giant top predator Prestosuchus chiniquensis (Pseudosuchia: Loricata) from the Triassic of Southern Brazil, with phylogenetic remarks". Historical Biology: An International Journal of Paleobiology. in press: 1–20. doi:10.1080/08912963.2018.1559841.
  13. ^ Bianca Martins Mastrantonio; María Belén Von Baczko; Julia Brenda Desojo; Cesar L. Schultz (2019). "The skull anatomy and cranial endocast of the pseudosuchid archosaur Prestosuchus chiniquensis from the Triassic of Brazil". Acta Palaeontologica Polonica. 64 (1): 171–198. doi:10.4202/app.00527.2018.
  14. ^ Eric W. Wilberg; Alan H. Turner; Christopher A. Brochu (2019). "Evolutionary structure and timing of major habitat shifts in Crocodylomorpha". Scientific Reports. 9 (1): Article number 514. Bibcode:2019NatSR...9..514W. doi:10.1038/s41598-018-36795-1. PMC 6346023. PMID 30679529.
  15. ^ Philip D. Mannion; Alfio Alessandro Chiarenza; Pedro L. Godoy; Yung Nam Cheah (2019). "Spatiotemporal sampling patterns in the 230 million year fossil record of terrestrial crocodylomorphs and their impact on diversity". Palaeontology. in press. doi:10.1111/pala.12419.
  16. ^ K. N. Dollman; P. A. Viglietti; J. N. Choiniere (2019). "A new specimen of Orthosuchus stormbergi (Nash 1968) and a review of the distribution of Southern African Lower Jurassic crocodylomorphs". Historical Biology: An International Journal of Paleobiology. 31 (5): 653–664. doi:10.1080/08912963.2017.1387110.
  17. ^ Andrej Čerňanský; Ján Schlögl; Tomáš Mlynský; Štefan Józsa (2019). "First evidence of the Jurassic thalattosuchian (both teleosaurid and metriorhynchid) crocodylomorphs from Slovakia (Western Carpathians)". Historical Biology: An International Journal of Paleobiology. in press: 1–8. doi:10.1080/08912963.2017.1414212.
  18. ^ Bruno Gonçalves Augusta; Hussam Zaher (2019). "Enamel dentition microstructure of Mariliasuchus amarali (Crocodyliformes, Notosuchia), from the Upper Cretaceous (Turonian–Santonian) of the Bauru Basin, Brazil". Cretaceous Research. 99: 255–268. doi:10.1016/j.cretres.2019.03.013.
  19. ^ Felipe C. Montefeltro (2019). "The osteoderms of baurusuchid crocodyliforms (Mesoeucrocodylia, Notosuchia)". Journal of Vertebrate Paleontology. in press: e1594242. doi:10.1080/02724634.2019.1594242.
  20. ^ Caio Fabricio Cezar Geroto; Reinaldo J. Bertini (2019). "New material of Pepesuchus (Crocodyliformes; Mesoeucrocodylia) from the Bauru Group: implications about its phylogeny and the age of the Adamantina Formation". Zoological Journal of the Linnean Society. 185 (2): 312–334. doi:10.1093/zoolinnean/zly037.
  21. ^ Jeremy E. Martin; Raphaël Sarr; Lionel Hautier (2019). "A dyrosaurid from the Paleocene of Senegal". Journal of Paleontology. 93 (2): 343–358. doi:10.1017/jpa.2018.77.
  22. ^ Rafael Gomes de Souza; Beatriz Marinho Hörmanseder; Rodrigo Giesta Figueiredo; Diogenes de Almeida Campos (2019). "Description of new dyrosaurid specimens from the Late Cretaceous–Early Paleogene of New Jersey, United States, and comments on Hyposaurus systematics". Historical Biology: An International Journal of Paleobiology. in press: 1–17. doi:10.1080/08912963.2019.1593403.
  23. ^ Ivan T. Kuzmin; Pavel P. Skutschas; Elizaveta A. Boitsova; Hans-Dieter Sues (2019). "Revision of the large crocodyliform Kansajsuchus (Neosuchia) from the Late Cretaceous of Central Asia". Zoological Journal of the Linnean Society. 185 (2): 335–387. doi:10.1093/zoolinnean/zly027.
  24. ^ Alejandro Serrano-Martínez; Fabien Knoll; Iván Narváez; Stephan Lautenschlager; Francisco Ortega (2019). "Inner skull cavities of the basal eusuchian Lohuecosuchus megadontos (Upper Cretaceous, Spain) and neurosensorial implications". Cretaceous Research. 93: 66–77. doi:10.1016/j.cretres.2018.08.016.
  25. ^ Iván Narváez; Christopher A. Brochu; Ane De Celis; Vlad Codrea; Fernando Escaso; Adán Pérez-García; Francisco Ortega (2019). "New diagnosis for Allodaposuchus precedens, the type species of the European Upper Cretaceous clade Allodaposuchidae". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlz029.
  26. ^ Chase Doran Brownstein (2019). "First record of a small juvenile giant crocodyliform and its ontogenetic and biogeographic implications". Bulletin of the Peabody Museum of Natural History. 60 (1): 81–90. doi:10.1274/014.060.0104 (inactive 2019-05-18).{{cite journal}}: CS1 maint: DOI inactive as of May 2019 (link)
  27. ^ Alejandro Serrano-Martínez; Fabien Knoll; Iván Narváez; Francisco Ortega (2019). "Brain and pneumatic cavities of the braincase of the basal alligatoroid Diplocynodon tormis (Eocene, Spain)". Journal of Vertebrate Paleontology. Online edition: e1572612. doi:10.1080/02724634.2019.1572612.
  28. ^ Andrés Solórzano; Ascanio D. Rincón; Giovanne M. Cidade; Mónica Núñez-Flores; Leonardo Sánchez (2019). "Lower Miocene alligatoroids (Crocodylia) from the Castillo Formation, northwest of Venezuela". Palaeobiodiversity and Palaeoenvironments. 99 (2): 241–259. doi:10.1007/s12549-018-0332-5.
  29. ^ Giovanne M. Cidade; Andrés Solórzano; Ascánio Daniel Rincón; Douglas Riff; Annie Schmaltz Hsiou (2019). "Redescription of the holotype of the Miocene crocodylian Mourasuchus arendsi (Alligatoroidea, Caimaninae) and perspectives on the taxonomy of the species". Historical Biology: An International Journal of Paleobiology. in press: 1–17. doi:10.1080/08912963.2018.1528246.
  30. ^ Giovanne M. Cidade; Jonas P. Souza-Filho; Annie Schmaltz Hsiou; Christopher A. Brochu; Douglas Riff (2019). "New specimens of Mourasuchus (Alligatorioidea, Caimaninae) from the Miocene of Brazil and Bolivia and their taxonomic and morphological implications". Alcheringa: An Australasian Journal of Palaeontology. 43 (2): 261–278. doi:10.1080/03115518.2019.1566495.
  31. ^ Rafael César Lima Pedroso de Andrade; Mariana Valéria Araújo Sena; Esaú Victor Araújo; Renan Alfredo Machado Bantim; Douglas Riff; Juliana Manso Sayão (2019). "Osteohistological study on both fossil and living Caimaninae (Crocodyliformes, Crocodylia) from South America and preliminary comments on growth physiology and ecology". Historical Biology: An International Journal of Paleobiology. in press: 1–10. doi:10.1080/08912963.2018.1493475.
  32. ^ Massimo Delfino; Jeremy E. Martin; France de Lapparent de Broin; Thierry Smith (2019). "Evidence for a pre-PETM dispersal of the earliest European crocodyloids". Historical Biology: An International Journal of Paleobiology. in press: 1–8. doi:10.1080/08912963.2017.1396323.
  33. ^ Christopher A. Brochu (2019). "Pliocene crocodiles from Kanapoi, Turkana Basin, Kenya". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.10.003. PMID 29132687.
  34. ^ Michaël P. J. Nicolaï; Nicholas J. Matzke (2019). "Trait‐based range expansion aided in the global radiation of Crocodylidae". Global Ecology and Biogeography. in press. doi:10.1111/geb.12929.
  35. ^ Masaya Iijima; Yoshitsugu Kobayashi (2019). "Mosaic nature in the skeleton of East Asian crocodylians fills the morphological gap between "Tomistominae" and Gavialinae". Cladistics. in press. doi:10.1111/cla.12372.
  36. ^ Jeremy E. Martin; Komsorn Lauprasert; Haiyan Tong; Varavudh Suteethorn; Eric Buffetaut (2019). "An Eocene tomistomine from peninsular Thailand". Annales de Paléontologie. in press. doi:10.1016/j.annpal.2019.03.002.
  37. ^ Jeremy E. Martin (2019). "The taxonomic content of the genus Gavialis from the Siwalik Hills of India and Pakistan". Papers in Palaeontology. in press. doi:10.1002/spp2.1247.
  38. ^ Loredana Macaluso; Jeremy E. Martin; Letizia Del Favero; Massimo Delfino (2019). "Revision of the crocodilians from the Oligocene of Monteviale, Italy, and the diversity of European eusuchians across the Eocene-Oligocene boundary". Journal of Vertebrate Paleontology. in press: e1601098. doi:10.1080/02724634.2019.1601098.
  39. ^ Daniel Zoboli; Luigi Sanciu; Gian Luigi Pillola; Massimo Delfino (2019). "An overview of the crocodylian fossil record from Sardinia (Italy)". Annales de Paléontologie. in press. doi:10.1016/j.annpal.2019.05.001.
  40. ^ Giovanne M. Cidade; Daniel Fortier; Annie Schmaltz Hsiou (2019). "The crocodylomorph fauna of the Cenozoic of South America and its evolutionary history: A review". Journal of South American Earth Sciences. 90: 392–411. Bibcode:2019JSAES..90..392C. doi:10.1016/j.jsames.2018.12.026.
  41. ^ Domenic C. D’Amore; Megan Harmon; Stephanie K. Drumheller; Jason J. Testin (2019). "Quantitative heterodonty in Crocodylia: assessing size and shape across modern and extinct taxa". PeerJ. 7: e6485. doi:10.7717/peerj.6485. PMC 6397764. PMID 30842900.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  42. ^ François Clarac; Florent Goussard; Vivian de Buffrénil; Vittorio Sansalone (2019). "The function(s) of bone ornamentation in the crocodylomorph osteoderms: a biomechanical model based on a finite element analysis". Paleobiology. 45 (1): 182–200. doi:10.1017/pab.2018.48.
  43. ^ Haley D. O’Brien; Leigha M. Lynch; Kent A. Vliet; John Brueggen; Gregory M. Erickson; Paul M. Gignac (2019). "Crocodylian head width allometry and phylogenetic prediction of body size in extinct crocodyliforms". Integrative Organismal Biology. 1 (1): obz006. doi:10.1093/iob/obz006.
  44. ^ Antonio Ballell; Benjamin C. Moon; Laura B. Porro; Michael J. Benton; Emily J. Rayfield (2019). "Convergence and functional evolution of longirostry in crocodylomorphs". Palaeontology. in press. doi:10.1111/pala.12432.
  45. ^ Jonas P. Souza-Filho; Rafael G. Souza; Annie Schmaltz Hsiou; Douglas Riff; Edson Guilherme; Francisco Ricardo Negri; Giovanne M. Cidade (2019). "A new caimanine (Crocodylia, Alligatoroidea) species from the Solimões Formation of Brazil and the phylogeny of Caimaninae". Journal of Vertebrate Paleontology. Online edition: 1–24. doi:10.1080/02724634.2018.1528450.
  46. ^ Márton Venczel; Vlad A. Codrea (2019). "A new Theriosuchus-like crocodyliform from the Maastrichtian of Romania". Cretaceous Research. 100: 24–38. doi:10.1016/j.cretres.2019.03.018.
  47. ^ Rodolfo A. Coria; Francisco Ortega; Andrea B. Arcucci; Philip J. Currie (2019). "A new and complete peirosaurid (Crocodyliformes, Notosuchia) from Sierra Barrosa (Santonian, Upper Cretaceous) of the Neuquén Basin, Argentina". Cretaceous Research. 95: 89–105. doi:10.1016/j.cretres.2018.11.008.
  48. ^ Foffa, D.; Johnson, M.M.; Young, M.T.; Steel, L.; Brusatte, S.L. (2019). "Revision of the Late Jurassic deep-water teleosauroid crocodylomorph Teleosaurus megarhinus Hulke, 1871 and evidence of pelagic adaptations in Teleosauroidea". PeerJ. 7: e6646. doi:10.7717/peerj.6646. PMC 6450380. PMID 30972249.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  49. ^ Ricardo N. Martínez; Oscar A. Alcober; Diego Pol (2019). "A new protosuchid crocodyliform (Pseudosuchia, Crocodylomorpha) from the Norian Los Colorados Formation, northwestern Argentina". Journal of Vertebrate Paleontology. 38 (4): (1)–(12). doi:10.1080/02724634.2018.1491047.
  50. ^ Sachs, S.; Young, M.T.; Abel, P.; Mallison, H. (2019). "A new species of the metriorhynchid crocodylomorph Cricosaurus from the Upper Jurassic of southern Germany" (PDF). Acta Palaeontologica Polonica. 64 (2): 343–356. doi:10.4202/app.00541.2018.
  51. ^ Jeremy E. Martin; Suravech Suteethorn; Komsorn Lauprasert; Haiyan Tong; Eric Buffetaut; Romain Liard; Celine Salaviale; Uthumporn Deesri; Varavudh Suteethorn; Julien Claude (2019). "A new freshwater teleosaurid from the Jurassic of northeastern Thailand". Journal of Vertebrate Paleontology. Online edition: e1549059. doi:10.1080/02724634.2018.1549059.
  52. ^ Chun Li; Xiao-chun Wu; Scott Rufolo (2019). "A new crocodyloid (Eusuchia: Crocodylia) from the Upper Cretaceous of China". Cretaceous Research. 94: 25–39. doi:10.1016/j.cretres.2018.09.015.
  53. ^ Christopher R. Noto; Stephanie K. Drumheller; Thomas L. Adams; Alan H. Turner (2019). "An enigmatic small neosuchian crocodyliform from the Woodbine Formation of Texas". The Anatomical Record. in press. doi:10.1002/ar.24174. PMID 31173481.
  54. ^ Michael S. Y. Lee; Matthew G. Baron; David B. Norman; Paul M. Barrett (2019). "Dynamic biogeographic models and dinosaur origins". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. in press: 1–8. doi:10.1017/S1755691018000920.
  55. ^ Júlio C. A. Marsola; Gabriel S. Ferreira; Max C. Langer; David J. Button; Richard J. Butler (2019). "Increases in sampling support the southern Gondwanan hypothesis for the origin of dinosaurs". Palaeontology. 62 (3): 473–482. doi:10.1111/pala.12411.
  56. ^ V. Fondevilla; V. Riera; B. Vila; A. G. Sellés; J. Dinarès-Turell; E. Vicens; R. Gaete; O. Oms; À. Galobart (2019). "Chronostratigraphic synthesis of the latest Cretaceous dinosaur turnover in South-Western Europe". Earth-Science Reviews. 191: 168–189. doi:10.1016/j.earscirev.2019.01.007.
  57. ^ Alfio Alessandro Chiarenza; Philip D. Mannion; Daniel J. Lunt; Alex Farnsworth; Lewis A. Jones; Sarah-Jane Kelland; Peter A. Allison (2019). "Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction". Nature Communications. 10: Article number 1091. doi:10.1038/s41467-019-08997-2. PMC 6403247. PMID 30842410.
  58. ^ Mary Higby Schweitzer; Elena R. Schroeter; Timothy P. Cleland; Wenxia Zheng (2019). "Paleoproteomics of Mesozoic dinosaurs and other Mesozoic fossils". Proteomics. in press. doi:10.1002/pmic.201800251. PMID 31172628.
  59. ^ Evan T. Saitta; Renxing Liang; Maggie C.Y. Lau; Caleb M. Brown; Nicholas R Longrich; Thomas G. Kaye; Ben J. Novak; Steven L. Salzberg; Mark A. Norell; Geoffrey D. Abbott; Marc R. Dickinson; Jakob Vinther; Ian D. Bull; Richard A. Brooker; Peter Martin; Paul Donohoe; Timothy D.J. Knowles; Kirsty E.H. Penkman; Tullis Onstott (2019). "Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities". eLife. 8: e46205. doi:10.7554/eLife.46205.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  60. ^ Graham M. Hughes; John A. Finarelli (2019). "Olfactory receptor repertoire size in dinosaurs". Proceedings of the Royal Society B: Biological Sciences. 286 (1904): Article ID 20190909. doi:10.1098/rspb.2019.0909. PMID 31185870.
  61. ^ Koen Stein; Edina Prondvai; Timothy Huang; Jean-Marc Baele; P. Martin Sander; Robert Reisz (2019). "Structure and evolutionary implications of the earliest (Sinemurian, Early Jurassic) dinosaur eggs and eggshells". Scientific Reports. 9: Article number 4424. doi:10.1038/s41598-019-40604-8. PMC 6418122. PMID 30872623.
  62. ^ Shu-Kang Zhang; Jun-Fang Xie; Xing-Sheng Jin; Tian-Ming Du; Mei-Yan Huang (2019). "New type of dinosaur eggs from Yiwu, Zhejiang Province, China and a revision of Dongyangoolithus nanmaensis". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.1000-3118.190107.
  63. ^ Qing He; Shukang Zhang; Lida Xing; Qin Jiang; Yanfei An; Sen Yang (2019). "A new oogenus of Dendroolithidae from the Late Cretaceous in the Quyuangang area, Henan Province, China". Acta Geologica Sinica (English Edition). 93 (2): 477–478. doi:10.1111/1755-6724.13779.
  64. ^ Noe-Heon Kim; Seung Choi; Seongyeong Kim; Yuong-Nam Lee (2019). "A new faveoloolithid oogenus from the Wido Volcanics (Upper Cretaceous), South Korea and a new insight into the oofamily Faveoloolithidae". Cretaceous Research. 100: 145–163. doi:10.1016/j.cretres.2019.04.001.
  65. ^ D. Jade Simon; David J. Varricchio; Xingsheng Jin; Steven F. Robison (2019). "Microstructural overlap of Macroelongatoolithus eggs from Asia and North America expands the occurrence of colossal oviraptorosaurs". Journal of Vertebrate Paleontology. in press: e1553046. doi:10.1080/02724634.2018.1553046.
  66. ^ Scott A. Lee (2019). "Trends in embryonic and ontogenetic growth metabolisms in nonavian dinosaurs and extant birds, mammals, and crocodylians with implications for dinosaur egg incubation". Physical Review E. 99 (5): Article 052405. doi:10.1103/PhysRevE.99.052405.
  67. ^ Rodrigo Temp Müller; Sérgio Dias-da-Silva (2019). "Taxon sample and character coding deeply impact unstable branches in phylogenetic trees of dinosaurs". Historical Biology: An International Journal of Paleobiology. in press: 1–4. doi:10.1080/08912963.2017.1418341.
  68. ^ Christopher T. Griffin; Sterling J. Nesbitt (2019). "Does the maximum body size of theropods increase across the Triassic‐Jurassic boundary? Integrating ontogeny, phylogeny, and body size". The Anatomical Record. in press. doi:10.1002/ar.24130. PMID 30968581.
  69. ^ Adun Samathi; Phornphen Chanthasit; Paul Martin Sander (2019). "A review of theropod dinosaurs from the Late Jurassic to mid-Cretaceous of Southeast Asia". Annales de Paléontologie. in press. doi:10.1016/j.annpal.2019.03.003.
  70. ^ Christopher T. Griffin (2019). "Large neotheropods from the Upper Triassic of North America and the early evolution of large theropod body sizes". Journal of Paleontology. in press: 1–21. doi:10.1017/jpa.2019.13.
  71. ^ Philip J. Senter; Corwin Sullivan (2019). "Forelimbs of the theropod dinosaur Dilophosaurus wetherilli: Range of motion, influence of paleopathology and soft tissues, and description of a distal carpal bone". Palaeontologia Electronica. 22 (2): Article number 22.2.30. doi:10.26879/900.
  72. ^ Slimane Zitouni; Christian Laurent; Gareth Dyke; Nour-Eddine Jalil (2019). "An abelisaurid (Dinosauria: Theropoda) ilium from the Upper Cretaceous (Cenomanian) of the Kem Kem beds, Morocco". PLoS ONE. 14 (4): e0214055. doi:10.1371/journal.pone.0214055. PMC 6445567. PMID 30939139.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  73. ^ Eric Buffetaut; Suravech Suteethorn; Varavudh Suteethorn; Haiyan Tong; Kamonrak Wongko (2019). "Spinosaurid teeth from the Lower Cretaceous of Ko Kut, eastern Thailand". Annales de Paléontologie. in press. doi:10.1016/j.annpal.2019.03.006.
  74. ^ Thomas M.S. Arden; Catherine G. Klein; Samir Zouhri; Nicholas R. Longrich (2019). "Aquatic adaptation in the skull of carnivorous dinosaurs (Theropoda: Spinosauridae) and the evolution of aquatic habits in spinosaurids". Cretaceous Research. 93: 275–284. doi:10.1016/j.cretres.2018.06.013.
  75. ^ David William Elliott Hone; Thomas Richard Holtz Jnr (2019). "Comment on: Aquatic adaptation in the skull of carnivorous dinosaurs (Theropoda: Spinosauridae) and the evolution of aquatic habits in spinosaurids. 93: 275-284". Cretaceous Research. in press. doi:10.1016/j.cretres.2019.05.010.
  76. ^ Rebecca J. Lakin; Nicholas R. Longrich (2019). "Juvenile spinosaurs (Theropoda: Spinosauridae) from the middle Cretaceous of Morocco and implications for spinosaur ecology". Cretaceous Research. 93: 129–142. doi:10.1016/j.cretres.2018.09.012.
  77. ^ Tom Brougham; Elizabeth T. Smith; Phil R. Bell (2019). "New theropod (Tetanurae: Avetheropoda) material from the 'mid'-Cretaceous Griman Greek Formation at Lightning Ridge, New South Wales, Australia". Royal Society Open Science. 6 (1): Article ID 180826. Bibcode:2019RSOS....680826B. doi:10.1098/rsos.180826. PMC 6366187. PMID 30800346.
  78. ^ Elisabete Malafaia; Pedro Mocho; Fernando Escaso; Pedro Dantas; Francisco Ortega (2019). "Carcharodontosaurian remains (Dinosauria, Theropoda) from the Upper Jurassic of Portugal". Journal of Paleontology. 93 (1): 157–172. doi:10.1017/jpa.2018.47.
  79. ^ Elena Cuesta; Francisco Ortega; José L. Sanz (2019). "Axial osteology of Concavenator corcovatus (Theropoda; Carcharodontosauria) from the Lower Cretaceous of Spain". Cretaceous Research. 95: 106–120. doi:10.1016/j.cretres.2018.10.026.
  80. ^ Alexis M Aranciaga Rolando; Fernando E. Novas; Federico L. Agnolín (2019). "A reanalysis of Murusraptor barrosaensis Coria & Currie (2016) affords new evidence about the phylogenetical relationships of Megaraptora". Cretaceous Research. 99: 104–127. doi:10.1016/j.cretres.2019.02.021.
  81. ^ Martin Kundrát; Xing Xu; Martina Hančová; Andrej Gajdoš; Yu Guo; Defeng Chen (2019). "Evolutionary disparity in the endoneurocranial configuration between small and gigantic tyrannosauroids". Historical Biology: An International Journal of Paleobiology. in press: 1–15. doi:10.1080/08912963.2018.1518442.
  82. ^ Eric Snively; Haley O’Brien; Donald M. Henderson; Heinrich Mallison; Lara A. Surring; Michael E. Burns; Thomas R. Holtz Jr; Anthony P. Russell; Lawrence M. Witmer; Philip J. Currie; Scott A. Hartman; John R. Cotton (2019). "Lower rotational inertia and larger leg muscles indicate more rapid turns in tyrannosaurids than in other large theropods". PeerJ. 7: e6432. doi:10.7717/peerj.6432. PMC 6387760. PMID 30809441.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  83. ^ Tomoya Hanai; Takanobu Tsuihiji (2019). "Description of tooth ontogeny and replacement patterns in a juvenile Tarbosaurus bataar (Dinosauria: Theropoda) using CT‐scan data". The Anatomical Record. 302 (7): 1210–1225. doi:10.1002/ar.24014. PMID 30378771.
  84. ^ Krzysztof Owocki; Barbara Kremer; Martin Cotte; Hervé Bocherens (2019). "Diet preferences and climate inferred from oxygen and carbon isotopes of tooth enamel of Tarbosaurus bataar (Nemegt Formation, Upper Cretaceous, Mongolia)". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.05.012.
  85. ^ Ingmar Werneburg; Borja Esteve-Altava; Joana Bruno; Marta Torres Ladeira; Rui Diogo (2019). "Unique skull network complexity of Tyrannosaurus rex among land vertebrates". Scientific Reports. 9 (1): Article number 1520. Bibcode:2019NatSR...9.1520W. doi:10.1038/s41598-018-37976-8. PMC 6365547. PMID 30728455.
  86. ^ Joseph E. Peterson; Karsen N. Daus (2019). "Feeding traces attributable to juvenile Tyrannosaurus rex offer insight into ontogenetic dietary trends". PeerJ. 7: e6573. doi:10.7717/peerj.6573. PMC 6404657. PMID 30863686.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  87. ^ W. Scott Persons IV; Philip J. Currie; Gregory M. Erickson (2019). "An older and exceptionally large adult specimen of Tyrannosaurus rex". The Anatomical Record. in press. doi:10.1002/ar.24118. PMID 30897281.
  88. ^ Ian Macdonald; Philip J. Currie (2019). "Description of a partial Dromiceiomimus (Dinosauria: Theropoda) skeleton with comments on the validity of the genus". Canadian Journal of Earth Sciences. 56 (2): 129–157. Bibcode:2019CaJES..56..129M. doi:10.1139/cjes-2018-0162.
  89. ^ Alexander Averianov; Hans-Dieter Sues (2019). "Morphometric analysis of the teeth and taxonomy of the enigmatic theropod Richardoestesia from the Upper Cretaceous of Uzbekistan". Journal of Vertebrate Paleontology. in press: e1614941. doi:10.1080/02724634.2019.1614941.
  90. ^ Zi-Chuan Qin; Qi Zhao; Xing Xu (2019). "Metatarsal II osteohistology of Xixianykus zhangi (Theropoda: Alvarezsauria) and its implications for the development of the arctometatarsalian pes". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.1000-3118.190425.
  91. ^ Chun-Chi Liao; Xing Xu (2019). "Cranial osteology of Beipiaosaurus inexpectus (Theropoda: Therizinosauria)". Vertebrata PalAsiatica. 57 (2): 117–132. doi:10.19615/j.cnki.1000-3118.190115.
  92. ^ Yaser Saffar Talori; Jing-Shan Zhao; Yun-Fei Liu; Wen-Xiu Lu; Zhi-Heng Li; Jingmai Kathleen O'Connor (2019). "Identification of avian flapping motion from non-volant winged dinosaurs based on modal effective mass analysis". PLoS Computational Biology. 15 (5): e1006846. doi:10.1371/journal.pcbi.1006846. PMC 6497222. PMID 31048911.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  93. ^ I. Yu. Bolotskii; Yu. L. Bolotskii; A. P. Sorokin (2019). "The first find of an ungual phalanx of a dromaeosaurid dinosaur (Dinosauria: Dromaeosauridae) from the Blagoveshchensk area of Late Cretaceous dinosaurs (Amur Region, Russia)". Doklady Earth Sciences. 484 (1): 18–20. Bibcode:2019DokES.484...18B. doi:10.1134/S1028334X19010100.
  94. ^ Caizhi Shen; Junchang Lü; Chunling Gao; Masato Hoshino; Kentaro Uesugi; Martin Kundrát (2019). "Forearm bone histology of the small theropod Daliansaurus liaoningensis (Paraves: Troodontidae) from the Yixian Formation, Liaoning, China". Historical Biology: An International Journal of Paleobiology. 31 (2): 253–261. doi:10.1080/08912963.2017.1360296.
  95. ^ Yanhong Pan; Wenxia Zheng; Roger H. Sawyer; Michael W. Pennington; Xiaoting Zheng; Xiaoli Wang; Min Wang; Liang Hu; Jingmai O’Connor; Tao Zhao; Zhiheng Li; Elena R. Schroeter; Feixiang Wu; Xing Xu; Zhonghe Zhou; Mary H. Schweitzer (2019). "The molecular evolution of feathers with direct evidence from fossils". Proceedings of the National Academy of Sciences of the United States of America. 116 (8): 3018–3023. doi:10.1073/pnas.1815703116. PMC 6386655. PMID 30692253.
  96. ^ Chloe M. E. Young; Christophe Hendrickx; Thomas J. Challands; Davide Foffa; Dugald A. Ross; Ian B. Butler; Stephen L. Brusatte (2019). "New theropod dinosaur teeth from the Middle Jurassic of the Isle of Skye, Scotland". Scottish Journal of Geology. 55 (1): 7–19. doi:10.1144/sjg2018-020.
  97. ^ Rodrigo T. Müller; Maurício S. Garcia (2019). "Rise of an empire: analysing the high diversity of the earliest sauropodomorph dinosaurs through distinct hypotheses". Historical Biology: An International Journal of Paleobiology. in press: 1–6. doi:10.1080/08912963.2019.1587754.
  98. ^ Max Cardoso Langer; Blair Wayne McPhee; Júlio César de Almeida Marsola; Lúcio Roberto-da-Silva; Sérgio Furtado Cabreira (2019). "Anatomy of the dinosaur Pampadromaeus barberenai (Saurischia—Sauropodomorpha) from the Late Triassic Santa Maria Formation of southern Brazil". PLoS ONE. 14 (2): e0212543. Bibcode:2019PLoSO..1412543L. doi:10.1371/journal.pone.0212543. PMC 6382151. PMID 30785940.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  99. ^ Rodrigo Temp Müller; Max Cardoso Langer; Cristian Pereira Pacheco; Sérgio Dias-da-Silva (2019). "The role of ontogeny on character polarization in early dinosaurs: a new specimen from the Late Triassic of southern Brazil and its implications". Historical Biology: An International Journal of Paleobiology. 31 (6): 794–805. doi:10.1080/08912963.2017.1395421.
  100. ^ Mario Bronzati; Max C. Langer; Oliver W. M. Rauhut (2019). "Braincase anatomy of the early sauropodomorph Saturnalia tupiniquim (Late Triassic, Brazil)". Journal of Vertebrate Paleontology. in press: e1559173. doi:10.1080/02724634.2018.1559173.
  101. ^ Blair W. McPhee; Jonathas S. Bittencourt; Max C. Langer; Cecilia Apaldetti; Átila A. S. Da Rosa (2019). "Reassessment of Unaysaurus tolentinoi (Dinosauria: Sauropodomorpha) from the Late Triassic (early Norian) of Brazil, with a consideration of the evidence for monophyly within non-sauropodan sauropodomorphs". Journal of Systematic Palaeontology. in press: 1–35. doi:10.1080/14772019.2019.1602856.
  102. ^ James M. Neenan; Kimberley E. J. Chapelle; Vincent Fernandez; Jonah N. Choiniere (2019). "Ontogeny of the Massospondylus labyrinth: implications for locomotory shifts in a basal sauropodomorph dinosaur". Palaeontology. 62 (2): 255–265. doi:10.1111/pala.12400.
  103. ^ Paul M. Barrett; Kimberley E.J. Chapelle; Casey K. Staunton; Jennifer Botha; Jonah N. Choiniere (2019). "Postcranial osteology of the neotype specimen of Massospondylus carinatus Owen, 1854 (Dinosauria: Sauropodomorpha) from the upper Elliot formation of South Africa". Palaeontologia Africana. 53: 114–178. hdl:10539/26829.
  104. ^ Qian‐Nan Zhang; Tao Wang; Zhi‐Wen Yang; Hai‐Lu You (2019). "Redescription of the cranium of Jingshanosaurus xinwaensis (Dinosauria: Sauropodomorpha) from the Lower Jurassic Lufeng Formation of Yunnan Province, China". The Anatomical Record. in press. doi:10.1002/ar.24113. PMID 30860663.
  105. ^ Alejandro Otero; Andrew R. Cuff; Vivian Allen; Lauren Sumner-Rooney; Diego Pol; John R. Hutchinson (2019). "Ontogenetic changes in the body plan of the sauropodomorph dinosaur Mussaurus patagonicus reveal shifts of locomotor stance during growth". Scientific Reports. 9: Article number 7614. doi:10.1038/s41598-019-44037-1. PMC 6527699. PMID 31110190.
  106. ^ Ada J. Klinkhamer; Heinrich Mallison; Stephen F. Poropat; Trish Sloan; Stephen Wroe (2019). "Comparative three‐dimensional moment arm analysis of the sauropod forelimb: Implications for the transition to a wide‐gauge stance in titanosaurs". The Anatomical Record. 302 (5): 794–817. doi:10.1002/ar.23977. PMID 30315633.
  107. ^ Andréas Jannel; Jay P. Nair; Olga Panagiotopoulou; Anthony Romilio; Steven W. Salisbury (2019). ""Keep your feet on the ground": Simulated range of motion and hind foot posture of the Middle Jurassic sauropod Rhoetosaurus brownei and its implications for sauropod biology". Journal of Morphology. 280 (6): 849–878. doi:10.1002/jmor.20989. PMID 30964205.
  108. ^ Michael W. Maisch; Andreas T. Matzke (2019). "First record of a eusauropod (Dinosauria: Sauropoda) from the Upper Jurassic Qigu-Formation (southern Junggar Basin, China), and a reconsideration of Late Jurassic sauropod diversity in Xinjiang". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 291 (1): 109–117. doi:10.1127/njgpa/2019/0792.
  109. ^ Chao Tan; Hui Dai; Jian-Jun He; Feng Zhang; Xu-Feng Hu; Hai-Dong Yu; Ning Li; Guang-Biao Wei; Guang-Zhao Peng; Yong Ye; Qian-Nan Zhang; Xin-Xin Ren; Hai-Lu You (2019). "Discovery of Omeisaurus (Dinosauria: Sauropoda) in the Middle Jurassic Shaximiao Formation of Yunyang, Chongqing, China". Vertebrata PalAsiatica. 57 (2): 105–116. doi:10.19615/j.cnki.1000-3118.181115.
  110. ^ Xiao-Qin Zhang; Da-Qing Li; Yan Xie; Hai-Lu You (2019). "Redescription of the cervical vertebrae of the mamenchisaurid sauropod Xinjiangtitan shanshanesis Wu et al. 2013". Historical Biology: An International Journal of Paleobiology. in press: 1–20. doi:10.1080/08912963.2018.1539970.
  111. ^ Alexander Averianov; Sergei Krasnolutskii; Stepan Ivantsov; Pavel Skutschas; Rico Schellhorn; Julia Schultz; Thomas Martin (2019). "Sauropod remains from the Middle Jurassic Itat Formation of West Siberia, Russia". PalZ. in press. doi:10.1007/s12542-018-00445-8.
  112. ^ Philip D. Mannion (2019). "A turiasaurian sauropod dinosaur from the Early Cretaceous Wealden Supergroup of the United Kingdom". PeerJ. 7: e6348. doi:10.7717/peerj.6348. PMC 6348093. PMID 30697494.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  113. ^ Femke M. Holwerda; Mark Evans; Jeff J. Liston (2019). "Additional sauropod dinosaur material from the Callovian Oxford Clay Formation, Peterborough, UK: evidence for higher sauropod diversity". PeerJ. 7: e6404. doi:10.7717/peerj.6404. PMC 6378091. PMID 30783572.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  114. ^ a b Philip D. Mannion; Paul Upchurch; Daniela Schwarz; Oliver Wings (2019). "Taxonomic affinities of the putative titanosaurs from the Late Jurassic Tendaguru Formation of Tanzania: phylogenetic and biogeographic implications for eusauropod dinosaur evolution". Zoological Journal of the Linnean Society. 185 (3): 784–909. doi:10.1093/zoolinnean/zly068.
  115. ^ Kate A. Andrzejewski; Michael J. Polcyn; Dale A. Winkler; Elizabeth Gomani Chindebvu; Louis L. Jacobs (2019). "The braincase of Malawisaurus dixeyi (Sauropoda: Titanosauria): A 3D reconstruction of the brain endocast and inner ear". PLoS ONE. 14 (2): e0211423. Bibcode:2019PLoSO..1411423A. doi:10.1371/journal.pone.0211423. PMC 6373922. PMID 30759166.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  116. ^ Julian C. G. Junior Silva; Thiago S. Marinho; Agustín G. Martinelli; Max C. Langer (2019). "Osteology and systematics of Uberabatitan ribeiroi (Dinosauria; Sauropoda): a Late Cretaceous titanosaur from Minas Gerais, Brazil". Zootaxa. 4577 (3): 401–438. doi:10.11646/zootaxa.4577.3.1.
  117. ^ Lucio M. Ibiricu; Rubén D. Martínez; Gabriel A. Casal (2019). "The pelvic and hindlimb myology of the basal titanosaur Epachthosaurus sciuttoi (Sauropoda: Titanosauria)". Historical Biology: An International Journal of Paleobiology. in press: 1–16. doi:10.1080/08912963.2018.1535598.
  118. ^ P. Mocho; A. Pérez-García; M. Martín Jiménez; F. Ortega (2019). "New remains from the Spanish Cenomanian shed light on the Gondwanan origin of European Early Cretaceous titanosaurs". Cretaceous Research. 95: 164–190. doi:10.1016/j.cretres.2018.09.016.
  119. ^ Alexander O. Averianov; Alexey V. Lopatin (2019). "Sauropod diversity in the Upper Cretaceous Nemegt Formation of Mongolia—a possible new specimen of Nemegtosaurus". Acta Palaeontologica Polonica. 64 (2): 313–321. doi:10.4202/app.00596.2019.
  120. ^ Ali Nabavizadeh (2019). "New reconstruction of cranial musculature in ornithischian dinosaurs: implications for feeding mechanisms and buccal anatomy". The Anatomical Record. in press. doi:10.1002/ar.23988. PMID 30332723.
  121. ^ W. Scott Persons IV; Philip J. Currie (2019). "The anatomical and functional evolution of the femoral fourth trochanter in ornithischian dinosaurs". The Anatomical Record. in press. doi:10.1002/ar.24094. PMID 30776198.
  122. ^ Leire Perales-Gogenola; Javier Elorza; José Ignacio Canudo; Xabier Pereda-Suberbiola (2019). "Taphonomy and palaeohistology of ornithischian dinosaur remains from the Lower Cretaceous bonebed of La Cantalera (Teruel, Spain)". Cretaceous Research. 99: 316–334. doi:10.1016/j.cretres.2019.01.024.
  123. ^ Thomas J. Raven; Paul M. Barrett; Xing Xu; Susannah C.R. Maidment (2019). "A reassessment of the purported ankylosaurian dinosaur Bienosaurus lufengensis from the Lower Lufeng Formation of Yunnan, China". Acta Palaeontologica Polonica. 64 (2): 335–342. doi:10.4202/app.00577.2018.
  124. ^ Marco Romano (2019). "Disparity vs. diversity in Stegosauria (Dinosauria, Ornithischia): cranial and post-cranial sub-dataset provide different signals". Historical Biology: An International Journal of Paleobiology. in press: 1–9. doi:10.1080/08912963.2017.1397655.
  125. ^ Bao-Qiao Hao; Yong Ye; Susannah C R. Maidment; Sergio Bertazzo; Guang-Zhao Peng; Hai-Lu You (2019). "Femoral osteopathy in Gigantspinosaurus sichuanensis (Dinosauria: Stegosauria) from the Late Jurassic of Sichuan Basin, Southwestern China". Historical Biology: An International Journal of Paleobiology. in press: 1–8. doi:10.1080/08912963.2018.1561673.
  126. ^ Peter M. Galton (2019). "Earliest record of an ankylosaurian dinosaur (Ornithischia: Thyreophora): Dermal armor from Lower Kota Formation (Lower Jurassic) of India". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 291 (2): 205–219. doi:10.1127/njgpa/2019/0800.
  127. ^ Attila Ősi; Gábor Botfalvai; Gáspár Albert; Zsófia Hajdu (2019). "The dirty dozen: taxonomical and taphonomical overview of a unique ankylosaurian (Dinosauria: Ornithischia) assemblage from the Santonian Iharkút locality, Hungary". Palaeobiodiversity and Palaeoenvironments. 99 (2): 195–240. doi:10.1007/s12549-018-0362-z.
  128. ^ Victoria M. Arbour; Lindsay E. Zanno (2019). "Tail weaponry in ankylosaurs and glyptodonts: an example of a rare but strongly convergent phenotype". The Anatomical Record. in press. doi:10.1002/ar.24093. PMID 30835954.
  129. ^ V. R. Alifanov; S. V. Saveliev (2019). "The brain morphology and neurobiology in armored dinosaur Bissekipelta archibaldi (Ankylosauridae) from the Late Cretaceous of Uzbekistan". Paleontological Journal. 53 (3).
  130. ^ Aude Cincotta; Ekaterina B. Pestchevitskaya; Sofia M. Sinitsa; Valentina S. Markevich; Vinciane Debaille; Svetlana A. Reshetova; Irina M. Mashchuk; Andrei O. Frolov; Axel Gerdes; Johan Yans; Pascal Godefroit (2019). "The rise of feathered dinosaurs: Kulindadromeus zabaikalicus, the oldest dinosaur with 'feather-like' structures". PeerJ. 7: e6239. doi:10.7717/peerj.6239. PMC 6361000. PMID 30723614.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  131. ^ John P. Wilson; David J. Varricchio (2019). "Photogrammetry of the Oryctodromeus cubicularis type locality burrow and the utility of preexisting, standard field photographs for three dimensional digital reconstruction". Historical Biology: An International Journal of Paleobiology. in press: 1–8. doi:10.1080/08912963.2018.1563783.
  132. ^ a b Matthew C. Herne; Jay P. Nair; Alistair R. Evans; Alan M. Tait (2019). "New small-bodied ornithopods (Dinosauria, Neornithischia) from the Early Cretaceous Wonthaggi Formation (Strzelecki Group) of the Australian-Antarctic rift system, with revision of Qantassaurus intrepidus Rich and Vickers-Rich, 1999". Journal of Paleontology. 93 (3): 543–584. doi:10.1017/jpa.2018.95.
  133. ^ Sebastián Rozadilla; Federico Lisandro Agnolín; Fernando Emilio Novas (2019). "Osteology of the Patagonian ornithopod Talenkauen santacrucensis (Dinosauria, Ornithischia)". Journal of Systematic Palaeontology. in press: 1–47. doi:10.1080/14772019.2019.1582562.
  134. ^ T. C. Hunt; J. E. Peterson; J. A. Frederickson; J. E. Cohen; J. L. Berry (2019). "First documented pathologies in Tenontosaurus tilletti with comments on infection in non-avian dinosaurs". Scientific Reports. 9: Article number 8705. doi:10.1038/s41598-019-45101-6.
  135. ^ Thomas L. Stubbs; Michael J. Benton; Armin Elsler; Albert Prieto-Márquez (2019). "Morphological innovation and the evolution of hadrosaurid dinosaurs". Paleobiology. 45 (2): 347–362. doi:10.1017/pab.2019.9.
  136. ^ Victoria F. Crystal; Erica S.J. Evans; Henry Fricke; Ian M. Miller; Joseph J.W. Sertich (2019). "Late Cretaceous fluvial hydrology and dinosaur behavior in southern Utah, USA: Insights from stable isotopes of biogenic carbonate". Palaeogeography, Palaeoclimatology, Palaeoecology. 516: 152–165. Bibcode:2019PPP...516..152C. doi:10.1016/j.palaeo.2018.11.022.
  137. ^ Yu‐Guang Zhang; Ke‐Bai Wang; Shu‐Qing Chen; Di Liu; Hai Xing (2019). "Osteological re‐assessment and taxonomic revision of "Tanius laiyangensis" (Ornithischia: Hadrosauroidea) from the Upper Cretaceous of Shandong, China". The Anatomical Record. in press. doi:10.1002/ar.24097. PMID 30773831.
  138. ^ Holly N. Woodward (2019). "Maiasaura (Dinosauria: Hadrosauridae) tibia osteohistology reveals non-annual cortical vascular rings in young of the year". Frontiers in Earth Science. 7: Article 50. Bibcode:2019FrEaS...7...50W. doi:10.3389/feart.2019.00050.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  139. ^ Eamon T. Drysdale; François Therrien; Darla K. Zelenitsky; David B. Weishampel; David C. Evans (2019). "Description of juvenile specimens of Prosaurolophus maximus (Hadrosauridae: Saurolophinae) from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada, reveals ontogenetic changes in crest morphology". Journal of Vertebrate Paleontology. in press: e1547310. doi:10.1080/02724634.2018.1547310.
  140. ^ Paul V. Ullmann; Suraj H. Pandya; Ron Nellermoe (2019). "Patterns of soft tissue and cellular preservation in relation to fossil bone tissue structure and overburden depth at the Standing Rock Hadrosaur Site, Maastrichtian Hell Creek Formation, South Dakota, USA". Cretaceous Research. 99: 1–13. doi:10.1016/j.cretres.2019.02.012.
  141. ^ Andrew A. Farke; Eunice Yip (2019). "A juvenile cf. Edmontosaurus annectens (Ornithischia, Hadrosauridae) femur documents a previously unreported intermediate growth stage for this taxon". Vertebrate Anatomy Morphology Palaeontology. 7: 59–67. doi:10.18435/vamp29347 (inactive 2019-05-18).{{cite journal}}: CS1 maint: DOI inactive as of May 2019 (link)
  142. ^ Ryuji Takasaki; Anthony R. Fiorillo; Yoshitsugu Kobayashi; Ronald S. Tykoski; Paul J. McCarthy (2019). "The first definite lambeosaurine bone from the Liscomb Bonebed of the Upper Cretaceous Prince Creek Formation, Alaska, United States". Scientific Reports. 9: Article number 5384. doi:10.1038/s41598-019-41325-8. PMC 6440964. PMID 30926823.
  143. ^ Qi Zhao; Michael J. Benton; Shoji Hayashi; Xing Xu (2019). "Ontogenetic stages of ceratopsian dinosaur Psittacosaurus in bone histology". Acta Palaeontologica Polonica. 64 (2): 323–334. doi:10.4202/app.00559.2018.
  144. ^ Qian-Nan Zhang; James L. King; Da-Qing Li; Ye-Mao Hou; Hai-Lu You (2019). "Endocranial morphology of Auroraceratops sp. (Dinosauria: Ceratopsia) from the Early Cretaceous of Gansu Province, China". Historical Biology: An International Journal of Paleobiology. in press: 1–6. doi:10.1080/08912963.2019.1588893.
  145. ^ Łukasz Czepiński (2019). "Ontogeny and variation of a protoceratopsid dinosaur Bagaceratops rozhdestvenskyi from the Late Cretaceous of the Gobi Desert". Historical Biology: An International Journal of Paleobiology. in press: 1–28. doi:10.1080/08912963.2019.1593404.
  146. ^ Bitnara Kim; Hyesu Yun; Yuong-Nam Lee (2019). "The postcranial skeleton of Bagaceratops (Ornithischia: Neoceratopsia) from the Baruungoyot Formation (Upper Cretaceous) in Hermiin Tsav of southwestern Gobi, Mongolia". Journal of the Geological Society of Korea. 55 (2): 179–190. doi:10.14770/jgsk.2019.55.2.179.
  147. ^ Brandon P. Hedrick; Erika Goldsmith; Hector Rivera‐Sylva; Anthony R. Fiorillo; Allison R. Tumarkin‐Deratzian; Peter Dodson (2019). "Filling in gaps in the ceratopsid histologic database: Histology of two basal centrosaurines and an assessment of the utility of rib histology in the Ceratopsidae". The Anatomical Record. in press. doi:10.1002/ar.24099. PMID 30773832.
  148. ^ Ronald S. Tykoski; Anthony R. Fiorillo; Kentaro Chiba (2019). "New data and diagnosis for the Arctic ceratopsid dinosaur Pachyrhinosaurus perotorum". Journal of Systematic Palaeontology. 17 (16): 1177–1196. doi:10.1080/14772019.2018.1532464.
  149. ^ Prieto-Márquez, Albert; Fondevilla, Víctor; Sellés, Albert G.; Wagner, Jonathan R.; Galobart; Àngel (2019). "Adynomosaurus arcanus, a new lambeosaurine dinosaur from the Late Cretaceous Ibero-Armorican Island of the European Archipelago". Cretaceous Research. 96: 19–37. doi:10.1016/j.cretres.2018.12.002.
  150. ^ Min Wang; Jingmai K. O’Connor; Xing Xu; Zhonghe Zhou (2019). "A new Jurassic scansoriopterygid and the loss of membranous wings in theropod dinosaurs". Nature. 569 (7755): 256–259. doi:10.1038/s41586-019-1137-z. PMID 31068719.
  151. ^ Xin-Xin Ren; Jian-Dong Huang; Hai-Lu You (2019). "The second mamenchisaurid dinosaur from the Middle Jurassic of Eastern China". Historical Biology: An International Journal of Paleobiology. in press: 1–9. doi:10.1080/08912963.2018.1515935.
  152. ^ Pablo A. Gallina; Sebastián Apesteguía; Juan I. Canale; Alejandro Haluza (2019). "A new long-spined dinosaur from Patagonia sheds light on sauropod defense system". Scientific Reports. 9 (1): Article number 1392. Bibcode:2019NatSR...9.1392G. doi:10.1038/s41598-018-37943-3. PMC 6362061. PMID 30718633.
  153. ^ Kate A. Andrzejewski; Dale A. Winkler; Louis L. Jacobs (2019). "A new basal ornithopod (Dinosauria: Ornithischia) from the Early Cretaceous of Texas". PLoS ONE. 14 (3): e0207935. doi:10.1371/journal.pone.0207935. PMC 6413910. PMID 30860999.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  154. ^ Phil R. Bell; Tom Brougham; Matthew C. Herne; Timothy Frauenfelder; Elizabeth T. Smith (2019). "Fostoria dhimbangunmal, gen. et sp. nov., a new iguanodontian (Dinosauria, Ornithopoda) from the mid-Cretaceous of Lightning Ridge, New South Wales, Australia". Journal of Vertebrate Paleontology. Online edition: e1564757. doi:10.1080/02724634.2019.1564757.
  155. ^ Khishigjav Tsogtbaatar; David B. Weishampel; David C. Evans; Mahito Watabe (2019). "A new hadrosauroid (Dinosauria: Ornithopoda) from the Late Cretaceous Baynshire Formation of the Gobi Desert (Mongolia)". PLoS ONE. 14 (4): e0208480. doi:10.1371/journal.pone.0208480. PMC 6469754. PMID 30995236.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  156. ^ Sungjin Lee; Yuong-Nam Lee; Anusuya Chinsamy; Junchang Lü; Rinchen Barsbold; Khishigjav Tsogtbaatar (2019). "A new baby oviraptorid dinosaur (Dinosauria: Theropoda) from the Upper Cretaceous Nemegt Formation of Mongolia". PLoS ONE. 14 (2): e0210867. Bibcode:2019PLoSO..1410867L. doi:10.1371/journal.pone.0210867. PMC 6364893. PMID 30726228.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  157. ^ Ricardo C. Ely; Judd A. Case (2019). "Phylogeny of a new gigantic paravian (Theropoda; Coelurosauria; Maniraptora) from the Upper Cretaceous of James Ross Island, Antarctica". Cretaceous Research. 101: 1–16. doi:10.1016/j.cretres.2019.04.003.
  158. ^ Leonardo S. Filippi; Leonardo Salgado; Alberto C. Garrido (2019). "A new giant basal titanosaur sauropod in the Upper Cretaceous (Coniacian) of the Neuquén Basin, Argentina". Cretaceous Research. 100: 61–81. doi:10.1016/j.cretres.2019.03.008.
  159. ^ Jialiang Zhang; Xiaolin Wang; Qiang Wang; Shunxing Jiang; Xin Cheng; Ning Li; Rui Qiu (2019). "A new saurolophine hadrosaurid (Dinosauria: Ornithopoda) from the Upper Cretaceous of Shandong, China". Anais da Academia Brasileira de Ciências. 91 (Suppl. 2): e20160920. doi:10.1590/0001-3765201720160920. PMID 28876393.
  160. ^ Xi Yao; Chun-Chi Liao; Corwin Sullivan; Xing Xu (2019). "A new transitional therizinosaurian theropod from the Early Cretaceous Jehol Biota of China". Scientific Reports. 9: Article number 5026. doi:10.1038/s41598-019-41560-z. PMC 6430829. PMID 30903000.
  161. ^ Penélope Cruzado-Caballero; José M. Gasca; Leonardo S. Filippi; Ignacio Cerda; Alberto C. Garrido (2019). "A new ornithopod dinosaur from the Santonian of Northern Patagonia (Rincón de los Sauces, Argentina)". Cretaceous Research. 98: 211–229. doi:10.1016/j.cretres.2019.02.014.
  162. ^ Lindsay E. Zanno; Ryan T. Tucker; Aurore Canoville; Haviv M. Avrahami; Terry A. Gates; Peter J. Makovicky (2019). "Diminutive fleet-footed tyrannosauroid narrows the 70-million-year gap in the North American fossil record". Communications Biology. 2: Article number 64. doi:10.1038/s42003-019-0308-7. PMC 6385174. PMID 30820466.
  163. ^ Eric Gorscak; Patrick M. O’Connor (2019). "A new African titanosaurian sauropod dinosaur from the middle Cretaceous Galula Formation (Mtuka Member), Rukwa Rift Basin, southwestern Tanzania". PLoS ONE. 14 (2): e0211412. Bibcode:2019PLoSO..1411412G. doi:10.1371/journal.pone.0211412. PMC 6374010. PMID 30759122.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  164. ^ Júlio C. A. Marsola; Jonathas S. Bittencourt; Richard J. Butler; Átila A. S. Da Rosa; Juliana M. Sayão; Max C. Langer (2019). "A new dinosaur with theropod affinities from the Late Triassic Santa Maria Formation, South Brazil". Journal of Vertebrate Paleontology. Online edition: e1531878. doi:10.1080/02724634.2018.1531878.
  165. ^ Pedro Mocho; Rafael Royo-Torres; Francisco Ortega (2019). "A new macronarian sauropod from the Upper Jurassic of Portugal". Journal of Vertebrate Paleontology. Online edition: e1578782. doi:10.1080/02724634.2019.1578782.
  166. ^ Javier Párraga; Albert Prieto-Márquez (2019). "Pareisactus evrostos, a new basal iguanodontian (Dinosauria: Ornithopoda) from the Upper Cretaceous of southwestern Europe". Zootaxa. 4555 (2): 247–258. doi:10.11646/zootaxa.4555.2.5. PMID 30790960.
  167. ^ a b Adun Samathi; Phornphen Chanthasit; P. Martin Sander (2019). "Two new basal coelurosaurian theropod dinosaurs from the Lower Cretaceous Sao Khua Formation of Thailand". Acta Palaeontologica Polonica. 64 (2): 239–260. doi:10.4202/app.00540.2018.
  168. ^ Rodolfo A. Coria; Guillermo J. Windholz; Francisco Ortega; Philip J. Currie (2019). "A new dicraeosaurid sauropod from the Lower Cretaceous (Mulichinco Formation, Valanginian, Neuquén Basin) of Argentina". Cretaceous Research. 93: 33–48. doi:10.1016/j.cretres.2018.08.019.
  169. ^ Lucio M. Ibiricu; Gabriel A. Casal; Rubén D. Martínez; Marcelo Luna; Juan I. Canale; Bruno N. Álvarez; Bernardo González Riga (2019). "A new ornithopod dinosaur (Dinosauria; Ornithischia) from the Late Cretaceous of central Patagonia". Cretaceous Research. 98: 276–291. doi:10.1016/j.cretres.2019.02.001.
  170. ^ Sterling J. Nesbitt; Robert K. Denton Jr; Mark A. Loewen; Stephen L. Brusatte; Nathan D. Smith; Alan H. Turner; James I. Kirkland; Andrew T. McDonald; Douglas G. Wolfe (2019). "A mid-Cretaceous tyrannosauroid and the origin of North American end-Cretaceous dinosaur assemblages". Nature Ecology & Evolution. 3 (6): 892–899. doi:10.1038/s41559-019-0888-0. PMID 31061476.
  171. ^ Rafael Delcourt; Fabiano Vidoi Iori (2019). "A new Abelisauridae (Dinosauria: Theropoda) from São José do Rio Preto Formation, Upper Cretaceous of Brazil and comments on the Bauru Group fauna". Historical Biology: An International Journal of Paleobiology. in press: 1–8. doi:10.1080/08912963.2018.1546700.
  172. ^ Rui Qiu; Xiaolin Wang; Qiang Wang; Ning Li; Jialiang Zhang; Yiyun Ma (2019). "A new caudipterid from the Lower Cretaceous of China with information on the evolution of the manus of Oviraptorosauria". Scientific Reports. 9: Article number 6431. doi:10.1038/s41598-019-42547-6. PMC 6483983. PMID 31024012.
  173. ^ Francisco José Serrano; Luis María Chiappe; Paul Palmqvist; Borja Figueirido; John Long; José Luis Sanz (2019). "The effect of long-term atmospheric changes on the macroevolution of birds". Gondwana Research. 65: 86–96. Bibcode:2019GondR..65...86S. doi:10.1016/j.gr.2018.09.002.
  174. ^ Grunmeier O, D'Emic MD (April 2019). "Scaling of statically derived osteocyte lacunae in extant birds: implications for palaeophysiological reconstruction". Biology Letters. 15 (4): 20180837. doi:10.1098/rsbl.2018.0837. PMC 6501357. PMID 30940024.
  175. ^ Kenta Kawahata; Ingrid Rosenburg Cordeiro; Shogo Ueda; Guojun Sheng; Yuuta Moriyama; Chika Nishimori; Reiko Yu; Makoto Koizumi; Masataka Okabe; Mikiko Tanaka (2019). "Evolution of the avian digital pattern". Scientific Reports. 9: Article number 8560. doi:10.1038/s41598-019-44913-w. PMID 31189916.
  176. ^ Ya-Chun Zhou; Corwin Sullivan; Fu-Cheng Zhang (2019). "Negligible effect of tooth reduction on body mass in Mesozoic birds". Vertebrata PalAsiatica. 57 (1): 38–50. doi:10.19615/j.cnki.1000-3118.180307.
  177. ^ Jingmai O'Connor (2019). "The trophic habits of early birds". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 178–195. Bibcode:2019PPP...513..178O. doi:10.1016/j.palaeo.2018.03.006.
  178. ^ Yonghua Wu; Haifeng Wang (2019). "Convergent evolution of bird-mammal shared characteristics for adapting to nocturnality". Proceedings of the Royal Society B: Biological Sciences. 286 (1897): Article ID 20182185. doi:10.1098/rspb.2018.2185. PMC 6408890. PMID 30963837.
  179. ^ Klara K. Nordén; Jaeike Faber; Frane Babarović; Thomas L. Stubbs; Tara Selly; James D. Schiffbauer; Petra Peharec Štefanić; Gerald Mayr; Fiann Smithwick; Jakob Vinther (2019). "Melanosome diversity and convergence in the evolution of iridescent avian feathers-implications for paleocolor reconstruction". Evolution. 73 (1): 15–27. doi:10.1111/evo.13641. PMID 30411346.
  180. ^ Victoria E. McCoy; Sarah E. Gabbott; Kirsty Penkman; Matthew J. Collins; Samantha Presslee; John Holt; Harrison Grossman; Bo Wang; Monica M. Solórzano Kraemer; Xavier Delclòs; Enrique Peñalver (2019). "Ancient amino acids from fossil feathers in amber". Scientific Reports. 9: Article number 6420. doi:10.1038/s41598-019-42938-9. PMC 6478714. PMID 31015542.
  181. ^ Federico L. Agnolin; Sebastián Rozadilla; Ismar de Souza Carvalho (2019). "Praeornis sharovi Rautian, 1978 a fossil feather from the early Late Jurassic of Kazakhstan". Historical Biology: An International Journal of Paleobiology. in press: 1–5. doi:10.1080/08912963.2017.1413102.
  182. ^ Thomas G. Kaye; Michael Pittman; Gerald Mayr; Daniela Schwarz; Xing Xu (2019). "Detection of lost calamus challenges identity of isolated Archaeopteryx feather". Scientific Reports. 9 (1): Article number 1182. Bibcode:2019NatSR...9.1182K. doi:10.1038/s41598-018-37343-7. PMC 6362147. PMID 30718905.
  183. ^ Daniela Schwarz; Martin Kundrát; Helmut Tischlinger; Gareth Dyke; Ryan M. Carney (2019). "Ultraviolet light illuminates the avian nature of the Berlin Archaeopteryx skeleton". Scientific Reports. 9: Article number 6518. doi:10.1038/s41598-019-42823-5. PMC 6482141. PMID 31019224.
  184. ^ Min Wang; Jingmai O'Connor; Zhong-He Zhou (2019). "A taxonomical revision of the Confuciusornithiformes (Aves: Pygostylia)". Vertebrata PalAsiatica. 57 (1): 1–37. doi:10.19615/j.cnki.1000-3118.180530.
  185. ^ Fabien Knoll; Luis M. Chiappe; Sophie Sanchez; Russell J. Garwood; Nicholas P. Edwards; Roy A. Wogelius; William I. Sellers; Phillip L. Manning; Francisco Ortega; Francisco J. Serrano; Jesús Marugán-Lobón; Elena Cuesta; Fernando Escaso; Jose Luis Sanz (2018). "A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds". Nature Communications. 9: Article number 937. Bibcode:2018NatCo...9..937K. doi:10.1038/s41467-018-03295-9. PMC 5838198. PMID 29507288.
  186. ^ Thomas G. Kaye; Michael Pittman; Jesús Marugán-Lobón; Hugo Martín-Abad; José Luis Sanz; Angela D. Buscalioni (2019). "Fully fledged enantiornithine hatchling revealed by Laser-Stimulated Fluorescence supports precocial nesting behavior". Scientific Reports. 9: Article number 5006. doi:10.1038/s41598-019-41423-7. PMC 6428842. PMID 30899080.
  187. ^ Lida Xing; Ryan C. McKellar; Jingmai O'Connor; Ming Bai; Kuowei Tseng; Luis M. Chiappe (2019). "A fully feathered enantiornithine foot and wing fragment preserved in mid-Cretaceous Burmese amber". Scientific Reports. 9 (1): Article number 927. Bibcode:2019NatSR...9..927X. doi:10.1038/s41598-018-37427-4. PMC 6353931. PMID 30700773.
  188. ^ Junyou Wang; Xiuzhi Hao; Martin Kundrát; Zhiping Liu; Kentaro Uesugi; Zuzana Jurašeková; Bin Guo; Masato Hoshino; Yaoquan Li; Quentin Monfroy; Bin Zhou; Gabriela Fabriciová; Ai Kang; Mei Wang; Yunhui Si; Jie Gao; Guo Xu; Zhen Li (2019). "Bone tissue histology of the Early Cretaceous bird Yanornis: evidence for a diphyletic origin of modern avian growth strategies within Ornithuromorpha". Historical Biology: An International Journal of Paleobiology. in press: 1–13. doi:10.1080/08912963.2019.1593405.
  189. ^ Alyssa Bell; Yun-Hsin Wu; Luis M. Chiappe (2019). "Morphometric comparison of the Hesperornithiformes and modern diving birds". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 196–207. Bibcode:2019PPP...513..196B. doi:10.1016/j.palaeo.2017.12.010.
  190. ^ Nicholas M.A. Crouch; Julia A. Clarke (2019). "Body size evolution in palaeognath birds is consistent with Neogene cooling-linked gigantism". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2019.05.046.
  191. ^ Marcos Cenizo; Jorge Noriega; Juan Diederle; Esteban Soibelzon; Leopoldo Soibelzon; Sergio Rodriguez; Elisa Beilinson (2019). "An unexpected large Crested Tinamou (Eudromia, Tinamidae, Aves) near to Last Glacial Maximum (MIS 2, late Pleistocene) of the Argentine Pampas". Historical Biology: An International Journal of Paleobiology. in press: 1–9. doi:10.1080/08912963.2018.1491568.
  192. ^ Jamie R. Wood; Janet M. Wilmshurst (2019). "Comparing the effects of asynchronous herbivores on New Zealand montane vegetation communities". PLoS ONE. 14 (4): e0214959. doi:10.1371/journal.pone.0214959. PMC 6448933. PMID 30947249.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  193. ^ Peter J. Bishop; R. Paul Scofield; Scott A. Hocknull (2019). "The architecture of cancellous bone in the hindlimb of moa (Aves: Dinornithiformes), with implications for stance and gait". Alcheringa: An Australasian Journal of Palaeontology. in press: 1–17. doi:10.1080/03115518.2019.1594380.
  194. ^ Jordi Alexis Garcia Marsà; Federico L. Agnolín; Fernando Novas (2019). "Bone microstructure of Vegavis iaai (Aves, Anseriformes) from the Upper Cretaceous of Vega Island, Antarctic Peninsula". Historical Biology: An International Journal of Paleobiology. 31 (2): 163–167. doi:10.1080/08912963.2017.1348503.
  195. ^ Ricardo S. De Mendoza; Claudia P. Tambussi (2019). "Cayaoa bruneti (Aves: Anseriformes) from the Early Miocene of Patagonia, Argentina: new materials and revised diagnosis". Ameghiniana. in press. doi:10.5710/AMGH.24.05.2019.3199.
  196. ^ Ricardo S. De Mendoza (2019). "Phylogenetic relationships of the Early Miocene diving and flightless duck Cayaoa bruneti (Aves, Anatidae) from Patagonia: homology or convergence?". Papers in Palaeontology. in press. doi:10.1002/spp2.1268.
  197. ^ N.V. Zelenkov (2019). "Systematic position of Palaeortyx (Aves, ?Phasianidae) and notes on the evolution of Phasianidae". Paleontological Journal. 53 (2): 194–202. doi:10.1134/S0031030119020138.
  198. ^ Alexander P. Boast; Brendan Chapman; Michael B. Herrera; Trevor H. Worthy; R. Paul Scofield; Alan J. D. Tennyson; Peter Houde; Michael Bunce; Alan Cooper; Kieren J. Mitchell (2019). "Mitochondrial genomes from New Zealand's extinct adzebills (Aves: Aptornithidae: Aptornis) support a sister-taxon relationship with the Afro-Madagascan Sarothruridae". Diversity. 11 (2): Article 24. doi:10.3390/d11020024.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  199. ^ Grace M. Musser; Joel Cracraft (2019). "A new morphological dataset reveals a novel relationship for the adzebills of New Zealand (Aptornis) and provides a foundation for total evidence neoavian phylogenetics". American Museum Novitates. 2019 (3927): 1–70. doi:10.1206/3927.1. hdl:2246/6937.
  200. ^ Julian P. Hume; David Martill (2019). "Repeated evolution of flightlessness in Dryolimnas rails (Aves: Rallidae) after extinction and recolonization on Aldabra". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlz018.
  201. ^ Mariana B. J. Picasso; Ricardo S. De Mendoza; Javier N. Gelfo (2019). "A seedsnipe (Aves, Charadriiformes, Thinocoridae) from the Ensenadan Age/Stage (early-middle Pleistocene) of Buenos Aires, Argentina". Historical Biology: An International Journal of Paleobiology. 31 (3): 363–370. doi:10.1080/08912963.2017.1370647.
  202. ^ Piotr Jadwiszczak; Bruce M. Rothschild (2019). "The first evidence of an infectious disease in early penguins". Historical Biology: An International Journal of Paleobiology. 31 (2): 177–180. doi:10.1080/08912963.2017.1353606.
  203. ^ Jordi Alexis Garcia Marsà; Claudia P. Tambussi; Ignacio A. Cerda (2019). "First evidence of globuli ossei in bird (Aves, Spheniciformes). Implications on paleohistology and bird behaviour". Historical Biology: An International Journal of Paleobiology. in press: 1–4. doi:10.1080/08912963.2018.1508288.
  204. ^ Piotr Jadwiszczak; Thomas Mörs (2019). "First partial skeleton of Delphinornis larseni Wiman, 1905, a slender-footed penguin from the Eocene of Antarctic Peninsula". Palaeontologia Electronica. 22 (2): Article number 22.2.32. doi:10.26879/933.
  205. ^ Yuesong Gao; Lianjiao Yang; Wenqing Yang; Yuhong Wang; Zhouqing Xie; Liguang Sun (2019). "Dynamics of penguin population size and food availability at Prydz Bay, East Antarctica, during the last millennium: A solar control". Palaeogeography, Palaeoclimatology, Palaeoecology. 516: 220–231. Bibcode:2019PPP...516..220G. doi:10.1016/j.palaeo.2018.11.027.
  206. ^ Piotr Jadwiszczak; Andrzej Gaździcki; Andrzej Tatur (2008). "An ibis-like bird from the Upper La Meseta Formation (Late Eocene) of Seymour Island, Antarctica". Antarctic Science. 20 (4): 413–414. doi:10.1017/S0954102008000977.
  207. ^ Federico Lisandro Agnolin; Sergio Bogan; Sebastián Rozadilla (2019). "Were ibises (Aves, Threskiornithidae) present in Antarctica?". Antarctic Science. 31 (1): 35–36. doi:10.1017/S0954102018000512.
  208. ^ Michael Knapp; Jessica E. Thomas; James Haile; Stefan Prost; Simon Y.W. Ho; Nicolas Dussex; Sophia Cameron-Christie; Olga Kardailsky; Ross Barnett; Michael Bunce; M. Thomas P. Gilbert; R. Paul Scofield (2019). "Mitogenomic evidence of close relationships between New Zealand's extinct giant raptors and small-sized Australian sister-taxa". Molecular Phylogenetics and Evolution. 134: 122–128. doi:10.1016/j.ympev.2019.01.026. PMID 30753886.
  209. ^ Stewart Finlayson; Geraldine Finlayson; Francisco Giles Guzman; Clive Finlayson (2019). "Neanderthals and the cult of the Sun Bird". Quaternary Science Reviews. in press. doi:10.1016/j.quascirev.2019.04.010.
  210. ^ Gerald Mayr; Philip D. Gingerich; Thierry Smith (2019). "Calcardea junnei Gingerich, 1987 from the late Paleocene of North America is not a heron, but resembles the early Eocene Indian taxon Vastanavis Mayr et al., 2007". Journal of Paleontology. 93 (2): 359–367. doi:10.1017/jpa.2018.85.
  211. ^ Anthony S. Cheke; Justin J. F. J. Jansen (2016). "An enigmatic parakeet – the disputed provenance of an Indian Ocean Psittacula". Ibis. 158 (2): 439–443. doi:10.1111/ibi.12347.
  212. ^ Carl G. Jones; Hazel A. Jackson; Robert Y. McGowan; Julian P. Hume; Joseph M. Forshaw; Vikash Tatayah; Ria Winters; Jim J. Groombridge (2019). "A parakeet specimen held at National Museums Scotland is a unique skin of the extinct Réunion Parakeet Psittacula eques eques: a reply to Cheke and Jansen (2016)". Ibis. 161 (1): 230–238. doi:10.1111/ibi.12673.
  213. ^ Carl H. Oliveros; Daniel J. Field; Daniel T. Ksepka; F. Keith Barker; Alexandre Aleixo; Michael J. Andersen; Per Alström; Brett W. Benz; Edward L. Braun; Michael J. Braun; Gustavo A. Bravo; Robb T. Brumfield; R. Terry Chesser; Santiago Claramunt; Joel Cracraft; Andrés M. Cuervo; Elizabeth P. Derryberry; Travis C. Glenn; Michael G. Harvey; Peter A. Hosner; Leo Joseph; Rebecca T. Kimball; Andrew L. Mack; Colin M. Miskelly; A. Townsend Peterson; Mark B. Robbins; Frederick H. Sheldon; Luís Fábio Silveira; Brian Tilston Smith; Noor D. White; Robert G. Moyle; Brant C. Faircloth (2019). "Earth history and the passerine superradiation". Proceedings of the National Academy of Sciences of the United States of America. 116 (16): 7916–7925. doi:10.1073/pnas.1813206116. PMC 6475423. PMID 30936315.
  214. ^ Erin E. Saupe; Alexander Farnsworth; Daniel J. Lunt; Navjit Sagoo; Karen V. Pham; Daniel J. Field (2019). "Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic". Proceedings of the National Academy of Sciences of the United States of America. 116. doi:10.1073/pnas.1903866116. PMID 31182570.
  215. ^ Gerald Mayr; Sophie Hervet; Eric Buffetaut (2019). "On the diverse and widely ignored Paleocene avifauna of Menat (Puy-de-Dôme, France): new taxonomic records and unusual soft tissue preservation". Geological Magazine. 156 (3): 572–584. Bibcode:2019GeoM..156..572M. doi:10.1017/S0016756818000080.
  216. ^ Gerald Mayr; Thierry Smith (2019). "New Paleocene bird fossils from the North Sea Basin in Belgium and France". Geologica Belgica. 22 (1–2): 35–46. doi:10.20341/gb.2019.003.
  217. ^ Gerald Mayr; S. Bruce Archibald; Gary Kaiser; Rolf W. Mathewes (2019). "Early Eocene (Ypresian) birds from the Okanagan Highlands, British Columbia (Canada) and Washington State (USA)". Canadian Journal of Earth Sciences. in press. doi:10.1139/cjes-2018-0267.
  218. ^ Gerald Mayr; Thierry Smith (2019). "A diverse bird assemblage from the Ypresian of Belgium furthers knowledge of early Eocene avifaunas of the North Sea Basin". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 291 (3): 253–281. doi:10.1127/njgpa/2019/0801 (inactive 2019-05-18).{{cite journal}}: CS1 maint: DOI inactive as of May 2019 (link)
  219. ^ Junya Watanabe; Hiroshige Matsuoka; Yoshikazu Hasegawa (2019). "Pleistocene seabirds from Shiriya, northeast Japan: systematics and oceanographic context". Historical Biology: An International Journal of Paleobiology. in press: 1–59. doi:10.1080/08912963.2018.1529764.
  220. ^ Alexander L. Bond; Colin J. Carlson; Kevin R. Burgio (2019). "Local extinctions of insular avifauna on the most remote inhabited island in the world". Journal of Ornithology. 160 (1): 49–60. doi:10.1007/s10336-018-1590-8.
  221. ^ Daniel J. Field (2019). "Preliminary paleoecological insights from the Pliocene avifauna of Kanapoi, Kenya: Implications for the ecology of Australopithecus anamensis". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.08.007. PMID 28966047.
  222. ^ Nicolas J. Rawlence; R. Paul Scofield; Matt S. McGlone; Michael Knapp (2019). "History repeats: large scale synchronous biological turnover in avifauna from the Plio-Pleistocene and late Holocene of New Zealand". Frontiers in Ecology and Evolution. 7: Article 158. doi:10.3389/fevo.2019.00158.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  223. ^ Hanneke J.M. Meijer; Julien Louys; Sue O'Connor (2019). "First record of avian extinctions from the Late Pleistocene and Holocene of Timor Leste". Quaternary Science Reviews. 203: 170–184. Bibcode:2019QSRv..203..170M. doi:10.1016/j.quascirev.2018.11.005.
  224. ^ Ivo R. Horn; Yvo Kenens; N. Magnus Palmblad; Suzanne J. van der Plas-Duivesteijn; Bram W. Langeveld; Hanneke J. M. Meijer; Hans Dalebout; Rob J. Marissen; Anja Fischer; F. B. Vincent Florens; Jonas Niemann; Kenneth F. Rijsdijk; Anne S. Schulp; Jeroen F. J. Laros; Barbara Gravendeel (2019). "Palaeoproteomics of bird bones for taxonomic classification". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlz012.
  225. ^ Hanneke J.M. Meijer; Francesco d'Errico; Alain Queffelec; Iwan Kurniawan; Erick Setiabudi; Indra Sutisna; Adam Brumm; Gerrit D. van den Bergh (2019). "Characterization of bone surface modifications on an Early to Middle Pleistocene bird assemblage from Mata Menge (Flores, Indonesia) using multifocus and confocal microscopy". Palaeogeography, Palaeoclimatology, Palaeoecology. 529: 1–11. doi:10.1016/j.palaeo.2019.05.025.
  226. ^ Oliver W.M. Rauhut; Helmut Tischlinger; Christian Foth (2019). "A non-archaeopterygid avialan theropod from the Late Jurassic of southern Germany". eLife. 8: e43789. doi:10.7554/eLife.43789. PMC 6516837. PMID 31084702.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  227. ^ Martin Kundrát; John Nudds; Benjamin P. Kear; Junchang Lü; Per Ahlberg (2019). "The first specimen of Archaeopteryx from the Upper Jurassic Mörnsheim Formation of Germany". Historical Biology: An International Journal of Paleobiology. 31 (1): 3–63. doi:10.1080/08912963.2018.1518443.
  228. ^ a b Alida M. Bailleul; Jingmai O’Connor; Shukang Zhang; Zhiheng Li; Qiang Wang; Matthew C. Lamanna; Xufeng Zhu; Zhonghe Zhou (2019). "An Early Cretaceous enantiornithine (Aves) preserving an unlaid egg and probable medullary bone". Nature Communications. 10 (1275). doi:10.1038/s41467-019-09259-x. PMC 6426974. PMID 30894527.
  229. ^ Vahe Demirjian (2019). "Camptodontornis gen. nov., a replacement name for the bird genus Camptodontus Li, Gong, Zhang, Yang, and Hou, 2010, a junior homonym of Camptodontus Dejean, 1826". Zootaxa. 4612 (3): 440. doi:10.11646/zootaxa.4612.3.10.
  230. ^ Claudia P. Tambussi; Federico J. Degrange; Ricardo S. De Mendoza; Emilia Sferco; Sergrio Santillana (2019). "A stem anseriform from the early Palaeocene of Antarctica provides new key evidence in the early evolution of waterfowl". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zly085.
  231. ^ Jacqueline M. T. Nguyen (2019). "A new species of bristlebird (Passeriformes, Dasyornithidae) from the early Miocene of Australia". Journal of Vertebrate Paleontology. in press: e1575838. doi:10.1080/02724634.2019.1575838.
  232. ^ Daniel T. Ksepka; Lance Grande; Gerald Mayr (2019). "Oldest finch-beaked birds reveal parallel ecological radiations in the earliest evolution of passerines". Current Biology. 29 (4): 657–663.e1. doi:10.1016/j.cub.2018.12.040. PMID 30744971.
  233. ^ a b Theresa L. Cole; Daniel T. Ksepka; Kieren J. Mitchell; Alan J. D. Tennyson; Daniel B. Thomas; Hailin Pan; Guojie Zhang; Nicolas J. Rawlence; Jamie R. Wood; Pere Bover; Juan L. Bouzat; Alan Cooper; Steven Fiddaman; Tom Hart; Gary Miller; Peter G. Ryan; Lara D. Shepherd; Janet M. Wilmshurst; Jonathan M. Waters (2019). "Mitogenomes uncover extinct penguin taxa and reveal island formation as a key driver of speciation". Molecular Biology and Evolution. 36 (4): 784–797. doi:10.1093/molbev/msz017. PMID 30722030.
  234. ^ Gerald Mayr; Zbigniew M. Bocheński; Teresa Tomek; Krzysztof Wertz; Małgorzata Bieńkowska-Wasiluk; Albrecht Manegold (2019). "Skeletons from the early Oligocene of Poland fill a significant temporal gap in the fossil record of upupiform birds (hoopoes and allies)". Historical Biology: An International Journal of Paleobiology. Online edition: 1–13. doi:10.1080/08912963.2019.1570507.
  235. ^ Nikita V. Zelenkov (2019). "A swan-sized anseriform bird from the late Paleocene of Mongolia". Journal of Vertebrate Paleontology. Online edition: e1531879. doi:10.1080/02724634.2018.1531879.
  236. ^ Di Liu; L.M. Chiappe; Yuguang Zhang; F.J. Serrano; Qingjin Meng (2019). "Soft tissue preservation in two new enantiornithine specimens (Aves) from the Lower Cretaceous Huajiying Formation of Hebei Province, China". Cretaceous Research. 95: 191–207. doi:10.1016/j.cretres.2018.10.017.
  237. ^ Gerald Mayr; Vanesa L. De Pietri; R. Paul Scofield; Thierry Smith (2019). "A fossil heron from the early Oligocene of Belgium – the earliest temporally well‐constrained record of the Ardeidae". Ibis. 161 (1): 79–90. doi:10.1111/ibi.12600.
  238. ^ Min Wang; Zhonghe Zhou (2019). "A new enantiornithine (Aves: Ornithothoraces) with completely fused premaxillae from the Early Cretaceous of China". Journal of Systematic Palaeontology. 17 (15): 1079–1092. doi:10.1080/14772019.2018.1527403.
  239. ^ David W. Steadman; Oona M. Takano (2019). "A new genus and species of heron (Aves: Ardeidae) from the late Miocene of Florida" (PDF). Bulletin of the Florida Museum of Natural History. 55 (9): 174–186.
  240. ^ Nikita V. Zelenkov; Andrey V. Panteleyev (2019). "A small stem-galliform bird (Aves: Paraortygidae) from the Eocene of Uzbekistan". Comptes Rendus Palevol. in press. doi:10.1016/j.crpv.2019.04.005.
  241. ^ Tobin L. Hieronymus; David A. Waugh; Julia A. Clarke (2019). "A new zygodactylid species indicates the persistence of stem passerines into the early Oligocene in North America". BMC Evolutionary Biology. 19 (1): Article 3. doi:10.1186/s12862-018-1319-6. PMC 6321701. PMID 30611195.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  242. ^ Richard Buchmann; Taissa Rodrigues (2019). "The evolution of pneumatic foramina in pterosaur vertebrae". Anais da Academia Brasileira de Ciências. 91 (Suppl. 2): e20180782. doi:10.1590/0001-3765201920180782. PMID 31090800.
  243. ^ David Michael Unwin; D. Charles Deeming (2019). "Prenatal development in pterosaurs and its implications for their postnatal locomotory ability". Proceedings of the Royal Society B: Biological Sciences. 286 (1904): Article ID 20190409. doi:10.1098/rspb.2019.0409. PMID 31185866.
  244. ^ Zixiao Yang; Baoyu Jiang; Maria E. McNamara; Stuart L. Kearns; Michael Pittman; Thomas G. Kaye; Patrick J. Orr; Xing Xu; Michael J. Benton (2019). "Supplementary information for: Pterosaur integumentary structures with complex feather-like branching" (PDF). Nature Ecology & Evolution. 3 (1): 24–30. doi:10.1038/s41559-018-0728-7. PMID 30568282.
  245. ^ Zixiao Yang; Baoyu Jiang; Maria E. McNamara; Stuart L. Kearns; Michael Pittman; Thomas G. Kaye; Patrick J. Orr; Xing Xu; Michael J. Benton (2019). "Pterosaur integumentary structures with complex feather-like branching" (PDF). Nature Ecology & Evolution. 3 (1): 24–30. doi:10.1038/s41559-018-0728-7. PMID 30568282.
  246. ^ Adele H. Pentland; Stephen F. Poropat (2019). "Reappraisal of Mythunga camara Molnar & Thulborn, 2007 (Pterosauria, Pterodactyloidea, Anhangueria) from the upper Albian Toolebuc Formation of Queensland, Australia". Cretaceous Research. 93: 151–169. doi:10.1016/j.cretres.2018.09.011.
  247. ^ David M. Martill; Robert A. Coram (2019). "Additional evidence for very large wing-span pterosaurs in the Wessex Formation (Early Cretaceous, Barremian) of southern England". Proceedings of the Geologists' Association. in press. doi:10.1016/j.pgeola.2019.05.002.
  248. ^ Elizabeth Martin‐Silverstone; Daniel Sykes; Darren Naish (2019). "Does postcranial palaeoneurology provide insight into pterosaur behaviour and lifestyle? New data from the azhdarchoid Vectidraco and the ornithocheirids Coloborhynchus and Anhanguera". Palaeontology. 62 (2): 197–210. doi:10.1111/pala.12390.
  249. ^ Flavio Bellardini; Laura Codorniú (2019). "First pterosaur post-cranial remains from the Lower Cretaceous Lohan Cura Formation (Albian) of Patagonia, Argentina". Ameghiniana. in press. doi:10.5710/AMGH.13.03.2019.3225.
  250. ^ Megan L. Jacobs; David M. Martill; Nizar Ibrahim; Nick Longrich (2019). "A new species of Coloborhynchus (Pterosauria, Ornithocheiridae) from the mid-Cretaceous of North Africa". Cretaceous Research. 95: 77–88. doi:10.1016/j.cretres.2018.10.018.
  251. ^ Borja Holgado; Rodrigo V. Pêgas; José Ignacio Canudo; Josep Fortuny; Taissa Rodrigues; Julio Company; Alexander W. A. Kellner (2019). "On a new crested pterodactyloid from the Early Cretaceous of the Iberian Peninsula and the radiation of the clade Anhangueria". Scientific Reports. 9: Article number 4940. doi:10.1038/s41598-019-41280-4. PMC 6426928. PMID 30894614.
  252. ^ Maurício S. Garcia; Rodrigo T. Müller; Átila A.S. Da-Rosa; Sérgio Dias-da-Silva (2019). "The oldest known co-occurrence of dinosaurs and their closest relatives: A new lagerpetid from a Carnian (Upper Triassic) bed of Brazil with implications for dinosauromorph biostratigraphy, early diversification and biogeography". Journal of South American Earth Sciences. 91: 302–319. Bibcode:2019JSAES..91..302G. doi:10.1016/j.jsames.2019.02.005.
  253. ^ Christopher T. Griffin; Lauren S. Bano; Alan H. Turner; Nathan D. Smith; Randall B. Irmis; Sterling J. Nesbitt (2019). "Integrating gross morphology and bone histology to assess skeletal maturity in early dinosauromorphs: new insights from Dromomeron (Archosauria: Dinosauromorpha)". PeerJ. 7: e6331. doi:10.7717/peerj.6331. PMC 6375289. PMID 30775169.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  254. ^ Jordi Alexis Garcia Marsà; Federico L. Agnolín; Fernando Novas (2019). "Bone microstructure of Lewisuchus admixtus Romer, 1972 (Archosauria, Dinosauriformes)". Historical Biology: An International Journal of Paleobiology. 31 (2): 157–162. doi:10.1080/08912963.2017.1347646.
  255. ^ Rafał Piechowski; Grzegorz Niedźwiedzki; Mateusz Tałanda (2019). "Unexpected bird-like features and high intraspecific variation in the braincase of the Triassic relative of dinosaurs". Historical Biology: An International Journal of Paleobiology. in press: 1–17. doi:10.1080/08912963.2017.1418339.
  256. ^ Martin Qvarnström; Joel Vikberg Wernström; Rafał Piechowski; Mateusz Tałanda; Per E. Ahlberg; Grzegorz Niedźwiedzki (2019). "Beetle-bearing coprolites possibly reveal the diet of a Late Triassic dinosauriform". Royal Society Open Science. 6 (3): Article ID 181042. doi:10.1098/rsos.181042. PMC 6458417. PMID 31031991.
  257. ^ Matthew G. Baron (2019). "Pisanosaurus mertii and the Triassic ornithischian crisis: could phylogeny offer a solution?". Historical Biology: An International Journal of Paleobiology. in press: 1–15. doi:10.1080/08912963.2017.1410705.