Jump to content

Neodymium-doped yttrium lithium fluoride

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Shadow311 (talk | contribs) at 20:17, 28 November 2023 (Reverted edits by 24.144.227.50 (talk) (AV)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Neodymium-doped yttrium lithium fluoride (Nd:YLF) is a lasing medium for arc lamp-pumped and diode-pumped solid-state lasers. The YLF crystal (LiYF4) is naturally birefringent, and commonly used laser transitions occur at 1047 nm and 1053 nm.[1]

It is used in Q-switched systems in part due to its relatively long fluorescence lifetime. As with Nd:YAG lasers, harmonic generation is frequently employed with Q-switched Nd:YLF to produce shorter wavelengths. A common application of frequency-doubled Nd:YLF pulses is to pump ultrafast Ti:Sapphire chirped-pulse amplifiers.

Neodymium-doped YLF can provide higher pulse energies than Nd:YAG for repetition rates of a few kHz or less. Compared to Nd:YAG, the Nd:YLF crystal is very brittle and fractures easily. It is also slightly water-soluble — a YLF laser rod may very slowly dissolve in cooling water which surrounds it.[1]

Physical and chemical properties

Materials: Nd:LiYF4

Modulus of Elasticity: 85 GPa

Crystal Structure: Tetragonal

Cell Parameters: a=5.16 Å , c=10.85 Å

Melting Point: 819℃

Mohs Hardness: 4~5[2]

Density: 3.99 g/cm^3

Thermal Conductivity: 0.063 W/cm/K

Specific Heat: 0.79 J/g/K

See also

References

  1. ^ Pollak, T.; Wing, W.; Grasso, R.; Chicklis, E.; Jenssen, H. (1982). "CW laser operation of Nd:YLF". IEEE Journal of Quantum Electronics. 18 (2). Institute of Electrical and Electronics Engineers (IEEE): 159–163. Bibcode:1982IJQE...18..159P. doi:10.1109/jqe.1982.1071512. ISSN 0018-9197.
  2. ^ Nd:YLF Crystal