Jump to content

Animatronics: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Adding/improving reference(s)
Line 6: Line 6:
[[File:Tyrannosaurus NHM London.ogg|thumb|[[Tyrannosaurus]] at the [[Natural History Museum, London|Natural History Museum]] of [[London]]]]
[[File:Tyrannosaurus NHM London.ogg|thumb|[[Tyrannosaurus]] at the [[Natural History Museum, London|Natural History Museum]] of [[London]]]]


'''Animatronics''' is the use of [[mechatronics]] to create machines which simulate [[Possession (linguistics)#Animate and inanimate|animate]] life with lifelike characteristics rather than artificial [[Robotics|robotic]].<ref name="intap">{{cite web|last1=Schilling|first1=David Russell|title=Today’s Animatronics Almost 500 Years in the Making|url=http://www.industrytap.com/todays-animatronics-almost-500-years-in-the-making/8877|website=Industry Tap|accessdate=5 August 2014}}</ref> Animatronic creations include animals (including [[dinosaurs]]), [[plants]] and even [[mythical creature]]s. A [[robot]] designed to be a convincing imitation of a human is more specifically labeled as an [[android (robot)|android]].
'''Animatronics''' is the use of [[mechatronics]] to create machines which simulate [[Possession (linguistics)#Animate and inanimate|animate]] life with lifelike characteristics rather than artificial [[Robotics|robotic]].<ref name="today-500">{{cite web|last1=Schilling|first1=David Russell|title=Today’s Animatronics Almost 500 Years in the Making|url=http://www.industrytap.com/todays-animatronics-almost-500-years-in-the-making/8877|website=Industry Tap|accessdate=5 August 2014}}</ref> Animatronic creations include animals (including [[dinosaurs]]), [[plants]] and even [[mythical creature]]s. A [[robot]] designed to be a convincing imitation of a human is more specifically labeled as an [[android (robot)|android]].


Animatronic figures are most often powered by [[pneumatic]]s, [[hydraulic]]s, or by electrical means, and can be implemented using both computer control and human control, including [[teleoperation]]. [[actuator|Motion actuator]]s are often used to imitate muscle movements and create realistic motions in limbs. Figures are covered with body shells and flexible skins made of hard and soft plastic materials, and finished with details like colors, hair and feathers and other components to make the figure more realistic.
Animatronic figures are most often powered by [[pneumatic]]s, [[hydraulic]]s, or by electrical means, and can be implemented using both computer control and human control, including [[teleoperation]]. [[actuator|Motion actuator]]s are often used to imitate muscle movements and create realistic motions in limbs. Figures are covered with body shells and flexible skins made of hard and soft plastic materials, and finished with details like colors, hair and feathers and other components to make the figure more realistic.
Line 18: Line 18:
The term [[Audio-Animatronics]] was coined by [[Walt Disney]] when he started developing animatronics for entertainment and film. [[Audio-Animatronics]] does not differentiate between animatronics and androids.
The term [[Audio-Animatronics]] was coined by [[Walt Disney]] when he started developing animatronics for entertainment and film. [[Audio-Animatronics]] does not differentiate between animatronics and androids.


Autonomatronics, was also defined by Walt Disney Imagineers, to describe a more advanced audio-animatronic technology featuring cameras and complex sensors to process information around the characters environment and respond to that stimulus.<ref>{{cite web|last1=Kiniry|first1=Laura|title=6 Cool—And Creepy—Animatronic Advancements|url=http://www.popularmechanics.com/technology/engineering/robots/6-6ool-and-creepy-animatronic-advancements-6#slide-6|publisher=Popular Mechanics|accessdate=10 August 2014}}</ref>
Autonomatronics, was also defined by Walt Disney Imagineers, to describe a more advanced audio-animatronic technology featuring cameras and complex sensors to process information around the characters environment and respond to that stimulus.<ref name="advancements">{{cite web|last1=Kiniry|first1=Laura|title=6 Cool—And Creepy—Animatronic Advancements|url=http://www.popularmechanics.com/technology/engineering/robots/6-6ool-and-creepy-animatronic-advancements-6#slide-6|publisher=Popular Mechanics|accessdate=10 August 2014}}</ref>


== Timeline==
== Timeline==
* '''1220-1240''' - [[Villard_de_Honnecourt|The Portfolio of Villard de Honnecourt]] depicts an early escapement mechanism in a drawing titled “How to make an angel keep pointing his finger toward the Sun” and an automaton of a bird, with jointed wings.<ref>{{cite journal|last1=Ackerman|first1=James S.|title=Villard de Honnecourt's Drawings of Reims Cathedral: A Study in Architectural Representation|journal=Artibus et Historiae|volume=18|issue=35|pages=41|doi=10.2307/1483536}}</ref>
* '''1220-1240''' - [[Villard_de_Honnecourt|The Portfolio of Villard de Honnecourt]] depicts an early escapement mechanism in a drawing titled “How to make an angel keep pointing his finger toward the Sun” and an automaton of a bird, with jointed wings.<ref name="honnecourt">{{cite journal|last1=Ackerman|first1=James S.|title=Villard de Honnecourt's Drawings of Reims Cathedral: A Study in Architectural Representation|journal=Artibus et Historiae|volume=18|issue=35|pages=41|doi=10.2307/1483536}}</ref>
* '''1550''' - [[Leonardo da Vinci]] designed and built the Automata Lion.<ref>{{cite journal|last1=Bedini|first1=Silvio A.|title=The Role of Automata in the History of Technology|journal=Technology and Culture|volume=5|issue=1|pages=24|doi=10.2307/3101120}}</ref>
* '''1550''' - [[Leonardo da Vinci]] designed and built the Automata Lion.<ref name="automata_lion">{{cite journal|last1=Bedini|first1=Silvio A.|title=The Role of Automata in the History of Technology|journal=Technology and Culture|volume=5|issue=1|pages=24|doi=10.2307/3101120}}</ref>
* '''1738''' - The construction of an [[Automaton|automata]] begins in Grenoble, France by [[Jacques de Vaucanson]]. First a flute player that could play twelve songs - ''The Flute Player'', followed by a character playing a flute and drum or tambourine - ''The Tambourine Player'', and concluding with a moving / quacking / flapping / eating duck - [[Digesting Duck|The Digesting Duck]].<ref>{{cite journal|last1=Fryer|first1=David M.|last2=Marshall|first2=John C.|title=The Motives of Jacques de Vaucanson|journal=Technology and Culture|volume=20|issue=2|pages=257|doi=10.2307/3103866}}</ref>
* '''1738''' - The construction of an [[Automaton|automata]] begins in Grenoble, France by [[Jacques de Vaucanson]]. First a flute player that could play twelve songs - ''The Flute Player'', followed by a character playing a flute and drum or tambourine - ''The Tambourine Player'', and concluding with a moving / quacking / flapping / eating duck - [[Digesting Duck|The Digesting Duck]].<ref name="vaucanson">{{cite journal|last1=Fryer|first1=David M.|last2=Marshall|first2=John C.|title=The Motives of Jacques de Vaucanson|journal=Technology and Culture|volume=20|issue=2|pages=257|doi=10.2307/3103866}}</ref>
* '''1770''' - [[Pierre Jaquet-Droz]] and his son Henri-Louis Jaquet-Droz, both Swiss watchmakers, start making automata for European royalty. Once completed, they had [[Jaquet-Droz automata|created three dolls]]. One doll was able to write, the other play music and the 3rd doll could draw pictures.<ref>{{cite journal|last1=Riskin|first1=Jessica|title=The Defecating Duck, or, the Ambiguous Origins of Artificial Life|journal=Critical Inquiry|volume=29|issue=4|pages=599–633|doi=10.1086/377722}}</ref>
* '''1770''' - [[Pierre Jaquet-Droz]] and his son Henri-Louis Jaquet-Droz, both Swiss watchmakers, start making automata for European royalty. Once completed, they had [[Jaquet-Droz automata|created three dolls]]. One doll was able to write, the other play music and the 3rd doll could draw pictures.<ref name="duck">{{cite journal|last1=Riskin|first1=Jessica|title=The Defecating Duck, or, the Ambiguous Origins of Artificial Life|journal=Critical Inquiry|volume=29|issue=4|pages=599–633|doi=10.1086/377722}}</ref>
* '''1801''' - [[Joseph Marie Jacquard|Joseph Jacquard]] builds [[Jacquard loom|a loom]] that is controlled autonomously with punched cards.
* '''1801''' - [[Joseph Marie Jacquard|Joseph Jacquard]] builds [[Jacquard loom|a loom]] that is controlled autonomously with punched cards.
* '''1939''' - Sparko, The Robot Dog, pet of [[Elektro]] the Robot, performs in front of the public at the [[1939 New York World's Fair]] but Sparko is not like normal robots, Sparko represents a living animal, thus becoming the very first modern day animatronics character<ref>{{cite web|title=An introduction to Animatronics|url=http://prezi.com/yguvklrxv0e9/an-introduction-to-animatronics/|accessdate=10 August 2014}}</ref>, along with an unnamed horse which was reported to gallop realistically. The animatronics galloping horse was also on display at the 1939 World's Fair, in a different exhibit than Sparko's.<ref>{{cite journal|title=A Mechanical Horse Gallops Realistically|journal=Popular Science|date=1939 Jan|volume=134|issue=1|page=117|url=http://books.google.com/books?id=hCkDAAAAMBAJ&lpg=PA117&ots=590nRN0zLB&dq=1939%20worlds%20fair%20mechanical%20horse%20gallops%20realistically&pg=PA117#v=onepage&q=1939%20worlds%20fair%20mechanical%20horse%20gallops%20realistically&f=false|accessdate=10 August 2014}}</ref>
* '''1939''' - Sparko, The Robot Dog, pet of [[Elektro]] the Robot, performs in front of the public at the [[1939 New York World's Fair]] but Sparko is not like normal robots, Sparko represents a living animal, thus becoming the very first modern day animatronics character<ref name="sparko">{{cite web|title=An introduction to Animatronics|url=http://prezi.com/yguvklrxv0e9/an-introduction-to-animatronics/|accessdate=10 August 2014}}</ref>, along with an unnamed horse which was reported to gallop realistically. The animatronics galloping horse was also on display at the 1939 World's Fair, in a different exhibit than Sparko's.<ref name="horse">{{cite journal|title=A Mechanical Horse Gallops Realistically|journal=Popular Science|date=1939 Jan|volume=134|issue=1|page=117|url=http://books.google.com/books?id=hCkDAAAAMBAJ&lpg=PA117&ots=590nRN0zLB&dq=1939%20worlds%20fair%20mechanical%20horse%20gallops%20realistically&pg=PA117#v=onepage&q=1939%20worlds%20fair%20mechanical%20horse%20gallops%20realistically&f=false|accessdate=10 August 2014}}</ref>
* '''1961''' - Heinrich Ernst develops the MH-1, a computer operated mechanical hand at [[MIT]].
* '''1961''' - Heinrich Ernst develops the MH-1, a computer operated mechanical hand at [[MIT]].<ref name=mh1>{{cite journal|title=UTHM Hand: Mechanics Behind The Dexterous Anthropomorphic Hand|journal=World Academy Of Science, Engineering And Technology|date=2011|volume=74|pages=154-158|url=http://www.waset.org/publications/9570|accessdate=10 August 2014}}</ref>
* '''1961''' - Walt Disney coins the term audio-animatronics and begins developing modern animatronics technology.<ref name="timeline-infographic">{{cite web|title=The Wonderful World of Animatronics|url=http://animatronicrobotics.com/wp-content/uploads/2014/08/The-Wonderful-World-of-Animatronics.jpg|website=animatronicrobots.com|publisher=Customer Entertainment Solutions Inc.|accessdate=9 August 2014}}</ref>{{verify credibility|date=August 2014}}
* '''1961''' - Walt Disney coins the term audio-animatronics and begins developing modern animatronics technology.<ref name=autonomatronics>{{cite book|last1=Ayala|first1=Alfredo Medina|title=Advances in New Technologies, Interactive Interfaces, and Communicability First International Conference Papers.|url=url=http://link.springer.com/chapter/10.1007/978-3-642-20810-2_2#page-1|location=Huerta Grande, Argentina|date=2010 Oct 22|publisher=Springer Berlin Heidelberg|location=Berlin|isbn=978-3-642-20809-6|edition=1., st Edition}}</ref>
* '''1963''' - The first animatronics created by Disney are the [[Walt Disney's Enchanted Tiki Room|Enchanted Tiki Birds]] which were featured at Disnleyland.<ref name="timeline-infographic"/>
* '''1963''' - The first animatronics created by Disney are the [[Walt Disney's Enchanted Tiki Room|Enchanted Tiki Birds]] which were featured at Disnleyland.<ref name=van2006advanced>{{cite journal|last1=van Breemen|first1=A.J.N|last2=Philips|first2=Eindhoven|last3=Xue|first3=Yan|title=Advanced Animation Engine for User-Interface Robots|date=2006 Oct 9-15|pages=1824--1830|doi=10.1109/IROS.2006.282225|url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4058642|publisher=IEEE|location=RSJ International Conference, Beijing|id=9407698}}</ref>
* '''1963''' - The first animatronics figure of a person is created and is [[Great Moments with Mr. Lincoln|Abraham Lincoln]].<ref name="timeline-infographic"/>
* '''1963''' - The first animatronics figure of a person is created and is [[Great Moments with Mr. Lincoln|Abraham Lincoln]].<ref name=autonomatronics/>
* '''1964''' - In the film ''[[Mary Poppins (film)|Mary Poppins]]'', animatronics birds are the first animatronics to be featured in a motion picture.<ref name="timeline-infographic"/>
* '''1964''' - In the film ''[[Mary Poppins (film)|Mary Poppins]]'', animatronics birds are the first animatronics to be featured in a motion picture.
* '''1982''' - Ben Franklin is the first animatronics figure to walk up a set of stairs.<ref>{{cite journal|last1=Webb|first1=Michael|title=The Robots Are Here! The Robots Are Here!|journal=Design Quarterly|issue=121|pages=4|doi=10.2307/4091102}}</ref>
* '''1982''' - Ben Franklin is the first animatronics figure to walk up a set of stairs.<ref>{{cite journal|last1=Webb|first1=Michael|title=The Robots Are Here! The Robots Are Here!|journal=Design Quarterly|issue=121|pages=4|doi=10.2307/4091102}}</ref>
* '''1983''' - Belinda Brown is introduced as the third animatronics character at the Dreamworld theme park in the Australian Koala Theatre, joining Kenny Koala and Cooee the Gum Nut fairy.<ref>{{cite web|title=Dreamworld History|url=http://www.dreamworld.com.au/schools/pdf/dw-schools-history.pdf|website=Dreamworld|accessdate=10 August 2014}}</ref>
* '''1983''' - Belinda Brown is introduced as the third animatronics character at the Dreamworld theme park in the Australian Koala Theatre, joining Kenny Koala and Cooee the Gum Nut fairy.<ref>{{cite web|title=Dreamworld History|url=http://www.dreamworld.com.au/schools/pdf/dw-schools-history.pdf|website=Dreamworld|accessdate=10 August 2014}}</ref>
* '''1989''' - The first A-100 animatronics is developed for the film, ''The Wizard of Oz'' to represent The Wicked Witch of the West.<ref name="timeline-infographic"/>
* '''1989''' - The first A-100 animatronics is developed for the film, ''The Wizard of Oz'' to represent The Wicked Witch of the West.
* '''1993''' - The largest animatronics figure ever built is the T-Rex for the movie, ''[[Jurassic Park (film)|Jurassic Park]]''.<ref name="timeline-infographic"/>
* '''1993''' - The largest animatronics figure ever built is the T-Rex for the movie, ''[[Jurassic Park (film)|Jurassic Park]]''.
* '''1998''' - Tiger Electronics begins selling [[Furby]], an animatronics pet with over 800 English phrases or "Furbish" and the ability to react to its environment.
* '''1998''' - Tiger Electronics begins selling [[Furby]], an animatronics pet with over 800 English phrases or "Furbish" and the ability to react to its environment.
* '''1999''' - Sony releases the [[AIBO]] animatronics pet.
* '''1999''' - Sony releases the [[AIBO]] animatronics pet.
* '''2008''' - Mr. Potato Head at the Toy Story exhibit in Disney's Hollywood Studios features lips with superior range of movement to any other animatronics figure previously.<ref name="timeline-infographic"/>
* '''2008''' - Mr. Potato Head at the Toy Story exhibit in Disney's Hollywood Studios features lips with superior range of movement to any other animatronics figure previously.<ref>{{cite book|last1=Clark|first1=Eric|title=The Real Toy Story|date=2007|publisher=Free Press|isbn=978-0-7432-9889-6|url=http://books.google.com/books?id=uVTuTiPnQHQC&lpg=PT5&ots=JQpXSxt5gL|accessdate=10 August 2014}}</ref>
* '''2009''' - Disney develops ''Otto'', the first interactive figure that can hear, see and sense actions in the room.<ref name=disney>Disney Parks Blog, Disney Autonomatronics Figure Can Sense If You’re Happy, posted September 28th, 2009 by Thomas Smith, Social Media Director, Disney Parks, http://disneyparks.disney.go.com/blog/tag/autonomatronics/</ref>
* '''2009''' - Disney develops ''Otto'', the first interactive figure that can hear, see and sense actions in the room.<ref name=autonomatronics/>
* '''2009''' - The Abraham Lincoln animatronics character is upgraded to incorporate Autonomatronics technology.<ref>{{cite web|last1=Niles|first1=Robert|title=Disneyland's Mr. Lincoln debuts Disney's next generation of animatronic storytelling|url=http://www.themeparkinsider.com/flume/200912/1593/|accessdate=10 August 2014|date=2009 Dec 17}}</ref>
* '''2009''' - The Abraham Lincoln animatronics character is upgraded to incorporate Autonomatronics technology.<ref name=autonomatronics/>


== History ==
== History ==
Line 50: Line 50:
The 5th century BC [[Mohism|Mohist]] philosopher [[Mozi]] and his contemporary Lu Ban are attributed with the invention of artificial wooden birds (ma yuan) that could successfully fly in the Han Fei Zi<ref name="needham volume 2 54">Needham, Volume 2, 54</ref> and in 1066, the Chinese inventor Su Song built a [[water clock]] in the form of a tower which featured mechanical figurines which chimed the hours.
The 5th century BC [[Mohism|Mohist]] philosopher [[Mozi]] and his contemporary Lu Ban are attributed with the invention of artificial wooden birds (ma yuan) that could successfully fly in the Han Fei Zi<ref name="needham volume 2 54">Needham, Volume 2, 54</ref> and in 1066, the Chinese inventor Su Song built a [[water clock]] in the form of a tower which featured mechanical figurines which chimed the hours.


In 1515, [[Leonardo da Vinci]] designed and built the Automata Lion, one of the earliest described animatrons.<ref name="intap" /> The mechanical lion was presented by Giuliano de’ Medici of Florence to [[Francois I]], King of France as a symbol of an alliance between France and Florence.<ref name=":0">{{Cite news|url = http://in.reuters.com/article/2009/08/14/us-france-davinci-lion-idINTRE57D1MQ20090814|title = Da Vinci's lion prowls again after 500 years|last = Shirbon|first = Estelle|date = 14 August 2009|work = |accessdate = 8 August 2014|agency = Reuters}}
In 1515, [[Leonardo da Vinci]] designed and built the Automata Lion, one of the earliest described animatrons.<ref name="today-500" /> The mechanical lion was presented by Giuliano de’ Medici of Florence to [[Francois I]], King of France as a symbol of an alliance between France and Florence.<ref name="davinci-lion">{{Cite news|url = http://in.reuters.com/article/2009/08/14/us-france-davinci-lion-idINTRE57D1MQ20090814|title = Da Vinci's lion prowls again after 500 years|last = Shirbon|first = Estelle|date = 14 August 2009|work = |accessdate = 8 August 2014|agency = Reuters}}
</ref> The Automata Lion was rebuilt in 2009 according to contemporary descriptions and da Vinci's own drawings of the mechanism.<ref name=":0" /> Prior to this, da Vinci had designed and exhibited a [[mechanical knight]] at a celebration hosted by [[Ludovico Sforza]] at the court of Milan in 1495.<ref name="nih">{{cite journal |title = The da Vinci robot|last = |first = |journal = J. Endourol.|volume = 20|issue = 12|pages = 986–90|quote = ... the date of the design and possible construction of this robot was 1495 ... Beginning in the 1950s, investigators at the University of California began to ponder the significance of some of da Vinci's markings on what appeared to be technical drawings ... It is now known that da Vinci's robot would have had the outer appearance of a Germanic knight.|work = |pmid = 17206888|doi = 10.1089/end.2006.20.986|date = December 2006}}
</ref> The Automata Lion was rebuilt in 2009 according to contemporary descriptions and da Vinci's own drawings of the mechanism.<ref name="davinci-lion" /> Prior to this, da Vinci had designed and exhibited a [[mechanical knight]] at a celebration hosted by [[Ludovico Sforza]] at the court of Milan in 1495.<ref name="nih">{{cite journal |title = The da Vinci robot|last = |first = |journal = J. Endourol.|volume = 20|issue = 12|pages = 986–90|quote = ... the date of the design and possible construction of this robot was 1495 ... Beginning in the 1950s, investigators at the University of California began to ponder the significance of some of da Vinci's markings on what appeared to be technical drawings ... It is now known that da Vinci's robot would have had the outer appearance of a Germanic knight.|work = |pmid = 17206888|doi = 10.1089/end.2006.20.986|date = December 2006}}
</ref> The 'robot' was capable of standing, sitting, opening its visor and moving its arms. The drawings were rediscovered in the 1950s and a functional replica was later built.<ref name=nih />
</ref> The 'robot' was capable of standing, sitting, opening its visor and moving its arms. The drawings were rediscovered in the 1950s and a functional replica was later built.<ref name=nih />


Line 61: Line 61:


[[File:Czech-2013-Prague-Astronomical_clock_face.jpg|thumb|left|Face of the Astronomical Clock, in Old Town Square, Prague.]]
[[File:Czech-2013-Prague-Astronomical_clock_face.jpg|thumb|left|Face of the Astronomical Clock, in Old Town Square, Prague.]]
The first description of a modern cuckoo clock was by the [[Augsburg]] nobleman [[Philipp Hainhofer]] in 1629.<ref>Johannes Graf, '''The Black Forest Cuckoo Clock. A Success Story'''. NAWCC Bulletin, December 2006: p. 646.</ref> The clock belonged to Prince Elector [[August, Elector_of_Saxony|August von Sachsen]]. By 1650, the workings of mechanical cuckoos were understood and were widely disseminated in [[Athanasius Kircher]]'s handbook on music, ''Musurgia Universalis.'' In what is the first documented description of how a mechanical cuckoo works, a mechanical organ with several automated figures is described.<ref>Athanasius Kircher, Musurgia Universalis sive Ars magna consoni & dissoni, 2 Vol (Rome, 1650), here Vol. 2, p. 343f and Plate XXI.
The first description of a modern cuckoo clock was by the [[Augsburg]] nobleman [[Philipp Hainhofer]] in 1629.<ref name=cuckoo>{{cite book|last1=Molesworth|title=The Cuckoo Clock|date=1914|publisher=JB Lippincott Company|url=http://books.google.com/books?hl=en&lr=&id=ut81AQAAMAAJ|accessdate=10 August 2014}}</ref> The clock belonged to Prince Elector [[August, Elector_of_Saxony|August von Sachsen]]. By 1650, the workings of mechanical cuckoos were understood and were widely disseminated in [[Athanasius Kircher]]'s handbook on music, ''Musurgia Universalis.'' In what is the first documented description of how a mechanical cuckoo works, a mechanical organ with several automated figures is described.<ref>Athanasius Kircher, Musurgia Universalis sive Ars magna consoni & dissoni, 2 Vol (Rome, 1650), here Vol. 2, p. 343f and Plate XXI.
</ref>
</ref>
{{See also|Automaton clock|Cuckoo clock}}
{{See also|Automaton clock|Cuckoo clock}}
Line 71: Line 71:
At a banquet in Camilla of Aragon's honor in Italy, 1475, a lifelike automated camel. (Grafton, 50). The spectacle was a part of a larger parade which continued over days.<ref>{{cite book|last1=Grafton|first1=Anthony|editor1-last=Kearns|editor1-first=Robert|title=Magic and Technology in Early Modern Europe|date=2002 Oct 15|publisher=Dibner Library|url=http://www.sil.si.edu/silpublications/dibner-library-lectures/2002-Grafton/Grafton_2002.pdf|accessdate=10 August 2014|format=PDF}}</ref>
At a banquet in Camilla of Aragon's honor in Italy, 1475, a lifelike automated camel. (Grafton, 50). The spectacle was a part of a larger parade which continued over days.<ref>{{cite book|last1=Grafton|first1=Anthony|editor1-last=Kearns|editor1-first=Robert|title=Magic and Technology in Early Modern Europe|date=2002 Oct 15|publisher=Dibner Library|url=http://www.sil.si.edu/silpublications/dibner-library-lectures/2002-Grafton/Grafton_2002.pdf|accessdate=10 August 2014|format=PDF}}</ref>


In 1453, Duke Philip, created an entertainment show named The extravagant Feast of the Pheasant, which was intended ot influce the Duke's peers to participate in a crusade against the Ottomans, but ended up being a grand display of automata, giants, and dwarves.
In 1454, Duke Philip, created an entertainment show named The extravagant Feast of the Pheasant, which was intended ot influce the Duke's peers to participate in a crusade against the Ottomans, but ended up being a grand display of automata, giants, and dwarves.<ref>{{cite journal|last1=Bowles|first1=Edmund A.|title=Instruments at the Court of Burgundy (1363-1467)|journal=The Galpin Society Journal|date=1953|volume=6|pages=41|doi=10.2307/841716|accessdate=10 August 2014|publisher=JSTOR}}</ref>


Giovanni Fontana, a Paduan engineer in 1420, developed Bellicorum instrumentorum liber which includes a puppet of a camelid driven by a clothed primate twice the height of a human being and an automaton of Mary Magdalene.<ref>{{cite book|last1=Riskin|first1=edited by Jessica|title=Genesis redux : essays in the history and philosophy of artificial life|date=2007|publisher=University of Chicago Press|location=Chicago [u.a.]|isbn=9780226720807|edition=[Online-Ausg.].}}</ref>
Giovanni Fontana, a Paduan engineer in 1420, developed Bellicorum instrumentorum liber which includes a puppet of a camelid driven by a clothed primate twice the height of a human being and an automaton of Mary Magdalene.<ref>{{cite book|last1=Riskin|first1=edited by Jessica|title=Genesis redux : essays in the history and philosophy of artificial life|date=2007|publisher=University of Chicago Press|location=Chicago [u.a.]|isbn=9780226720807|edition=[Online-Ausg.].}}</ref>
Line 90: Line 90:
After ''Project Little Man'', the Imagineering team at Disney's first project was a ''Chinese Head'' which was on display in the lobby of their office. Customers could ask the head questions and it would reply with words of wisdom. The eyes blinked and its mouth opened and closed.<ref name="museum"/>
After ''Project Little Man'', the Imagineering team at Disney's first project was a ''Chinese Head'' which was on display in the lobby of their office. Customers could ask the head questions and it would reply with words of wisdom. The eyes blinked and its mouth opened and closed.<ref name="museum"/>


The [[Walt Disney]] Production company started using animatronics in 1955 for its [[Disneyland]] ride the [[Jungle Cruise]],<ref name='Animating with Animatronics"'>{{cite web|title="Real Life Canvas: Animating with Animatronics"|url=http://dizfanatic.com/DizTech005.aspx|website=DizFanatic.com|accessdate=5 August 2014}}</ref> and later for its attraction [[Walt Disney's Enchanted Tiki Room]] which featured animatronics Enchanted Tiki Birds.<ref name=wisegeek>{{cite web|title=What is Animatronics?|url=http://www.wisegeek.com/what-is-animatronics.htm|website=Wise Geek|accessdate=5 August 2014}}</ref>
The [[Walt Disney]] Production company started using animatronics in 1955 for its [[Disneyland]] ride the [[Jungle Cruise]],<ref name='Animating with Animatronics"'>{{cite web|title="Real Life Canvas: Animating with Animatronics"|url=http://dizfanatic.com/DizTech005.aspx|website=DizFanatic.com|accessdate=5 August 2014}}</ref> and later for its attraction [[Walt Disney's Enchanted Tiki Room]] which featured animatronics Enchanted Tiki Birds.<ref name=van2006advanced/>


[[File:Great Moments with Mr. Lincoln.jpg|300px|right]]
[[File:Great Moments with Mr. Lincoln.jpg|300px|right]]
Line 157: Line 157:
Disney has an entire research team devoted to improving and developing better methods of creating more lifelike animatronics exteriors with [[silicone]].<ref name=siliconeresearch>{{cite web|last1=Chan|first1=Normal|title=Synthetic Skin For Animatronic Robots Gets More Realistic|url=http://www.tested.com/tech/robots/198315-synthetic-skin-for-animatronic-robots-gets-more-realistic/|publisher=Whalerock Industries|accessdate=9 August 2014|date=2012 Aug 15}}</ref>
Disney has an entire research team devoted to improving and developing better methods of creating more lifelike animatronics exteriors with [[silicone]].<ref name=siliconeresearch>{{cite web|last1=Chan|first1=Normal|title=Synthetic Skin For Animatronic Robots Gets More Realistic|url=http://www.tested.com/tech/robots/198315-synthetic-skin-for-animatronic-robots-gets-more-realistic/|publisher=Whalerock Industries|accessdate=9 August 2014|date=2012 Aug 15}}</ref>


[[RTV silicone]] (room temperature vulcanization silicone) is used primarily as a molding material as it is very easy to use but is relatively expensive. Few other materials stick to it, making molds easy to separate.<ref>{{cite book|last1=Baygan|first1=Lee|title=Techniques of three-dimensional makeup|date=1988|publisher=Watson-Guptill|location=New York, NY|isbn=0-8230-5261-3|page=100}}</ref><ref name=Thurston1997>{{cite book|last1=James|first1=Thurston|title=The prop builder's molding & casting handbook|date=1997|publisher=Betterway Books|location=Cincinnati|isbn=1-55870-128-1|page=55|edition=6. pr.}}</ref>
[[RTV silicone]] (room temperature vulcanization silicone) is used primarily as a molding material as it is very easy to use but is relatively expensive. Few other materials stick to it, making molds easy to separate.<ref>{{cite book|last1=Baygan|first1=Lee|title=Techniques of three-dimensional makeup|date=1988|publisher=Watson-Guptill|location=New York, NY|isbn=0-8230-5261-3|page=100}}</ref><ref name=molding>{{cite book|last1=James|first1=Thurston|title=The prop builder's molding & casting handbook|date=1997|publisher=Betterway Books|location=Cincinnati|isbn=1-55870-128-1|page=55|edition=6. pr.}}</ref>


Bubbles are removed from silicone by pouring the liquid material in a thin stream or processing in a vacuum chamber prior to use. [[Fumed silica]] is used as a bulking agent for thicker coatings of the material.<ref name="buffingtonfx-skin" />
Bubbles are removed from silicone by pouring the liquid material in a thin stream or processing in a vacuum chamber prior to use. [[Fumed silica]] is used as a bulking agent for thicker coatings of the material.<ref>{{cite journal|last1=Whelan MSc|first1=Tony|title=Polymer Technology Dictionary|date=1994|pages=144-168|doi=10.1007/978-94-011-1292-5_8|url=http://link.springer.com/chapter/10.1007/978-94-011-1292-5_8|publisher=Springer Netherlands}}</ref>


===== Polyurethane =====
===== Polyurethane =====
Line 165: Line 165:


===== Plaster =====
===== Plaster =====
As a commonplace construction and home decorating material, plaster is widely available. Its rigidity limits its use in moulds, and plaster moulds are unsuitable when undercuts are present. This may make plaster far more difficult to use than softer materials like latex or silicone.<ref name="buffingtonfx-skin"/><ref name=Thurston1997 />
As a commonplace construction and home decorating material, plaster is widely available. Its rigidity limits its use in moulds, and plaster moulds are unsuitable when undercuts are present. This may make plaster far more difficult to use than softer materials like latex or silicone.<ref name=molding />


=== Movement ===
=== Movement ===
Pneumatic actuators can be used for small animatronics but are not powerful enough for large designs and must be supplemented with hydraulics. To create more realistic movement in large figures, an analog system is generally used to give the figures a full range of fluid motion rather than simple two position movements.
Pneumatic actuators can be used for small animatronics but are not powerful enough for large designs and must be supplemented with hydraulics. To create more realistic movement in large figures, an analog system is generally used to give the figures a full range of fluid motion rather than simple two position movements.<ref>{{cite journal|last1=Kornbluh|first1=Roy D|last2=Pelrine|first2=Ron|last3=Qibing|first3=Pei|last4=Heydt|first4=Richard|last5=Stanford|first5=Scott|last6=Oh|first6=Seajin|last7=Eckerle|first7=Joseph|title=Electroelastomers: applications of dielectric elastomer transducers for actuation, generation, and smart structures|journal=Smart Structures and Material|date=2002 July 9|volume=Applications of Smart Structures Technologies|issue=254|doi=10.1117/12.475072|url=http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=883273|ref=SPIE 4698}}</ref>


=== Emotion Modeling ===
=== Emotion Modeling ===

Revision as of 23:23, 10 August 2014

Lucky the Dinosaur audio-animatronic at Walt Disney World in 2005 was the first one to walk on land
Tyrannosaurus at the Natural History Museum of London

Animatronics is the use of mechatronics to create machines which simulate animate life with lifelike characteristics rather than artificial robotic.[1] Animatronic creations include animals (including dinosaurs), plants and even mythical creatures. A robot designed to be a convincing imitation of a human is more specifically labeled as an android.

Animatronic figures are most often powered by pneumatics, hydraulics, or by electrical means, and can be implemented using both computer control and human control, including teleoperation. Motion actuators are often used to imitate muscle movements and create realistic motions in limbs. Figures are covered with body shells and flexible skins made of hard and soft plastic materials, and finished with details like colors, hair and feathers and other components to make the figure more realistic.

Modern-animatronics have found popularity in movie special effects and theme parks and have, since their inception, been primarily used as a spectacle of amusement.

Etymology

A scene from Karel Capek's 1920 play R.U.R. (Rossum's Universal Robots), showing three robots

Automated life in lifelike form is Animatronic. Early modern animatronics were often referred to as robots because the word animatronic was not yet popularized. The Slavic word robota (forced labour) was coined to describe the man-made workers central to Czech playwright Karel Čapek's 1921 play 'R.U.R. (Rossum's Universal Robots).[2] While robots, coined by Josef Čapek Karel's brother,[2] are used in industrial activity, "androids" (or female "gynoids") and animatronics play, entertain, teach, and amaze. With modern day labels for each, animatronic is typically reserved for non-humanoid lifelike characters; though humanoid characters can be considered animatronics, they can be labeled more precisely as robots or androids dependent on their function. All of these terms are a subset of the more general term “automaton”, coming from the Greek meaning “self-mover”.[3]

The term Audio-Animatronics was coined by Walt Disney when he started developing animatronics for entertainment and film. Audio-Animatronics does not differentiate between animatronics and androids.

Autonomatronics, was also defined by Walt Disney Imagineers, to describe a more advanced audio-animatronic technology featuring cameras and complex sensors to process information around the characters environment and respond to that stimulus.[4]

Timeline

  • 1220-1240 - The Portfolio of Villard de Honnecourt depicts an early escapement mechanism in a drawing titled “How to make an angel keep pointing his finger toward the Sun” and an automaton of a bird, with jointed wings.[5]
  • 1550 - Leonardo da Vinci designed and built the Automata Lion.[6]
  • 1738 - The construction of an automata begins in Grenoble, France by Jacques de Vaucanson. First a flute player that could play twelve songs - The Flute Player, followed by a character playing a flute and drum or tambourine - The Tambourine Player, and concluding with a moving / quacking / flapping / eating duck - The Digesting Duck.[7]
  • 1770 - Pierre Jaquet-Droz and his son Henri-Louis Jaquet-Droz, both Swiss watchmakers, start making automata for European royalty. Once completed, they had created three dolls. One doll was able to write, the other play music and the 3rd doll could draw pictures.[8]
  • 1801 - Joseph Jacquard builds a loom that is controlled autonomously with punched cards.
  • 1939 - Sparko, The Robot Dog, pet of Elektro the Robot, performs in front of the public at the 1939 New York World's Fair but Sparko is not like normal robots, Sparko represents a living animal, thus becoming the very first modern day animatronics character[9], along with an unnamed horse which was reported to gallop realistically. The animatronics galloping horse was also on display at the 1939 World's Fair, in a different exhibit than Sparko's.[10]
  • 1961 - Heinrich Ernst develops the MH-1, a computer operated mechanical hand at MIT.[11]
  • 1961 - Walt Disney coins the term audio-animatronics and begins developing modern animatronics technology.[12]
  • 1963 - The first animatronics created by Disney are the Enchanted Tiki Birds which were featured at Disnleyland.[13]
  • 1963 - The first animatronics figure of a person is created and is Abraham Lincoln.[12]
  • 1964 - In the film Mary Poppins, animatronics birds are the first animatronics to be featured in a motion picture.
  • 1982 - Ben Franklin is the first animatronics figure to walk up a set of stairs.[14]
  • 1983 - Belinda Brown is introduced as the third animatronics character at the Dreamworld theme park in the Australian Koala Theatre, joining Kenny Koala and Cooee the Gum Nut fairy.[15]
  • 1989 - The first A-100 animatronics is developed for the film, The Wizard of Oz to represent The Wicked Witch of the West.
  • 1993 - The largest animatronics figure ever built is the T-Rex for the movie, Jurassic Park.
  • 1998 - Tiger Electronics begins selling Furby, an animatronics pet with over 800 English phrases or "Furbish" and the ability to react to its environment.
  • 1999 - Sony releases the AIBO animatronics pet.
  • 2008 - Mr. Potato Head at the Toy Story exhibit in Disney's Hollywood Studios features lips with superior range of movement to any other animatronics figure previously.[16]
  • 2009 - Disney develops Otto, the first interactive figure that can hear, see and sense actions in the room.[12]
  • 2009 - The Abraham Lincoln animatronics character is upgraded to incorporate Autonomatronics technology.[12]

History

Origins

Al-Jazari's toy boat, musical automata

The 3rd century BC text of the Liezi describes an encounter between King Mu of Zhou and an 'artificer' known as Yan Shi, who presented the king with a life-size automaton. The 'figure' was described as able to walk, pose and sing, and when dismantled was observed to consist of anatomically accurate organs.[17]

The 5th century BC Mohist philosopher Mozi and his contemporary Lu Ban are attributed with the invention of artificial wooden birds (ma yuan) that could successfully fly in the Han Fei Zi[18] and in 1066, the Chinese inventor Su Song built a water clock in the form of a tower which featured mechanical figurines which chimed the hours.

In 1515, Leonardo da Vinci designed and built the Automata Lion, one of the earliest described animatrons.[1] The mechanical lion was presented by Giuliano de’ Medici of Florence to Francois I, King of France as a symbol of an alliance between France and Florence.[19] The Automata Lion was rebuilt in 2009 according to contemporary descriptions and da Vinci's own drawings of the mechanism.[19] Prior to this, da Vinci had designed and exhibited a mechanical knight at a celebration hosted by Ludovico Sforza at the court of Milan in 1495.[20] The 'robot' was capable of standing, sitting, opening its visor and moving its arms. The drawings were rediscovered in the 1950s and a functional replica was later built.[20]

Early Implementations

Clocks

Greek washstand automaton of the 3rd century BC

Approximately 1220 - 1230, Villard_de_Honnecourt wrote The Portfolio of Villard de Honnecourt which depicts an early escapement mechanism in a drawing titled “How to make an angel keep pointing his finger toward the Sun” and an automaton of a bird, with jointed wings which led to their design implementation in clocks. Because of their size and complexity, the majority of these clocks were built as public spectacles in the town centre. One of the earliest of these large clocks was the Strassbourg Clock, built in the fourteenth century which takes up the entire side of a cathedral wall. It contained an astronomical calendar, automata depicting animals, saints and the life of Christ. The clock still functions to this day, but has undergone several restorations since it's initial construction. The Prague astronomical clock was built in 1410, animated figures were added from the 17th century onwards.[21]

Face of the Astronomical Clock, in Old Town Square, Prague.

The first description of a modern cuckoo clock was by the Augsburg nobleman Philipp Hainhofer in 1629.[22] The clock belonged to Prince Elector August von Sachsen. By 1650, the workings of mechanical cuckoos were understood and were widely disseminated in Athanasius Kircher's handbook on music, Musurgia Universalis. In what is the first documented description of how a mechanical cuckoo works, a mechanical organ with several automated figures is described.[23]

In 18th century Germany, clock makers began making cuckoo clocks for sale.[21] Clock shops selling cuckoo clocks became commonplace in the Black Forest region by the middle of the 18th century.[24]

Attractions

At a banquet in Camilla of Aragon's honor in Italy, 1475, a lifelike automated camel. (Grafton, 50). The spectacle was a part of a larger parade which continued over days.[25]

In 1454, Duke Philip, created an entertainment show named The extravagant Feast of the Pheasant, which was intended ot influce the Duke's peers to participate in a crusade against the Ottomans, but ended up being a grand display of automata, giants, and dwarves.[26]

Giovanni Fontana, a Paduan engineer in 1420, developed Bellicorum instrumentorum liber which includes a puppet of a camelid driven by a clothed primate twice the height of a human being and an automaton of Mary Magdalene.[27]

Implementations

Attractions

File:Sparko.jpg
Westinghouse - Mechanical Dog (Sparko) - Diagram

The earliest modern animatronics can actually be found in old robots. While some of these robots were in fact animatronics, at the time they were thought of simply as robots because the term animatronics had yet to become popularized.

The first animatronics characters to be displayed to the public were a dog, and a horse. Each were the attraction at two separate spectacles during the 1939 New York World's Fair. Sparko, The Robot Dog, pet of Elektro the Robot, performs in front of the public at the 1939 New York World's Fair but Sparko is not like normal robots, Sparko represents a living animal, thus becoming the very first modern day animatronics character[28], along with an unnamed horse which was reported to gallop realistically. The animatronics galloping horse was also on display at the 1939 World's Fair, in a different exhibit than Sparko's.[29]

Walt Disney is often credited for popularizing animatronics for entertainment after he bought an animatronic bird while he was vacationing, although it is disputed whether it was in New Orleans[30] or Europe.[31] Disney's vision for audio-animatronics was primarily focused on patriotic displays rather than amusements.[32]

In 1951, 2 years after Walt Disney discovered animatronics, he commissioned machinist Roger Broggie and sculptor Wathel Rogers to lead a team tasked with creating a 9" tall figure that could move and talk simulating dance routines performed by actor Buddy Ebsen. The project was titled 'Project Little Man' but was never finished. A year later, Walt Disney Imagineering was created.[33]

After Project Little Man, the Imagineering team at Disney's first project was a Chinese Head which was on display in the lobby of their office. Customers could ask the head questions and it would reply with words of wisdom. The eyes blinked and its mouth opened and closed.[33]

The Walt Disney Production company started using animatronics in 1955 for its Disneyland ride the Jungle Cruise,[34] and later for its attraction Walt Disney's Enchanted Tiki Room which featured animatronics Enchanted Tiki Birds.[13]

File:Great Moments with Mr. Lincoln.jpg

The first fully completed human audio-animatronic figure was Abraham Lincoln, created by Walt Disney in 1964 for the 1964 World's Fair in the New York. In 1965, Disney upgraded the figure and coined it as the Lincoln Mark II, which appeared at the Opera House at Disneyland Resort in California.[32] For three months, the original Lincoln performed in New York, while the Lincoln Mark II played 5 performances per hour at Disneyland. Body language and facial motions were matched to perfection with the recorded speech.[35] Actor Royal Dano voiced the animatronics version of Abraham Lincoln.[32]

Lucky the Dinosaur is an approximately 8-foot-tall (2.4 m) green Segnosaurus which pulls a flower-covered cart and is led by "Chandler the Dinosaur Handler". Lucky is notable in that he was the first free-roving audio-animatronic figure ever created by Disney's Imagineers.[36] The flower cart he pulls conceals the computer and power source.[37]

The Muppet Mobile Lab is a free-roving, audio-animatronic entertainment attraction designed by Walt Disney Imagineering. Two Muppet characters, Dr. Bunsen Honeydew and his assistant, Beaker, pilot the vehicle through the park, interacting with guests and deploying special effects such as foggers, flashing lights, moving signs, confetti cannons and spray jets.[38] It is currently deployed at Hong Kong Disneyland in Hong Kong.[39]

A Laffing Sal is one of several automated characters that were used to attract carnival and amusement park patrons to funhouses and dark rides throughout the United States.[40] Its movements were accompanied by a raucous laugh that sometimes frightened small children and annoyed adults.[41] The Rock-afire Explosion in an animatronic robot band that played in Showbiz Pizza Place from 1980 to 1990.

Film & Television

The film industry has been a driving force revolutionizing the technology used to develop animatronics.[42]

Animatronics are used in situations where a creature does not exist, the action is too risky or costly to use real actors or animals, or the action could never be obtained with a living person or animal. Its main advantage over CGI and stop motion is that the simulated creature has a physical presence moving in front of the camera in real time. The technology behind animatronics has become more advance and sophisticated over the years, making the puppets even more realistic and lifelike.

Animatronics were first introduced by Disney in the 1964 film Mary Poppins which featured an animatronics bird. Since then, animatronics have been used extensively in such movies as Jaws, and E.T. the Extra-Terrestrial, which relied heavily on animatronics.[21]

Directors such as Steven Spielberg and Jim Henson have been pioneers in using animatronics in the film industry.

A life-sized Tyrannosaurus robotic model, with hydraulics where the dinosaur's feet would be, touches a car in a movie set.
The life-sized animatronic Tyrannosaurus on the set. It is the largest sculpture ever made by Stan Winston Studio.[43]

The 1993 film Jurassic Park used a combination of computer-generated imageryin conjunction with life-sized animatronic dinosaurs built by Stan Winston and his team. Winston's animatronic T. rex stood 20 feet (6.1 m), weighed 17,500 pounds (7,900 kg),[citation needed] and was 40 feet (12 m) long.[44] Jack Horner called it "the closest I've ever been to a live dinosaur".[44] The site Rotten Tomatoes states "Jurassic Park is a spectacle of special effects and life-like animatronics, with some of Spielberg's best sequences of sustained awe and sheer terror since Jaws."[45]

The 1999 BBC miniseries Walking with Dinosaurs was produced using a combination of about 80% CGI and 20% animatronic models.[46] The quality of computer imagery of the day were good, but animatronics were still better at distance shots, as well as closeups of the dinosaurs.[46] Animatronics for the serise were designed by British animatronics firm Crawley Creatures.[46] The show was followed up in 2007 with a live adaptation of the series, Walking with Dinosaurs:The Arena Spectacular.

Geoff Peterson is an animatronic human skeleton that serves as the sidekick on the late-night talk show The Late Late Show with Craig Ferguson. Often referred to as a "robot skeleton", Peterson is a radio-controlled animatronic robot puppet designed and built by Grant Imahara of MythBusters.[47]

Advertising

The British advertisement campaign for Cadbury Schweppes titled Gorilla featured an actor inside a gorilla suit with an animatronically animated face.

The Slowskys was an advertising campaign for Comcast Cable's Xfinity broadband Internet service.[48] The ad features two animatronic turtles, and it won the gold Effie Award in 2007.[49]

Toys

Some examples of animatronic toys include Teddy Ruxpin, Big Mouth Billy Bass, Kota the triceratops, Pleo and WowWee Alive Chimpanzee.

Design

An animatronic

The construction begins by building the structure, by using internal structures that are often made of steel. Attached to these bones are the muscles which can be manufactured by using stretchable netting filled with styrene beads. [50] The frame provides the support for the electronics and mechanical components, as well as providing the shape for the outer skin.

The skin of the figure is most often made of foam rubber, silicone or urethane, which is poured into moulds and allowed to cure. To further strengthen the skin, a piece of fabric is cut to size and embedded in the foam rubber after it is poured into the mould. Once cured, each piece of skin is pulled from its mold.[51]

Although basically similar, the design and production processes for animatronics in cinema varies greatly from animation for theme parks and other permanent venues.[further explanation needed]

Structure

An animatronics character is typically designed to be as realistic as possible and thus, is built similarly to how it would be in real life. The framework of the figure is like the skeleton. Wherever movement is required, joints and motors and actuators and other movement mechanisms, the muscles. Connecting all the electrical components together are wires, such as the nervous system of a real animal or person.[52]

Frame or skeleton

Steel, aluminum, plastic, and wood are all commonly used in building animatronics but each has it's best purpose. The relative strength as well as the weight of the material itself should be considered when determining the most appropriate material to use. The cost of the material may also be a concern.[52]

Exterior or skin

Several different materials are commonly used in the fabrication of a animatronics figures exterior. Dependent on the particular circumstances, the best material will be used to produce the most life-like form.

For example, eyes and teeth are commonly made completely out of acrylic.[53]

Latex

White latex is commonly used as a general material because it has a high level of elasticity. Its also pre-vulcanized, making it easy to and fast to apply.[54] Latex is produced in several grades. Grade 74 is a popular form of latex that dries rapidly and can be applied very thick, making it ideal for developing molds.[55]

Foam latex is a lightweight, soft form of latex which is used in masks and facial prosthetics to change a person's outward appearance, and in animatronics to create a realistic skin.[55] The Wizard of Oz was one of the first films to make extensive use of foam latex prosthetics in the 1930s.[56]

Silicone

Disney has an entire research team devoted to improving and developing better methods of creating more lifelike animatronics exteriors with silicone.[57]

RTV silicone (room temperature vulcanization silicone) is used primarily as a molding material as it is very easy to use but is relatively expensive. Few other materials stick to it, making molds easy to separate.[58][59]

Bubbles are removed from silicone by pouring the liquid material in a thin stream or processing in a vacuum chamber prior to use. Fumed silica is used as a bulking agent for thicker coatings of the material.[60]

Polyurethane

Polyurethane rubber is a more cost effective material to use in place of silicone. Polyurethane comes in various levels of hardness which are measured on the Shore scale. Rigid polyurethane foam is used in prototyping because it can be milled and shaped in high density. Flexible polyurethane foam is often used in the actual building of the final animatronic figure because it is flexible and bonds well with latex.[55]

Plaster

As a commonplace construction and home decorating material, plaster is widely available. Its rigidity limits its use in moulds, and plaster moulds are unsuitable when undercuts are present. This may make plaster far more difficult to use than softer materials like latex or silicone.[59]

Movement

Pneumatic actuators can be used for small animatronics but are not powerful enough for large designs and must be supplemented with hydraulics. To create more realistic movement in large figures, an analog system is generally used to give the figures a full range of fluid motion rather than simple two position movements.[61]

Emotion Modeling

Mimicing the often subtle displays of humans and other living creatures, and the associated movement is a challenging task when developing animatronics. One of the most common emotional models is the Facial Action Coding System (FACS) developed by Ekman and Friesen.[62] FACS defines that through facial expression, humans can recognize 6 basic emotions: anger, disgust, fear, joy, sadness, and surprise. Another theory is that of Ortony, Clore and Collins, or the OCC model[63] which defines 22 different emotional categories.[64]

Training and education

Animatronics has been developed as a career which combines areas of mechanical engineering, casting/sculpting, control technologies, electrical/electronic, radio control and airbrushing.

Colleges and universities do not offer degree programs in animatronics. Individuals interested in animatronics typically earn a degree in robotics which closely relate to the specializations needed in animatronics engineering.[65]

Students achieving a bachelors degree in robotics commonly complete courses in:

  • Mechanical engineering
  • Industrial robotics
  • Mechatronics systems
  • Modeling of robotics systems
  • Robotics engineering
  • Foundational theory of robotics
  • Introduction to robotics

See also

References

  1. ^ a b Schilling, David Russell. "Today's Animatronics Almost 500 Years in the Making". Industry Tap. Retrieved 5 August 2014.
  2. ^ a b Zunt, Dominik. "Who did actually invent the word "robot" and what does it mean?". The Karel Capek. Retrieved 2007-09-11. Cite error: The named reference "KapekWebsite" was defined multiple times with different content (see the help page).
  3. ^ Sill, Christina Rose (2013 Apr 10). "A Survey of Androids and Audiences: 285 BCE to the Present Day" (PDF). Simon Fraser University. {{cite journal}}: Check date values in: |date= (help); Cite journal requires |journal= (help)
  4. ^ Kiniry, Laura. "6 Cool—And Creepy—Animatronic Advancements". Popular Mechanics. Retrieved 10 August 2014.
  5. ^ Ackerman, James S. "Villard de Honnecourt's Drawings of Reims Cathedral: A Study in Architectural Representation". Artibus et Historiae. 18 (35): 41. doi:10.2307/1483536.
  6. ^ Bedini, Silvio A. "The Role of Automata in the History of Technology". Technology and Culture. 5 (1): 24. doi:10.2307/3101120.
  7. ^ Fryer, David M.; Marshall, John C. "The Motives of Jacques de Vaucanson". Technology and Culture. 20 (2): 257. doi:10.2307/3103866.
  8. ^ Riskin, Jessica. "The Defecating Duck, or, the Ambiguous Origins of Artificial Life". Critical Inquiry. 29 (4): 599–633. doi:10.1086/377722.
  9. ^ "An introduction to Animatronics". Retrieved 10 August 2014.
  10. ^ "A Mechanical Horse Gallops Realistically". Popular Science. 134 (1): 117. 1939 Jan. Retrieved 10 August 2014. {{cite journal}}: Check date values in: |date= (help)
  11. ^ "UTHM Hand: Mechanics Behind The Dexterous Anthropomorphic Hand". World Academy Of Science, Engineering And Technology. 74: 154–158. 2011. Retrieved 10 August 2014.
  12. ^ a b c d Ayala, Alfredo Medina (2010 Oct 22). [url=http://link.springer.com/chapter/10.1007/978-3-642-20810-2_2#page-1 Advances in New Technologies, Interactive Interfaces, and Communicability First International Conference Papers] (1., st Edition ed.). Berlin: Springer Berlin Heidelberg. ISBN 978-3-642-20809-6. {{cite book}}: |edition= has extra text (help); Check |url= value (help); Check date values in: |date= (help); Missing pipe in: |url= (help)
  13. ^ a b van Breemen, A.J.N; Philips, Eindhoven; Xue, Yan (2006 Oct 9-15). "Advanced Animation Engine for User-Interface Robots". RSJ International Conference, Beijing: IEEE: 1824--1830. doi:10.1109/IROS.2006.282225. 9407698. {{cite journal}}: Check date values in: |date= (help); Cite journal requires |journal= (help)
  14. ^ Webb, Michael. "The Robots Are Here! The Robots Are Here!". Design Quarterly (121): 4. doi:10.2307/4091102.
  15. ^ "Dreamworld History" (PDF). Dreamworld. Retrieved 10 August 2014.
  16. ^ Clark, Eric (2007). The Real Toy Story. Free Press. ISBN 978-0-7432-9889-6. Retrieved 10 August 2014.
  17. ^ Needham, Joseph (1986). Science and Civilization in China. Vol. 2. Taipei: Caves Books Ltd. p. 53. It walked with rapid strides, moving its head up and down, so that anyone would have taken it for a live human being.
  18. ^ Needham, Volume 2, 54
  19. ^ a b Shirbon, Estelle (14 August 2009). "Da Vinci's lion prowls again after 500 years". Reuters. Retrieved 8 August 2014.
  20. ^ a b "The da Vinci robot". J. Endourol. 20 (12): 986–90. December 2006. doi:10.1089/end.2006.20.986. PMID 17206888. ... the date of the design and possible construction of this robot was 1495 ... Beginning in the 1950s, investigators at the University of California began to ponder the significance of some of da Vinci's markings on what appeared to be technical drawings ... It is now known that da Vinci's robot would have had the outer appearance of a Germanic knight.
  21. ^ a b c "The Real History of Animatronics". Rogers Studios. Retrieved August 4, 2014.
  22. ^ Molesworth (1914). The Cuckoo Clock. JB Lippincott Company. Retrieved 10 August 2014.
  23. ^ Athanasius Kircher, Musurgia Universalis sive Ars magna consoni & dissoni, 2 Vol (Rome, 1650), here Vol. 2, p. 343f and Plate XXI.
  24. ^ Miller, Justin (2012). Rare and Unusual Black Forest Clocks. Schiffer. p. 30.
  25. ^ Grafton, Anthony (2002 Oct 15). Kearns, Robert (ed.). Magic and Technology in Early Modern Europe (PDF). Dibner Library. Retrieved 10 August 2014. {{cite book}}: Check date values in: |date= (help)
  26. ^ Bowles, Edmund A. (1953). "Instruments at the Court of Burgundy (1363-1467)". The Galpin Society Journal. 6. JSTOR: 41. doi:10.2307/841716. {{cite journal}}: |access-date= requires |url= (help)
  27. ^ Riskin, edited by Jessica (2007). Genesis redux : essays in the history and philosophy of artificial life ([Online-Ausg.]. ed.). Chicago [u.a.]: University of Chicago Press. ISBN 9780226720807. {{cite book}}: |first1= has generic name (help)
  28. ^ "An introduction to Animatronics". Retrieved 10 August 2014.
  29. ^ "A Mechanical Horse Gallops Realistically". Popular Science. 134 (1): 117. 1939 Jan. Retrieved 10 August 2014. {{cite journal}}: Check date values in: |date= (help)
  30. ^ Johnston, Cassey (June 13, 2014). "How Disney built and programmed an animatronic president". Ars Technica. Retrieved August 4, 2014.
  31. ^ "The History of Disney's Audio Animatronics". Magical Kingdoms. Retrieved 6 August 2014.
  32. ^ a b c Pierce, Todd James. "Beyond Lincoln: Walt's Vision for Animatronics in 1965". Retrieved 6 August 2014.
  33. ^ a b Gluck, Keith (2013 June 18). "The Early Days of Audio-Animatronics". San Francisco, CA: The Walt Disney Family Museum. Retrieved 10 August 2014. The Walt Disney Family Museum is not affiliated with The Walt Disney Company. {{cite web}}: Check date values in: |date= (help)
  34. ^ ""Real Life Canvas: Animating with Animatronics"". DizFanatic.com. Retrieved 5 August 2014.
  35. ^ Huebner, T (2005). Looking back and looking ahead—does this revered attraction have a future?, retrieved November 29, 2011
  36. ^ Levelbest Communications (2005-05-06). "Walt Disney World - Disney World Vacation Information Guide - INTERCOT - Walt Disney World Inside & Out - Theme Parks". Intercot. Retrieved 2014-08-04.
  37. ^ "MousePlanet Park Guide - Walt Disney World - Lucky the Dinosaur". Mouseplanet.com. 2010-06-19. Retrieved 2014-08-04.
  38. ^ Powers, Scott. "Muppets go mobile at Epcot". Orlando Sentinel. Retrieved 2007-09-14.
  39. ^ "The Themed Entertainment Association's 15th Thea Awards - Delightfully Disney - Muppet Mobile Lab Profile" (PDF). Themed Entertainment Association. Retrieved 2009-09-30.
  40. ^ Luca, Bill (2003) My Gal Sal Laff In The Dark.com. Accessed 26 August 2010
  41. ^ History of Laffing Sal, Musée Mécanique. Accessed 10 August 2007.
  42. ^ "How do they do that? With animatronics!". Custom Entertainment Solutions. 2013 Feb 13. Retrieved 9 August 2014. {{cite web}}: Check date values in: |date= (help)
  43. ^ "Jurassic Park's T-Rex - Sculpting a Full-Size Dinosaur". Stan Winston School of Character Arts. 2012-12-15. Retrieved 2014-01-05.
  44. ^ a b Corliss, Richard (April 26, 1993). "Behind the Magic of Jurassic Park". TIME. Retrieved January 26, 2007.
  45. ^ "Jurassic Park". Rotten Tomatoes. Retrieved April 19, 2013.
  46. ^ a b c von Stamm, Bettina. "Managing Innovation, Design and Creativity". Wiley Publishers. Retrieved 5 August 2014.
  47. ^ "Craig Ferguson's New Mythbuster Robot Sidekick: Exclusive Pics". Popular Mechanics. April 2, 2010. Retrieved July 29, 2010.
  48. ^ "Comcast tortoises deal with sudden fame". Adfreak.com. Retrieved 21 October 2010.
  49. ^ "2007 Gold Effie Winner - Comcast "The Slowskys"" (PDF). Amazon Web Service. Retrieved 7 August 2014.
  50. ^ Roberts, Tom. Animatronics – with added bite. 12 August 2009. In: The Guardian. Retrieved 6 August 2014.
  51. ^ Tyson, Jeff. "How Animatronics Work". How Stuff Works. Retrieved 27 November 2011.
  52. ^ a b Wise, Edwin (2000). Animatronics: A Guide to Animated Holiday Displays. Cengage Learning. p. 9. ISBN 0790612194.
  53. ^ Buffington, Jack. "Arvid's Eyes". Buffington Effects. Retrieved 9 August 2014.
  54. ^ James, Thurston (1997). The prop builder's molding & casting handbook (6. pr. ed.). Cincinnati: Betterway Books. p. 51. ISBN 1-55870-128-1.
  55. ^ a b c Buffington, Jack. "Skin and Molds". BuffingtonFX.
  56. ^ Miller, Ron (2006). Special Effects: An Introduction to Movie Magic. Twenty-First Century Books.
  57. ^ Chan, Normal (2012 Aug 15). "Synthetic Skin For Animatronic Robots Gets More Realistic". Whalerock Industries. Retrieved 9 August 2014. {{cite web}}: Check date values in: |date= (help)
  58. ^ Baygan, Lee (1988). Techniques of three-dimensional makeup. New York, NY: Watson-Guptill. p. 100. ISBN 0-8230-5261-3.
  59. ^ a b James, Thurston (1997). The prop builder's molding & casting handbook (6. pr. ed.). Cincinnati: Betterway Books. p. 55. ISBN 1-55870-128-1.
  60. ^ Whelan MSc, Tony (1994). "Polymer Technology Dictionary". Springer Netherlands: 144–168. doi:10.1007/978-94-011-1292-5_8. {{cite journal}}: Cite journal requires |journal= (help)
  61. ^ Kornbluh, Roy D; Pelrine, Ron; Qibing, Pei; Heydt, Richard; Stanford, Scott; Oh, Seajin; Eckerle, Joseph (2002 July 9). "Electroelastomers: applications of dielectric elastomer transducers for actuation, generation, and smart structures". Smart Structures and Material. Applications of Smart Structures Technologies (254). doi:10.1117/12.475072. {{cite journal}}: Check date values in: |date= (help)
  62. ^ Ekman, P; Friesen, W (1975). "Unmasking the Face: A Guide to Recognizing Emotions From Facial Expressions". Prentice Hall. {{cite journal}}: Cite journal requires |journal= (help)
  63. ^ Ortony, A; Clore, GL; Collins, A (1988). "The Cognitive Structure of Emotions". {{cite journal}}: Cite journal requires |journal= (help)
  64. ^ Ribeiro, Tiago; Paiva, Ana. "The Illusion of Robotic Life" (PDF). Porto Salvo, Portugal: INESC-ID. Retrieved 9 August 2014. {{cite journal}}: Cite journal requires |journal= (help)
  65. ^ "Animatronics Degree Programs w/ Career Information". Education Career Articles. 25 March 2013. Retrieved 6 August 2014.

External links