Jump to content

2018 in paleomammalogy: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 1,332: Line 1,332:
* Late [[Pleistocene]] hominin tracks, probably produced by ''Homo sapiens'', are described from the Waenhuiskrans Formation ([[South Africa]]) by Helm ''et al.'' (2018).<ref>{{Cite journal|author1=Charles W. Helm |author2=Richard T. McCrea |author3=Hayley C. Cawthra |author4=Martin G. Lockley |author5=Richard M. Cowling |author6=Curtis W. Marean |author7=Guy H. H. Thesen |author8=Tammy S. Pigeon |author9=Sinèad Hattingh |year=2018 |title=A new Pleistocene hominin tracksite from the Cape south coast, South Africa |journal=Scientific Reports |volume=8 |pages=Article number 3772 |doi=10.1038/s41598-018-22059-5 }}</ref>
* Late [[Pleistocene]] hominin tracks, probably produced by ''Homo sapiens'', are described from the Waenhuiskrans Formation ([[South Africa]]) by Helm ''et al.'' (2018).<ref>{{Cite journal|author1=Charles W. Helm |author2=Richard T. McCrea |author3=Hayley C. Cawthra |author4=Martin G. Lockley |author5=Richard M. Cowling |author6=Curtis W. Marean |author7=Guy H. H. Thesen |author8=Tammy S. Pigeon |author9=Sinèad Hattingh |year=2018 |title=A new Pleistocene hominin tracksite from the Cape south coast, South Africa |journal=Scientific Reports |volume=8 |pages=Article number 3772 |doi=10.1038/s41598-018-22059-5 }}</ref>
* A study on the age of a modern human [[mandible]] with teeth from the [[Misliya cave]] ([[Mount Carmel]], [[Israel]]) is published by Hershkovitz ''et al.'' (2018), who date the fossil as at least 177,000 years old, representing the oldest reported fossil of a member of the ''Homo sapiens'' clade found outside Africa.<ref>{{Cite journal|author1=Israel Hershkovitz |author2=Gerhard W. Weber |author3=Rolf Quam |author4=Mathieu Duval |author5=Rainer Grün |author6=Leslie Kinsley |author7=Avner Ayalon |author8=Miryam Bar-Matthews |author9=Helene Valladas |author10=Norbert Mercier |author11=Juan Luis Arsuaga |author12=María Martinón-Torres |author13=José María Bermúdez de Castro |author14=Cinzia Fornai |author15=Laura Martín-Francés |author16=Rachel Sarig |author17=Hila May |author18=Viktoria A. Krenn |author19=Viviane Slon |author20=Laura Rodríguez |author21=Rebeca García |author22=Carlos Lorenzo |author23=Jose Miguel Carretero |author24=Amos Frumkin |author25=Ruth Shahack-Gross |author26=Daniella E. Bar-Yosef Mayer |author27=Yaming Cui |author28=Xinzhi Wu |author29=Natan Peled |author30=Iris Groman-Yaroslavski |author31=Lior Weissbrod |author32=Reuven Yeshurun |author33=Alexander Tsatskin |author34=Yossi Zaidner |author35=Mina Weinstein-Evron |year=2018 |title=The earliest modern humans outside Africa |journal=Science |volume=359 |issue=6374 |pages=456–459 |doi=10.1126/science.aap8369 }}</ref>
* A study on the age of a modern human [[mandible]] with teeth from the [[Misliya cave]] ([[Mount Carmel]], [[Israel]]) is published by Hershkovitz ''et al.'' (2018), who date the fossil as at least 177,000 years old, representing the oldest reported fossil of a member of the ''Homo sapiens'' clade found outside Africa.<ref>{{Cite journal|author1=Israel Hershkovitz |author2=Gerhard W. Weber |author3=Rolf Quam |author4=Mathieu Duval |author5=Rainer Grün |author6=Leslie Kinsley |author7=Avner Ayalon |author8=Miryam Bar-Matthews |author9=Helene Valladas |author10=Norbert Mercier |author11=Juan Luis Arsuaga |author12=María Martinón-Torres |author13=José María Bermúdez de Castro |author14=Cinzia Fornai |author15=Laura Martín-Francés |author16=Rachel Sarig |author17=Hila May |author18=Viktoria A. Krenn |author19=Viviane Slon |author20=Laura Rodríguez |author21=Rebeca García |author22=Carlos Lorenzo |author23=Jose Miguel Carretero |author24=Amos Frumkin |author25=Ruth Shahack-Gross |author26=Daniella E. Bar-Yosef Mayer |author27=Yaming Cui |author28=Xinzhi Wu |author29=Natan Peled |author30=Iris Groman-Yaroslavski |author31=Lior Weissbrod |author32=Reuven Yeshurun |author33=Alexander Tsatskin |author34=Yossi Zaidner |author35=Mina Weinstein-Evron |year=2018 |title=The earliest modern humans outside Africa |journal=Science |volume=359 |issue=6374 |pages=456–459 |doi=10.1126/science.aap8369 }}</ref>
* A [[Phalanx bone|phalanx]] of a member of the species ''Homo sapiens'' is described from the ~95–86,000 years old Al Wusta site ([[An Nafud]], [[Saudi Arabia]]) by Groucutt ''et al.'' (2018), representing the oldest directly dated fossil of ''Homo sapiens'' found outside Africa and the Levant.<ref>{{Cite journal|author1=Huw S. Groucutt |author2=Rainer Grün |author3=Iyad A. S. Zalmout |author4=Nick A. Drake |author5=Simon J. Armitage |author6=Ian Candy |author7=Richard Clark-Wilson |author8=Julien Louys |author9=Paul S. Breeze |author10=Mathieu Duval |author11=Laura T. Buck |author12=Tracy L. Kivell |author13=Emma Pomeroy |author14=Nicholas B. Stephens |author15=Jay T. Stock |author16=Mathew Stewart |author17=Gilbert J. Price |author18=Leslie Kinsley |author19=Wing Wai Sung |author20=Abdullah Alsharekh |author21=Abdulaziz Al-Omari |author22=Muhammad Zahir |author23=Abdullah M. Memesh |author24=Ammar J. Abdulshakoor |author25=Abdu M. Al-Masari |author26=Ahmed A. Bahameem |author27=Khaled M. S. Al Murayyi |author28=Badr Zahrani |author29=Eleanor L. M. Scerri |author30=Michael D. Petraglia |year=2018 |title=''Homo sapiens'' in Arabia by 85,000 years ago |journal=Nature Ecology & Evolution |volume=in press |issue= |pages= |doi=10.1038/s41559-018-0518-2 }}</ref>
* A study on the effects of the [[Toba catastrophe theory|Toba supereruption]] in East Africa is published by Yost ''et al.'' (2018), who find no evidence of the erupton causing a [[volcanic winter]] in East Africa or a [[population bottleneck]] among African populations of [[anatomically modern human]]s.<ref>{{cite journal |author1=Chad L. Yost |author2=Lily J. Jackson |author3=Jeffery R. Stone |author4=Andrew S. Cohen |year=2018 |title=Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ∼74 ka Toba supereruption |journal=Journal of Human Evolution |volume=116 |pages=75–94 |doi=10.1016/j.jhevol.2017.11.005 }}</ref>
* A study on the effects of the [[Toba catastrophe theory|Toba supereruption]] in East Africa is published by Yost ''et al.'' (2018), who find no evidence of the erupton causing a [[volcanic winter]] in East Africa or a [[population bottleneck]] among African populations of [[anatomically modern human]]s.<ref>{{cite journal |author1=Chad L. Yost |author2=Lily J. Jackson |author3=Jeffery R. Stone |author4=Andrew S. Cohen |year=2018 |title=Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ∼74 ka Toba supereruption |journal=Journal of Human Evolution |volume=116 |pages=75–94 |doi=10.1016/j.jhevol.2017.11.005 }}</ref>
* Microscopic glass shards characteristic of the Youngest Toba Tuff (ashfall from the Toba eruption), dated as approximately 74,000 years old, are described from two archaeological sites on the south coast of [[South Africa]] by Smith ''et al.'' (2018), who interpret their findings as indicating that humans in this region thrived through the Toba event and the ensuing full glacial conditions.<ref>{{Cite journal|author1=Eugene I. Smith |author2=Zenobia Jacobs |author3=Racheal Johnsen |author4=Minghua Ren |author5=Erich C. Fisher |author6=Simen Oestmo |author7=Jayne Wilkins |author8=Jacob A. Harris |author9=Panagiotis Karkanas |author10=Shelby Fitch |author11=Amber Ciravolo |author12=Deborah Keenan |author13=Naomi Cleghorn |author14=Christine S. Lane |author15=Thalassa Matthews |author16=Curtis W. Marean |year=2018 |title=Humans thrived in South Africa through the Toba eruption about 74,000 years ago |journal=Nature |volume=555 |issue=7697 |pages=511–515 |doi=10.1038/nature25967 }}</ref>
* Microscopic glass shards characteristic of the Youngest Toba Tuff (ashfall from the Toba eruption), dated as approximately 74,000 years old, are described from two archaeological sites on the south coast of [[South Africa]] by Smith ''et al.'' (2018), who interpret their findings as indicating that humans in this region thrived through the Toba event and the ensuing full glacial conditions.<ref>{{Cite journal|author1=Eugene I. Smith |author2=Zenobia Jacobs |author3=Racheal Johnsen |author4=Minghua Ren |author5=Erich C. Fisher |author6=Simen Oestmo |author7=Jayne Wilkins |author8=Jacob A. Harris |author9=Panagiotis Karkanas |author10=Shelby Fitch |author11=Amber Ciravolo |author12=Deborah Keenan |author13=Naomi Cleghorn |author14=Christine S. Lane |author15=Thalassa Matthews |author16=Curtis W. Marean |year=2018 |title=Humans thrived in South Africa through the Toba eruption about 74,000 years ago |journal=Nature |volume=555 |issue=7697 |pages=511–515 |doi=10.1038/nature25967 }}</ref>

Revision as of 17:47, 9 April 2018

List of years in paleontology (table)
In science
2015
2016
2017
2018
2019
2020
2021
+...

This article records new taxa of fossil mammals of every kind are scheduled to be described during the year 2018, as well as other significant discoveries and events related to paleontology of mammals that are scheduled to occur in the year 2018.

Metatherians

  • A study on the changes of the global diversity of metatherians through time based on a new dataset of metatherian fossil occurrences is published by Bennett et al. (2018).[1]
  • A study on the morphological diversity of sparassodonts and its implications for the structure of the terrestrial carnivore guild from the middle Cenozoic of South America is published by Croft et al. (2018).[2]
  • A study on the age of thylacine and Tasmanian devil fossils from the mainland Australia and their implications for estimating the time of extinction in mainland Australia for both species is published by White et al. (2018).[3]
  • A study on the phylogenetic relationships of Palaeopotorous priscus is published by den Boer & Kear (2018), who interpret this taxon as a probable non-macropodoid macropodiform marsupial.[4]
  • Revision of the taxonomic status of fossil kangaroo relatives attributed to the genera Ganawamaya and Nambaroo is published by Butler et al. (2018), who also describe new fossil material of Ganawamaya couperi (formerly assigned to the genus Nambaroo), Ganawamaya acris and G. aediculis.[5]
Name Novelty Status Authors Age Unit Location Notes Images

Coloradolops[6]

Gen. et sp. nov

Valid

Chornogubsky et al.

Middle Eocene

Quebrada de Los Colorados Formation

 Argentina

A member of Bonapartherioidea belonging to the family Prepidolopidae. Genus includes new species C. cardonensis.

Fumodelphodon[7]

Gen. et sp. nov

In press

Cohen

Late Cretaceous (Turonian)

Straight Cliffs Formation

 United States
( Utah)

A member of Stagodontidae. Genus includes new species F. pulveris.

Herpetotherium tabrumi[8]

Sp. nov

In press

Korth

Late Paleogene (Chadronian)

 United States
( Montana
 Nebraska
 North Dakota)

Hoodootherium[7]

Gen. et sp. nov

In press

Cohen

Late Cretaceous (Turonian)

Straight Cliffs Formation

 United States
( Utah)

A member of Stagodontidae. Genus includes new species H. praeceps.

Miminipossum[9]

Gen. et sp. nov

Valid

Archer et al.

Miocene

Riversleigh World Heritage Area
Wipajiri Formation

 Australia

A member of Phalangerida belonging to the new family Miminipossumidae. The type species is M. notioplanetes.

Perameles papillon[10]

Sp. nov

Valid

Travouillon & Phillips

Holocene

Nullarbor Plain

 Australia

A long-nosed bandicoot.

Varalphadon janetae[11]

Sp. nov

Valid

Carneiro

Late Cretaceous (late Cenomanian to early Coniacian)

Naturita Formation
Straight Cliffs Formation

 United States
( Utah)

A member of Sparassodonta.

Eutherians

  • A study on the causes of the increase of body size in aquatic mammals, based on data on the body masses of living and fossil mammals, is published by Gearty, McClain & Payne (2018).[12]
  • A study on the evolution and interconnectedness of the mammal faunas living in the Old World savannas in the Neogene is published by Kaya et al. (2018).[13]
  • Faith (2018) evalutes the aridity index, a widely used technique for reconstructing local paleoclimate and water deficits from oxygen isotope composition of fossil mammal teeth, arguing that in some taxa altered drinking behavior (influencing oxygen isotope composition of teeth) might have been caused by dietary change rather than water deficits.[14][15][16]
  • A revision of the mammal fauna from the Miocene site of Bukwa (Uganda) and a study on the age of this fauna is published by Cote et al. (2018), who interpret their finding as indicating that a significant faunal turnover may have occurred in East Africa between 20 and 19 million years ago.[17]
  • A study on the distance of seed dispersal by extant and extinct mammalian frugivores and on the impact of the extinction of Pleistocene megafauna on seed dispersal is published by Pires et al. (2018).[18]
  • A study on the diet and habitat of ungulates from the Middle Pleistocene site of Fontana Ranuccio (Italy) as indicated by their tooth wear is published by Strani et al. (2018).[19]
  • A study on the response of large ungulates to the palaeoenvironmental changes that occurred at the passage between the Gelasian and Calabrian in the Italian Peninsula, based on the dental wear patterns and hypsodonty of the ungulates from the fossil assemblage of Olivola (Aulla, Italy), is published by Strani et al. (2018).[20]
  • A study on the ungulate and carnivoran carrying capacity of the late Early and early Middle Pleistocene ecosystems of Europe is published by Rodríguez & Mateos (2018).[21]
  • A study evaluating how the mammoth steppe ecosystem with its expected low vegetation productivity managed to support a high diversity and density of large mammalian herbivores during the Last Glacial Maximum is published by Zhu et al. (2018).[22]

Xenarthrans

  • A study on the species distribution of 15 fossil xenarthrans from the late Pleistocene of South America will be published by Varela et al. (2018).[23]
  • A study on the microwear patterns in the teeth of the Oligocene sloths Orophodon hapaloides and Octodontotherium grande, as well its implications for inferring the diet of these taxa, will be published by Kalthoff & Green (2018).[24]
  • A study on the anatomy of the ear region in Glossotherium robustum and on the evolution of the inner ear anatomy in the xenarthrans is published by Boscaini et al. (2018).[25]
  • A study on the feet anatomy of the fossil sloths Megatherium and Eremotherium, as well as its implications for inferring the degree to which their feet were habitually inverted, will be published by Toledo et al. (2018).[26]
  • A study on the impact of climate changes on the distribution of armadillos as indicated by fossil record will be published by Soibelzon (2018).[27]
  • A study on the morphology and histology of glyptodont osteoderms from the Gruta do Urso cave (Brazil), representing the first juvenile specimen of Glyptotherium described from the Late Pleistocene of South America, is published by Luna et al. (2018).[28]
Name Novelty Status Authors Age Unit Location Notes Images

Neoglyptatelus uruguayense[29]

Sp. nov

In press

Fernicola et al.

Late Miocene

Camacho Formation

 Uruguay

A member of Cingulata.

Pattersonocnus[30]

Gen. et sp. nov

Valid

Rincón et al.

Late Miocene

Urumaco Formation

 Venezuela

A sloth belonging to the family Megalonychidae. The type species is P. diazgameroi.

Urumacocnus[30]

Gen. et sp. nov

Valid

Rincón et al.

Late Miocene

Urumaco Formation

 Venezuela

A sloth belonging to the family Megalonychidae. The type species is U. urbanii.

Afrotherians

  • A study on the anatomy and phylogenetic relationships of the elephant shrew Chambius kasserinensis based on known and newly described fossil remains from the Eocene of Tunisia is published by Tabuce (2018).[31]
  • Description of the anatomy of middle and inner ears of the golden mole Namachloris arenatans from the Palaeogene of Namibia is published by Mason, Bennett & Pickford (2018).[32]
  • A method to estimate the body mass of extinct proboscideans on the basis of skull remains is presented by Jukar, Lyons & Uhen (2018).[33]
  • A study on the evolution of the cheek teeth displacement mechanism in elephantiform proboscideans is published by Sanders (2018).[34]
  • Mothé, Ferretti & Avilla (2018) support the validity of Notiomastodon as a genus separate from Stegomastodon, arguing that members of the genus Stegomastodon were absent from South America.[35]
  • A study on the diet of the Columbian mammoths, pygmy mammoths and American mastodons as indicated by tooth wear is published by Smith & Desantis (2018).[36]
  • A study on the evolutionary history of the family Elephantidae based on 14 genomes from extant and fossil elephantids and from the American mastodon is published by Palkopoulou et al. (2018).[37]
Name Novelty Status Authors Age Unit Location Notes Images

Promicrogale[38]

Gen. et sp. nov

Valid

Pickford

Early Miocene

 Namibia

A tenrec. The type species is P. namibiensis.

Sobrarbesiren[39]

Gen. et sp. nov

Valid

Díaz-Berenguer et al.

Eocene (Lutetian)

Sobrarbe Formation

 Spain

A sirenian of uncertain phylogenetic placement. The type species is S. cardieli.

Bats

Name Novelty Status Authors Age Unit Location Notes Images

Mops kerio[40]

Sp. nov

In press

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

A species of Mops.

Mops turkwellensis[40]

Sp. nov

In press

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

A species of Mops.

Rousettus pattersoni[40]

Sp. nov

In press

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

A species of Rousettus.

Saccolaimus kenyensis[40]

Sp. nov

In press

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

A species of Saccolaimus.

Turkanycteris[40]

Gen. et sp. nov

In press

Gunnell & Manthi

Pliocene

Kanapoi site

 Kenya

A very large fruit bat, larger than all extant fruit bats other than some species of Pteropus and Hypsignathus. Genus includes new species T. harrisi.

Vulcanops[41]

Gen. et sp. nov

Valid

Hand et al.

Early Miocene

Bannockburn Formation

 New Zealand

A New Zealand short-tailed bat. The type species is V. jennyworthyae.

Odd-toed ungulates

  • Tooth anomalies in two juvenile specimens of the Miocene rhinoceros Prosantorhinus germanicus are described by Böhmer & Rössner (2018), who discuss probable causes of these anomalies.[42]
  • A study on the digit reduction in the evolution of horses is published by Solounias et al. (2018).[43]
  • A revised diagnosis and a description of the anatomy of the Miocene hipparionine species Sivalhippus ptychodus and S. platyodus from China is published by Sun et al. (2018).[44]
Name Novelty Status Authors Age Unit Location Notes Images

Ardynia ordosensis[45]

Sp. nov

In press

Bai, Wang & Zhang

Late Eocene

 China

A member of the family Hyracodontidae.

Chilotherium licenti[46]

Sp. nov

In press

Sun, Li & Deng

Late Miocene

 China

Epimanteoceras mae[47]

Sp. nov

Valid

Li

Eocene (Irdinmanhan)

Üqbulak Formation

 China

A member of the family Brontotheriidae.

Forstercooperia ulanshirehensis[48]

Sp. nov

Valid

Wang et al.

Eocene

Irdin Manha Formation
Ulan Shireh Formation

 China

Hispanotherium wushanense[49]

Sp. nov

In press

Sun et al.

Miocene

Wushan Subbasin

 China

Maobrontops[50]

Gen. et sp. nov

Valid

Averianov et al.

Late Eocene

Youganwo Formation

 China

A member of the family Brontotheriidae. The type species is M. paganus.

Even-toed ungulates

  • Description of the fossil material of the camel species Camelus thomasi from the Pleistocene locality of Tighennif (Algeria) and a study on the phylogenetic relationships of this species is published by Martini & Geraads (2018).[51]
  • New specimen of the fossil peccary Parachoerus carlesi will be described from the Upper Pleistocene of the Chaco Province of Argentina by Gasparini et al. (2018), representing the most complete fossil material of a member this species reported so far, and providing new information on the morphology of the species and the environment it lived in.[52]
  • A description of the skull anatomy of the fossil suid Nyanzachoerus jaegeri based on new fossil material and a study on the phylogenetic relationships of the species will be published by Reda, Lazagabaster & Haile-Selassie (2018).[53]
  • New fossil suid specimens, providing new information on the classification and relationships of the Miocene Suinae from China, will be described from the latest Miocene site of Shuitangba (Zhaotong Basin, China) by Hou et al. (2018).[54]
  • A study on the evolution of hypsodonty in ruminants as indicated by phylogeny of ruminants, estimated ancestral ruminant diets and habitats, and fossil record of grasslands is published by Toljagić et al. (2018).[55]
  • A study comparing the exclusivity and magnitude of changes in diversification rates during the evolution of ruminants and other lineages of placental mammals is published by Rossi, Mello & Schrago (2018).[56]
  • Fossils of the chevrotain Dorcatherium crassum, including a skull and teeth remains, will be described from the Miocene (Langhian) of the Faluns Auger quarry (Contres, France) by Mennecart et al. (2018).[57]
  • A study on the feeding habits of Morenelaphus as indicated by tooth enamel microwear is published by Rotti et al. (2018).[58]
  • Giraffe tracks are described from the Pleistocene Waenhuiskrans Formation (Bredasdorp Group, South Africa) by Helm et al. (2018), increasing known historical range of giraffes.[59]
  • A study on the diet and habitat of Leptomeryx from the Eocene (Uintan) Yolomécatl Formation (Mexico) as indicated by tooth enamel carbon and oxygen isotopic relationships will be published by Ferrusquía-Villafranca et al. (2018).[60]
  • A study on the dietary preferences of members of the tribe Tragelaphini from the Plio-Pleistocene Shungura Formation (Lower Omo Valley, Ethiopia) as indicated by their tooth wear is published by Blondel et al. (2018).[61]
Name Novelty Status Authors Age Unit Location Notes Images

Bachitherium thraciensis[62]

Sp. nov

Valid

Mennecart et al.

Eocene (latest Bartonian or early Priabonian)

 Bulgaria

An early ruminant belonging to the group Tragulina and the family Bachitheriidae.

Candiacervus devosi[63]

Sp. nov

Valid

Van der Geer

Late Pleistocene

 Greece

An Old World deer.

Candiacervus listeri[63]

Sp. nov

Valid

Van der Geer

Late Pleistocene

 Greece

An Old World deer.

Candiacervus reumeri[63]

Sp. nov

Valid

Van der Geer

Late Pleistocene

 Greece

An Old World deer.

Kubanochoerus parvus[64]

Sp. nov

In press

Hou & Deng

Latest Middle or earliest Late Miocene

 China

A member of the family Suidae belonging to the subfamily Listriodontinae.

Cetaceans

  • A study assessing the lumbar mobility in archaeocetes is published by Bebej & Smith (2018).[65]
  • A study on the anatomy of the auditory region of the skull of protocetids as indicated by fossils from the Eocene of Togo is published by Mourlam & Orliac (2018).[66]
  • Description of postcranial remains of the stem-beaked whale Messapicetus gregarius from the Miocene (Tortonian) of Peru is published by Ramassamy et al. (2018), who also propose a reconstruction of the musculature of the neck and forelimb of the species.[67]
  • A study on the anatomy of cochleae of extant and extinct cetaceans, the relationships of cochlear shape and the frequency ranges heard by cetaceans, and their implications for determining the occurrence of very low frequency and infrasonic hearing in fossil baleen whales is published by Ritsche et al. (2018).[68]
Name Novelty Status Authors Age Unit Location Notes Images

Aondelphis[69]

Gen. et sp. nov

In press

Viglino et al.

Early Miocene

Gaiman Formation

 Argentina

A member of Platanistoidea. The type species is A. talen.

Eschrichtius akishimaensis[70]

Sp. nov

Valid

Kimura, Hasegawa & Kohno

Early Pleistocene

 Japan

A relative of the gray whale.

Khoikhoicetus kergueleni[71]

Sp. nov

Valid

Lambert et al.

Uncertain, possibly Miocene

Seafloor 370 km SWW to Kerguelen Islands

A beaked whale belonging to the subfamily Hyperoodontinae.

Tlaxcallicetus[72]

Gen. et sp. nov

Valid

Hernández Cisneros

Late Oligocene

El Cien Formation

 Mexico

A member of Chaeomysticeti of uncertain phylogenetic placement. The type species is T. guaycurae.

Wimahl[73]

Gen. et sp. nov

Valid

Peredo, Uhen & Nelson

Early Miocene

Astoria Formation

 United States
( Washington)

A member of the family Kentriodontidae. Genus includes new species W. chinookensis.

Carnivorans

Name Novelty Status Authors Age Unit Location Notes Images

Allodesmus demerei[90]

Sp. nov

Valid

Boessenecker & Churchill

Miocene (Tortonian)

Montesano Formation

 United States
( Washington)

Auroraphoca[91]

Gen. et sp. nov

Valid

Dewaele et al.

Pliocene (Zanclean)

Yorktown Formation

 United States
( North Carolina)

An earless seal belonging to the subfamily Monachinae. The type species is A. atlantica.

Civettictis braini[92]

Sp. nov

In press

Fourvel

Pliocene-Pleistocene transition

Kromdraai fossil site

 South Africa

A relative of the African civet.

Katifelis[93]

Gen. et sp. nov

Valid

Adrian, Werdelin & Grossman

Early Miocene

Lothidok Formation

 Kenya

A member of the family Felidae. The type species is K. nightingalei.

Kichechia savagei[93]

Sp. nov

Valid

Adrian, Werdelin & Grossman

Early Miocene

Lothidok Formation

 Kenya

A member of the family Viverridae belonging to the subfamily Paradoxurinae.

Leptofelis[94]

Gen. et comb. nov

In press

Salesa et al.

Late Miocene

 Spain

A member of the family Felidae belonging to the subfamily Felinae; a new genus for "Styriofelis" vallesiensis Salesa et al. (2012).

Meles magnus[95]

Sp. nov

In press

Jiangzuo et al.

Early Pleistocene

 China

A badger, a species of Meles.

Tchadailurus[96]

Gen. et sp. nov

Valid

De Bonis et al.

Late Miocene

 Chad

A member of the family Felidae belonging to the subfamily Machairodontinae. The type species is T. adei.

Virginiaphoca[91]

Gen. et sp. nov

Valid

Dewaele et al.

Late Miocene or Pliocene (Zanclean)

Eastover Formation or Yorktown Formation

 United States
( Virginia)

An earless seal belonging to the subfamily Monachinae. The type species is V. magurai.

Rodents

Name Novelty Status Authors Age Unit Location Notes Images

Aepyocricetus[108]

Gen. et sp. nov

Valid

Li et al.

Pliocene

Zanda Basin

 China

A hamster. Genus includes new species A. liuae.

Eoincamys parvus[109]

Sp. nov

In press

Boivin et al.

Early Oligocene

Pozo Formation

 Peru

Possibly a member of Chinchilloidea.

Eoincamys valverdei[109]

Sp. nov

In press

Boivin et al.

Early Oligocene

Pozo Formation

 Peru

Possibly a member of Chinchilloidea.

Euroxenomys nanus[110]

Sp. nov

Valid

Mörs & Tomida

Early Miocene

Nakamura Formation

 Japan

A member of the family Castoridae.

Gregorymys veloxikua[111]

Sp. nov

In press

Jiménez-Hidalgo, Guerrero-Arenas & Smith

Eocene (Chadronian)

 Mexico

A member of Geomyidae.

Kichkasteiromys[109]

Gen. et sp. nov

In press

Boivin et al.

Early Oligocene

Pozo Formation

 Peru

A member of Erethizontoidea. The type species is K. raimondii.

Mayomys[109]

Gen. et sp. nov

In press

Boivin et al.

Early Oligocene

Pozo Formation

 Peru

A member of Octodontoidea of uncertain phylogenetic placement. The type species is M. confluens.

Mogilia[112]

Gen. et 2 sp. nov

Valid

Wessels et al.

Eocene and early Oligocene

 Serbia

A member of the family Muridae belonging to the subfamily Melissiodontinae. The type species is M. miloshi; genus also includes M. lautus.

Namaparamys[113]

Gen. et sp. nov

Valid

Mein & Pickford

Eocene (Ypresian/Lutetian)

 Namibia

Possibly a relative of Reithroparamys. The type species is N. inexpectatus.

Nannocricetus qiui[108]

Sp. nov

Valid

Li et al.

Pliocene

Zanda Basin

 China

A hamster. Genus includes new species A. liuae.

Orcemys[114]

Gen. et sp. nov

In press

Martin et al.

Early Pleistocene

 Spain

A member of Arvicolidae. Genus includes new species O. giberti.

Paracricetodon gracilis[115]

Sp. nov

Valid

Van de Weerd et al.

Early Oligocene

 Serbia

A member of the family Muridae belonging to the subfamily Paracricetodontinae.

Paracricetodon stojanovici[115]

Sp. nov

Valid

Van de Weerd et al.

Late Eocene and early Oligocene

 Serbia

A member of the family Muridae belonging to the subfamily Paracricetodontinae.

Selvamys[109]

Gen. et sp. nov

In press

Boivin et al.

Early Oligocene

Pozo Formation

 Peru

A member of Octodontoidea of uncertain phylogenetic placement. The type species is S. paulus.

Shapajamys[109]

Gen. et sp. nov

In press

Boivin et al.

Early Oligocene

Pozo Formation

 Peru

A member of Erethizontoidea. The type species is S. labocensis.

Tarapotomys[109]

Gen. et 2 sp. nov

In press

Boivin et al.

Early Oligocene

Pozo Formation

 Peru

A member of Caviomorpha of uncertain phylogenetic placement. The type species is T. subandinus; genus also includes T. mayoensis.

Tsaukhaebmys[116]

Gen. et sp. nov

Valid

Pickford

Eocene (Ypresian/Lutetian)

 Namibia

A member of the family Zegdoumyidae. The type species is T. calcareus.

Vasseuromys tectus[117]

Sp. nov

Valid

Sinitsa & Nesin

Late Miocene

 Ukraine

A dormouse belonging to the subfamily Leithiinae.

Primates

  • A study on reconstructing the jaw muscles and bite force of subfossil lemurs from Madagascar, as well as on their implications for inferring the diet of these lemurs, is published by Perry (2018).[118]
  • A tibia of a large-bodied arboreally-adapted Old World monkey (a member or a relative of the genus Rhinocolobus) is described from the Australopithecus afarensis-bearing Upper Laetolil Beds (∼3.7 Ma) of Laetoli (Tanzania) by Laird et al. (2018), who also study the implications of the specimen for inferring the paleoenvironment of the Upper Laetolil Beds.[119]
  • A study evaluating whether climatic and environmental changes were the main cause of extinction of Oreopithecus bambolii is published by DeMiguel & Rook (2018).[120]
  • Estimations of body mass in Pliocene and Pleistocene hominins based on lower limb bones dimensions are presented by Ruff et al. (2018).[121]
  • A study on the evolution of the brain size in hominins is published by Du et al. (2018).[122]
  • A study on the behavioral features which might have contributed to the demographic success of early hominids such as Australopithecus, based on comparison with macaques, is published by Meindl, Chaney & Lovejoy (2018).[123]
  • A study on the pelvic morphology in Ardipithecus and Australopithecus, evaluating the hypothesis that early hominins retained ischial proportions and orientation that favored greater force production during climbing but limited their ability to hyperextend the hip and walk as economically as modern humans, is published by Kozma et al. (2018).[124]
  • New fossils attributable to the species Australopithecus anamensis will be described from Kanapoi (Kenya) by Ward, Plavcan & Manthi (2018).[125]
  • Endocrania of two specimens of Australopithecus africanus from Sterkfontein Member 4 (South Africa) are virtually reconstructed by Beaudet et al. (2018).[126]
  • The skull of ‘Mrs. Ples’ (Sts 5 specimen of Australopithecus africanus) is interpreted as a skull of a small male rather than a large female individual by Tawane & Thackeray (2018).[127]
  • A study on the possible date of the first appearance of Australopithecus sediba as indicated by the average hominin species’ temporal range is published by Robinson et al. (2018).[128]
  • Pelvic remains of Homo naledi from the Dinaledi Chamber in the Rising Star Cave system (Cradle of Humankind, South Africa) will be described by VanSickle et al. (2018).[129]
  • A study on the minimum number of individuals and on a demographic profile of the assemblage of Homo naledi individuals in the Dinaledi Chamber (Rising Star Cave system, South Africa) is published by Bolter et al. (2018).[130]
  • A study on the diet of Homo naledi as indicated by teeth wear textures is published by Ungar & Berger (2018).[131]
  • A study comparing tooth shape and size in Homo naledi and other South African Plio-Pleistocene hominins, as well as a study on the possible diet of Homo naledi, is published by Berthaume, Delezene & Kupczik (2018).[132]
  • A study on evaluating whether deliberate disposal of corpses is the only likely explanation for large assemblages of fossil human bones from the Middle Pleistocene sites of Sima de los Huesos (Spain) and the Dinaledi Chamber (South Africa) is published by Egeland et al. (2018).[133]
  • A study on the phylogenetic relationships of the Pleistocene hominin specimen (a fragmented skullcap) from Kocabaş (Denizli Basin, Turkey) is published by Vialet et al. (2018).[134]
  • A study on the humeral rigidity and strength in members of the species Homo erectus known from Zhoukoudian (China), comparing it with the humeral rigidity and strength in the African members of the species, is published by Xing et al. (2018).[135]
  • A study on the morphology of teeth of Homo erectus from Zhoukoudian is published by Xing, Martinón-Torres & Bermúdez de Castro (2018).[136]
  • A study on the morphology and affinities of the Middle Pleistocene hominin mandible recovered from La Niche cave site of the Montmaurin karst system (France) is published by Vialet et al. (2018).[137]
  • A series of excavated Middle Stone Age sites from the Olorgesailie Basin (Kenya), dated as ~320,000 years old, is presented by Brooks et al. (2018), who report evidence of hominins preparing cores and points, exploiting iron-rich rocks to obtain red pigment, and procuring stone tool materials from ≥25–50 km distance.[138]
  • A study on the environmental dynamics before and after the onset of the early Middle Stone Age in the Olorgesailie Basin (Kenya) is published by Potts et al. (2018).[139]
  • A study on the chronology of the Acheulean and early Middle Stone Age sedimentary deposits in the Olorgesailie Basin (Kenya) is published by Deino et al. (2018).[140]
  • A study on the age of stone tools from the Attirampakkam site in India is published by Akhilesh et al. (2018), indicating the emergence of a Middle Paleolithic culture in India at 385 ± 64 thousand years ago.[141]
  • The study on the Cerutti Mastodon site published by Holen et al. (2017), reporting possible evidence of an unidentified species of the genus Homo living in California 130,000 years ago,[142] is criticized by Ferraro et al. (2018).[143][144]
  • Bone retouchers dated as approximately 125–105,000 years old are described from the Lingjing site in Henan, China by Doyon et al. (2018), representing the first evidence from Eastern Asia for the use of bone as raw material to modify stone tools.[145]
  • An assemblage of hominin tracks produced by adults and children potentially as young as 12 months, probably members of the species Homo heidelbergensis living 700,000 years ago, is described from the Upper Awash Valley (Ethiopia) by Altamura et al. (2018).[146]
  • A study on the morphology and function of the browridge of the Kabwe 1 archaic hominin specimen is published by Godinho, Spikins & O’Higgins (2018).[147]
  • A study intending to detect introgressed Denisovan genetic material in present-day human genomes is published by Browning et al. (2018), who report evidence of Denisovan ancestry in populations from East and South Asia and Papuans, and interpret their findings as indicating that at least two distinct instances of Denisovan admixture into modern humans occurred.[148]
  • A series of partially charred wooden tools is described from the late Middle Pleistocene site of Poggetti Vecchi (central Italy) by Aranguren et al. (2018), who interpret their findings as indicating that Neanderthals were able to choose the appropriate timber and to process it with fire to produce tools.[149]
  • A wooden tool (possibly a digging stick), likely produced by Neanderthals, is described from the early Late Pleistocene Aranbaltza III site (Basque Country, Spain) by Rios-Garaizar et al. (2018), representing the oldest wooden tool from southern Europe reported so far.[150]
  • Cave art in Cave of La Pasiega, Maltravieso cave and Ardales cave (Spain) is dated as older than 64,000 years (thus predating the arrival of modern humans in Europe) by Hoffmann et al. (2018), who interpret their findings as indicative of Neandertal authorship of the art.[151]
  • Genomes of five Neanderthals from Belgium (Spy Cave and Goyet Caves), France (Les Cottés cave), Croatia (Vindija Cave) and Russia (Mezmaiskaya cave), who lived around 39,000 to 47,000 years ago, are sequenced by Hajdinjak et al. (2018).[152]
  • A study evaluating three hypotheses forwarded to explain the distinctive Neanderthal face is published by Wroe et al. (2018).[153]
  • A study on the climatic changes in the Lake Tana area in the last 150,000 years and their implications for early modern human dispersal out of Africa is published by Lamb et al. (2018).[154]
  • A study on the evolution of modern human brain shape based on endocasts of Homo sapiens fossils from different geologic time periods is published by Neubauer, Hublin & Gunz (2018).[155]
  • Late Pleistocene hominin tracks, probably produced by Homo sapiens, are described from the Waenhuiskrans Formation (South Africa) by Helm et al. (2018).[156]
  • A study on the age of a modern human mandible with teeth from the Misliya cave (Mount Carmel, Israel) is published by Hershkovitz et al. (2018), who date the fossil as at least 177,000 years old, representing the oldest reported fossil of a member of the Homo sapiens clade found outside Africa.[157]
  • A phalanx of a member of the species Homo sapiens is described from the ~95–86,000 years old Al Wusta site (An Nafud, Saudi Arabia) by Groucutt et al. (2018), representing the oldest directly dated fossil of Homo sapiens found outside Africa and the Levant.[158]
  • A study on the effects of the Toba supereruption in East Africa is published by Yost et al. (2018), who find no evidence of the erupton causing a volcanic winter in East Africa or a population bottleneck among African populations of anatomically modern humans.[159]
  • Microscopic glass shards characteristic of the Youngest Toba Tuff (ashfall from the Toba eruption), dated as approximately 74,000 years old, are described from two archaeological sites on the south coast of South Africa by Smith et al. (2018), who interpret their findings as indicating that humans in this region thrived through the Toba event and the ensuing full glacial conditions.[160]
  • Genomic data from seven 15,000-year-old modern humans from Morocco, attributed to the Iberomaurusian culture, is presented by van de Loosdrecht et al. (2018), who report evidence of a genetic affinity of the studied individuals with early Holocene Near Easterners.[161]
  • A study on the technological traits of fluted projectile points from northern Alaska and Yukon, in combination with artifacts from further south in Canada, the Great Plains, and eastern United States, evaluating the plausibility of historical relatedness and evolutionary patterns in the spread of fluted-point technology in North America in the latest Pleistocene and earliest Holocene, is published by Smith & Goebel (2018).[162]
  • The genome of two infants from the Upward Sun River site dated 11,500 years ago is sequenced, leading to the discovery of the Ancient Beringian ethnic group.[163][164]
  • A study on the Mesolithic site of Star Carr, indicating that there was intensive human activity at the site for several hundred years when the community was subject to multiple, severe, abrupt climate events that impacted air temperatures, the landscape and the ecosystem of the region, is published by Blockley et al.' (2018).[165]

Other eutherians

  • A study on the anatomy of the Early Cretaceous eutherian Endotherium niinomii is published by Wang et al. (2018), who consider this species to be a valid taxon.[166]
  • Napoli et al. (2018) digitally visualize and describe the endocast of a taeniodont Onychodectes tisonensis.[167]
  • A study on the phylogenetic relationships of the gymnure Deinogalerix within the tribe Galericini will be published by Borrani et al. (2018).[168][169]
  • A study on the systematic usefulness of the humerus in proterotheriid litopterns will be published by Corona, Perea & Ubilla (2018), who consider the species Proterotherium berroi Kraglievich (1930) to be a probable synonym of Neolicaphrium recens.[170]
  • A study on the diversity of shapes of snout in notoungulates and on the evolution of the wide range of shapes of snout in this group of mammals is published by Gomes Rodrigues et al. (2018).[171]
  • A study on the variation of teeth shape and on the factors affecting changes in the shape of teeth of notopithecid notoungulates is published by Scarano & Vera (2018).[172]
  • A study on the variation of teeth shape in late Miocene members of the hegetotheriid notoungulate genus Paedotherium, as well as its implications for the systematics and phylogenetic relationships of the late Miocene species of Paedotherium, will be published by Ercoli et al. (2018).[173]
  • A study on the variability of the diagnostic characters in the fossils of members of the hegetotheriid notoungulate genus Tremacyllus will be published by Sostillo, Cerdeño & Montalvo (2018), who consider the species T. incipiens to be a junior synonym of the species T. impressus.[174]
  • A study on the braincase anatomy in mesotheriid notoungulates will be published by Fernández-Monescillo et al. (2018).[175]
Name Novelty Status Authors Age Unit Location Notes Images

Dissacus raslanloubatieri[176]

Sp. nov

In press

Solé et al.

Eocene (Ypresian)

 France

A member of the family Mesonychidae.

Dissacus rougierae[176]

Sp. nov

In press

Solé et al.

Eocene (Ypresian)

 France

A member of the family Mesonychidae.

Falcontoxodon[177]

Gen. et sp. nov

Valid

Carrillo et al.

Pliocene/Pleistocene

Falcón Basin

 Venezuela

A member of Toxodontidae. Genus includes new species F. aguilerai.

Hilarcotherium miyou[177]

Sp. nov

Valid

Carrillo et al.

Middle Miocene

Castilletes Formation

 Colombia

A member of Astrapotheriidae.

Hovurlestes[178]

Gen. et sp. nov

Valid

Lopatin & Averianov

Early Cretaceous (AptianAlbian)

Höovör locality

 Mongolia

A basal member of Eutheria. The type species is H. noyon.

Propterodon panganensis[179]

Sp. nov

In press

De Bonis et al.

Middle Eocene

Pondaung Formation

 Myanmar

A member of the family Hyaenodontidae.

Sardolagus[180]

Gen. et sp. nov

In press

Angelone et al.

Early Pleistocene

 Italy

A member of the family Leporidae. Genus includes new species S. obscurus.

Shargainosorex[181]

Gen. et sp. nov

Valid

Zazhigin & Voyta

Middle Miocene

Oshin Suite

 Mongolia

A shrew belonging to the subfamily Crocidosoricinae. The type species is S. angustirostris.

Wyonycteris kingi[182]

Sp. nov

In press

Hooker

Paleogene

Woolwich Formation

 United Kingdom

A member of the family Nyctitheriidae.

Xotodon caravela[183]

Sp. nov

Valid

Armella, García-López & Dominguez

Late Miocene-early Pliocene

Aconquija Formation

 Argentina

Other mammals

References

  1. ^ C. Verity Bennett; Paul Upchurch; Francisco J. Goin; Anjali Goswami (2018). "Deep time diversity of metatherian mammals: implications for evolutionary history and fossil-record quality". Paleobiology. in press. doi:10.1017/pab.2017.34.
  2. ^ Darin A. Croft; Russell K. Engelman; Tatiana Dolgushina; Gina Wesley (2018). "Diversity and disparity of sparassodonts (Metatheria) reveal non-analogue nature of ancient South American mammalian carnivore guilds". Proceedings of the Royal Society B: Biological Sciences. 285 (1870): 20172012. doi:10.1098/rspb.2017.2012.
  3. ^ Lauren C. White; Frédérik Saltré; Corey J. A. Bradshaw; Jeremy J. Austin (2018). "High-quality fossil dates support a synchronous, Late Holocene extinction of devils and thylacines in mainland Australia". Biology Letters. 14 (1): 20170642. doi:10.1098/rsbl.2017.0642.
  4. ^ Wendy den Boer; Benjamin P. Kear (2018). "Is the fossil rat-kangaroo Palaeopotorous priscus the most basally branching stem macropodiform?". Journal of Vertebrate Paleontology. in press: e1428196. doi:10.1080/02724634.2017.1428196.
  5. ^ Kaylene Butler; Kenny J. Travouillon; Gilbert J. Price; Michael Archer; Suzanne J. Hand (2018). "Revision of Oligo-Miocene kangaroos, Ganawamaya and Nambaroo (Marsupialia: Macropodiformes, Balbaridae)". Palaeontologia Electronica. 21 (1): Article number 21.1.8A. doi:10.26879/747.
  6. ^ Laura Chornogubsky; A. Natalia Zimicz; Francisco J. Goin; Juan C. Fernicola; Patricio Payrola; Magalí Cárdenas (2018). "New Palaeogene metatherians from the Quebrada de Los Colorados Formation at Los Cardones National Park (Salta Province, Argentina)". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2017.1417333.
  7. ^ a b Joshua E. Cohen (2018). "Earliest Divergence of Stagodontid (Mammalia: Marsupialiformes) Feeding Strategies from the Late Cretaceous (Turonian) of North America". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9382-0.
  8. ^ William W. Korth (2018). "Review of the marsupials (Mammalia: Metatheria) from the late Paleogene (Chadronian–Arikareean: late Eocene–late Oligocene) of North America". PalZ. in press. doi:10.1007/s12542-017-0396-y.
  9. ^ Michael Archer; Pippa Binfield; Suzanne J. Hand; Karen H. Black; Phillip Creaser; Troy J. Myers; Anna K. Gillespie; Derrick A. Arena; John Scanlon; Neville Pledge; Jenni Thurmer (2018). "Miminipossum notioplanetes, a Miocene forest-dwelling phalangeridan (Marsupialia; Diprotodontia) from northern and central Australia". Palaeontologia Electronica. 21 (1): Article number 21.1.2A. doi:10.26879/757.
  10. ^ Kenny J. Travouillon; Matthew J. Phillips (2018). "Total evidence analysis of the phylogenetic relationships of bandicoots and bilbies (Marsupialia: Peramelemorphia): reassessment of two species and description of a new species". Zootaxa. 4378 (2): 224–256. doi:10.11646/zootaxa.4378.2.3.
  11. ^ Leonardo M. Carneiro (2018). "A new species of Varalphadon (Mammalia, Metatheria, Sparassodonta) from the upper Cenomanian of southern Utah, North America: Phylogenetic and biogeographic insights". Cretaceous Research. 84: 88–96. doi:10.1016/j.cretres.2017.11.004.
  12. ^ William Gearty; Craig R. McClain; Jonathan L. Payne (2018). "Energetic tradeoffs control the size distribution of aquatic mammals". Proceedings of the National Academy of Sciences of the United States of America. in press. doi:10.1073/pnas.1712629115.
  13. ^ Ferhat Kaya; Faysal Bibi; Indrė Žliobaitė; Jussi T. Eronen; Tang Hui; Mikael Fortelius (2018). "The rise and fall of the Old World savannah fauna and the origins of the African savannah biome". Nature Ecology & Evolution. 2 (2): 241–246. doi:10.1038/s41559-017-0414-1.
  14. ^ J. Tyler Faith (2018). "Paleodietary change and its implications for aridity indices derived from δ18O of herbivore tooth enamel". Palaeogeography, Palaeoclimatology, Palaeoecology. 490: 571–578. doi:10.1016/j.palaeo.2017.11.045.
  15. ^ Scott A. Blumenthal; Naomi E. Levin; Francis H. Brown; Jean-Philip Brugal; Kendra L. Chritz; Thure E. Cerling (2018). "Diet and evaporation sensitivity in African ungulates: A comment on Faith (2018)". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2018.02.022.
  16. ^ J. Tyler Faith (2018). "We need to critically evaluate our assumptions: Reply to Blumenthal et al. (2018)". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2018.02.023.
  17. ^ Susanne Cote; John Kingston; Alan Deino; Alisa Winkler; Robert Kityo; Laura MacLatchy (2018). "Evidence for rapid faunal change in the early Miocene of East Africa based on revised biostratigraphic and radiometric dating of Bukwa, Uganda". Journal of Human Evolution. 116: 95–107. doi:10.1016/j.jhevol.2017.12.001.
  18. ^ Mathias M. Pires; Paulo R. Guimarães; Mauro Galetti; Pedro Jordano (2018). "Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services". Ecography. 41 (1): 153–163. doi:10.1111/ecog.03163.
  19. ^ Flavia Strani; Daniel DeMiguel; Fabio Bona; Raffaele Sardella; Italo Biddittu; Luciano Bruni; Adelaide De Castro; Francesco Guadagnoli; Luca Bellucci (2018). "Ungulate dietary adaptations and palaeoecology of the Middle Pleistocene site of Fontana Ranuccio (Anagni, Central Italy)". Palaeogeography, Palaeoclimatology, Palaeoecology. 496: 238–247. doi:10.1016/j.palaeo.2018.01.041.
  20. ^ Flavia Strani; Daniel DeMiguel; Luca Bellucci; Raffaele Sardella (2018). "Dietary response of early Pleistocene ungulate communities to the climate oscillations of the Gelasian/Calabrian transition in Central Italy". Palaeogeography, Palaeoclimatology, Palaeoecology. in press. doi:10.1016/j.palaeo.2018.03.021.
  21. ^ Jesús Rodríguez; Ana Mateos (2018). "Carrying capacity, carnivoran richness and hominin survival in Europe". Journal of Human Evolution. 118: 72–88. doi:10.1016/j.jhevol.2018.01.004.
  22. ^ Dan Zhu; Philippe Ciais; Jinfeng Chang; Gerhard Krinner; Shushi Peng; Nicolas Viovy; Josep Peñuelas; Sergey Zimov (2018). "The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum". Nature Ecology & Evolution. 2 (4): 640–649. doi:10.1038/s41559-018-0481-y.
  23. ^ Luciano Varela; P. Sebastián Tambusso; Santiago J. Patiño; Mariana Di Giacomo; Richard A. Fariña (2018). "Potential distribution of fossil xenarthrans in South America during the late Pleistocene: co-pccurrence and provincialism". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9406-9.
  24. ^ Daniela C. Kalthoff; Jeremy L. Green (2018). "Feeding ecology in Oligocene mylodontoid sloths (Mammalia, Xenarthra) as revealed by orthodentine microwear analysis". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9405-x.
  25. ^ Alberto Boscaini; Dawid A. Iurino; Guillaume Billet; Lionel Hautier; Raffaele Sardella; German Tirao; Timothy J. Gaudin; François Pujos (2018). "Phylogenetic and functional implications of the ear region anatomy of Glossotherium robustum (Xenarthra, Mylodontidae) from the Late Pleistocene of Argentina". The Science of Nature. 105 (3–4): Article 28. doi:10.1007/s00114-018-1548-y.
  26. ^ Néstor Toledo; Gerardo De Iuliis; Sergio F. Vizcaíno; M. Susana Bargo (2018). "The concept of a pedolateral pes revisited: the giant sloths Megatherium and Eremotherium (Xenarthra, Folivora, Megatheriinae) as a case study". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9410-0.
  27. ^ Esteban Soibelzon (2018). "Using paleoclimate and the fossil record to explain past and present distributions of armadillos (Xenarthra, Dasypodidae)". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9395-8.
  28. ^ Carlos A. Luna; Ignacio A. Cerda; Alfredo E. Zurita; Romina Gonzalez; M. Cecilia Prieto; Dimila Mothé; Leonardo S. Avilla (2018). "Distinguishing Quaternary glyptodontine cingulates in South America: How informative are juvenile specimens?". Acta Palaeontologica Polonica. 63 (1): 159–170. doi:10.4202/app.00409.2017.
  29. ^ Juan C. Fernicola; Andrés Rinderknecht; Washington Jones; Sergio F. Vizcaíno; Kleberson Propino (2018). "A new species of Neoglyptatelus (Mammalia, Xenarthra, Cingulata) from the late Miocene of Uruguay provides new insights on the evolution of the dorsal armor in cingulates". Ameghiniana. in press. doi:10.5710/AMGH.02.12.2017.3150.
  30. ^ a b Ascanio D. Rincón; Andrés Solórzano; H. Gregory McDonald; Marisol Montellano-Ballesteros (2018). "Two new megalonychid sloths (Mammalia: Xenarthra) from the Urumaco Formation (late Miocene), and their phylogenetic affinities". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2018.1427639.
  31. ^ Rodolphe Tabuce (2018). "New remains of Chambius kasserinensis from the Eocene of Tunisia and evaluation of proposed affinities for Macroscelidea (Mammalia, Afrotheria)". Historical Biology: An International Journal of Paleobiology. 30 (1–2): 251–266. doi:10.1080/08912963.2017.1297433.
  32. ^ Matthew J. Mason; Nigel C. Bennett; Martin Pickford (2018). "The middle and inner ears of the Palaeogene golden mole Namachloris: A comparison with extant species". Journal of Morphology. 279 (3): 375–395. doi:10.1002/jmor.20779.
  33. ^ Advait M. Jukar; S. Kathleen Lyons; Mark D. Uhen (2018). "A cranial correlate of body mass in proboscideans". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlx108.
  34. ^ William J. Sanders (2018). "Horizontal tooth displacement and premolar occurrence in elephants and other elephantiform proboscideans". Historical Biology: An International Journal of Paleobiology. 30 (1–2): 137–156. doi:10.1080/08912963.2017.1297436.
  35. ^ Dimila Mothé; Marco P. Ferretti; Leonardo S. Avilla (2018). "Running Over the Same Old Ground: Stegomastodon Never Roamed South America". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9392-y.
  36. ^ Gregory James Smith; Larisa R.G. Desantis (2018). "Dietary ecology of Pleistocene mammoths and mastodons as inferred from dental microwear textures". Palaeogeography, Palaeoclimatology, Palaeoecology. 492: 10–25. doi:10.1016/j.palaeo.2017.11.024.
  37. ^ Eleftheria Palkopoulou; Mark Lipson; Swapan Mallick; Svend Nielsen; Nadin Rohland; Sina Baleka; Emil Karpinski; Atma M. Ivancevic; Thu-Hien To; R. Daniel Kortschak; Joy M. Raison; Zhipeng Qu; Tat-Jun Chin; Kurt W. Alt; Stefan Claesson; Love Dalén; Ross D. E. MacPhee; Harald Meller; Alfred L. Roca; Oliver A. Ryder; David Heiman; Sarah Young; Matthew Breen; Christina Williams; Bronwen L. Aken; Magali Ruffier; Elinor Karlsson; Jeremy Johnson; Federica Di Palma; Jessica Alfoldi; David L. Adelson; Thomas Mailund; Kasper Munch; Kerstin Lindblad-Toh; Michael Hofreiter; Hendrik Poinar; David Reich (2018). "A comprehensive genomic history of extinct and living elephants". Proceedings of the National Academy of Sciences of the United States of America. 115 (11): E2566–E2574. doi:10.1073/pnas.1720554115.
  38. ^ Martin Pickford (2018). "Tenrecoid mandible from Elisabethfeld (Early Miocene) Namibia" (PDF). Communications of the Geological Survey of Namibia. 18: 87–92.
  39. ^ Ester Díaz-Berenguer; Ainara Badiola; Miguel Moreno-Azanza; José Ignacio Canudo (2018). "First adequately-known quadrupedal sirenian from Eurasia (Eocene, Bay of Biscay, Huesca, northeastern Spain)". Scientific Reports. 8: Article number 5127. doi:10.1038/s41598-018-23355-w.
  40. ^ a b c d e Gregg F. Gunnell; Fredrick K. Manthi (2018). "Pliocene bats (Chiroptera) from Kanapoi, Turkana Basin, Kenya". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2018.01.001.
  41. ^ Suzanne J. Hand; Robin M. D. Beck; Michael Archer; Nancy B. Simmons; Gregg F. Gunnell; R. Paul Scofield; Alan J. D. Tennyson; Vanesa L. De Pietri; Steven W. Salisbury; Trevor H. Worthy (2018). "A new, large-bodied omnivorous bat (Noctilionoidea: Mystacinidae) reveals lost morphological and ecological diversity since the Miocene in New Zealand". Scientific Reports. 8: Article number 235. doi:10.1038/s41598-017-18403-w.
  42. ^ Christine Böhmer; Gertrud E. Rössner (2018). "Dental paleopathology in fossil rhinoceroses: etiology and implications". Journal of Zoology. 304 (1): 3–12. doi:10.1111/jzo.12518.
  43. ^ Nikos Solounias; Melinda Danowitz; Elizabeth Stachtiaris; Abhilasha Khurana; Marwan Araim; Marc Sayegh; Jessica Natale (2018). "The evolution and anatomy of the horse manus with an emphasis on digit reduction". Royal Society Open Science. 5 (1): 171782. doi:10.1098/rsos.171782.
  44. ^ Boyang Sun; Xiaoxiao Zhang; Yan Liu; Raymond L. Bernor (2018). "Sivalhippus ptychodus and Sivalhippus platyodus (Perissodactyla, Mammalia) from the Late Miocene of China". Rivista Italiana di Paleontologia e Stratigrafia. 124 (1): 1–22. doi:10.13130/2039-4942/9523.
  45. ^ Bin Bai; Yuan-Qing Wang; Zhao-Qun Zhang (2018). "The late Eocene hyracodontid perissodactyl Ardynia from Saint Jacques, Inner Mongolia, China and its implications for the potential Eocene-Oligocene boundary". Palaeoworld. in press. doi:10.1016/j.palwor.2017.09.001.
  46. ^ Dan-Hui Sun; Yu Li; Tao Deng (2018). "A new species of Chilotherium (Perissodactyla, Rhinocerotidae) from the Late Miocene of Qingyang, Gansu, China". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.1000-3118.180109.
  47. ^ Shuo Li (2018). "A new species of Brontotheriidae from the Middle Eocene of Junggar Basin, Xinjiang, China". Vertebrata PalAsiatica. 56 (1): 25–44. doi:10.19615/j.cnki.1000-3118.170314.
  48. ^ Hai-Bing Wang; Bin Bai; Jin Meng; Yuan-Qing Wang (2018). "A new species of Forstercooperia (Perissodactyla: Paraceratheriidae) from northern China with a systematic revision of forstercooperiines". American Museum Novitates. 3897: 1–41. doi:10.1206/3897.1.
  49. ^ Bo-Yang Sun; Xiu-Xi Wang; Min-Xiao Ji; Li-Bo Pang; Qin-Qin Shi; Su-Kuan Hou; Dan-Hui Sun; Shi-Qi Wang (2018). "Miocene mammalian faunas from Wushan, China and their evolutionary, biochronological, and biogeographic significances". Palaeoworld. in press. doi:10.1016/j.palwor.2017.08.001.
  50. ^ Alexander Averianov; Igor Danilov; Wen Chen; Jianhua Jin (2018). "A new brontothere from the Eocene of South China". Acta Palaeontologica Polonica. 63 (1): 189–196. doi:10.4202/app.00431.2017.
  51. ^ Pietro Martini; Denis Geraads (2018). "Camelus thomasi Pomel, 1893 from the Pleistocene type-locality Tighennif (Algeria). Comparisons with modern Camelus". Geodiversitas. 40 (5): 115–134. doi:10.5252/geodiversitas2018v40a5.
  52. ^ Germán Mariano Gasparini; Rodrigo Parisi Dutra; Guillermo N. Lamenza; Eduardo Pedro Tonni; Agustín Ruella (2018). "Parachoerus carlesi (Mammalia, Tayassuidae) in the Late Pleistocene (northern Argentina, South America): paleoecological and palaeobiogeographic considerations". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1418340.
  53. ^ Hailay G. Reda; Ignacio A. Lazagabaster; Yohannes Haile-Selassie (2018). "Newly discovered crania of Nyanzachoerus jaegeri (Tetraconodontinae, Suidae, Mammalia) from the Woranso-Mille (Ethiopia) and reappraisal of its generic status". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9398-5.
  54. ^ Sukuan Hou; Denise F. Su; Jay Kelley; Tao Deng; Nina G. Jablonski; Lawrence J. Flynn; Xueping Ji; Jiayong Cao; Xin Yang (2018). "New fossil suid specimens from the terminal Miocene hominoid locality of Shuitangba, Zhaotong, Yunnan Province, China". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9431-3.
  55. ^ Olja Toljagić; Kjetil L. Voje; Michael Matschiner; Lee Hsiang Liow; Thomas F. Hansen (2018). "Millions of years behind: Slow adaptation of ruminants to grasslands". Systematic Biology. 67 (1): 145–157. doi:10.1093/sysbio/syx059.
  56. ^ Mariana F. Rossi; Beatriz Mello; Carlos G. Schrago (2018). "Comparative evaluation of macroevolutionary regimes of Ruminantia and selected mammalian lineages". Biological Journal of the Linnean Society. in press. doi:10.1093/biolinnean/bly009.
  57. ^ Bastien Mennecart; Adrien de Perthuis; Gertrud E. Rössner; Jonathan A. Guzmán; Aude de Perthuis; Loïc Costeur (2018). "The first French tragulid skull (Mammalia, Ruminantia, Tragulidae) and associated tragulid remains from the Middle Miocene of Contres (Loir-et-Cher, France)". Comptes Rendus Palevol. in press. doi:10.1016/j.crpv.2017.08.004.
  58. ^ Alline Rotti; Dimila Mothé; Leonardo dos Santos Avilla; Gina M. Semprebon (2018). "Diet reconstruction for an extinct deer (Cervidae: Cetartiodactyla) from the Quaternary of South America". Palaeogeography, Palaeoclimatology, Palaeoecology. 497: 244–252. doi:10.1016/j.palaeo.2018.02.026.
  59. ^ Charles Helm; Hayley Cawthra; Richard Cowling; Jan De Vynck; Curtis Marean; Richard McCrea; Renee Rust (2018). "Palaeoecology of giraffe tracks in Late Pleistocene aeolianites on the Cape south coast". South African Journal of Science. 114 (1/2): Art. #2017-0266. doi:10.17159/sajs.2018/20170266.
  60. ^ Ismael Ferrusquía-Villafranca; Víctor Adrián Pérez-Crespo; José E. Ruiz-González; Enrique Martínez-Hernández; Pedro Morales-Puente (2018). "The diet of Leptomeryx sp. from the Late Eocene Yolomécatl Formation, NW Oaxaca, Sierra Madre del Sur Morphotectonic Province, SE México and its palaeoecological significance". Geological Magazine. 155 (1): 203–208. doi:10.1017/S0016756817000747.
  61. ^ Cécile Blondel; John Rowan; Gildas Merceron; Faysal Bibi; Enquye Negash; W. Andrew Barr; Jean-Renaud Boisserie (2018). "Feeding ecology of Tragelaphini (Bovidae) from the Shungura Formation, Omo Valley, Ethiopia: Contribution of dental wear analyses". Palaeogeography, Palaeoclimatology, Palaeoecology. 496: 103–120. doi:10.1016/j.palaeo.2018.01.027.
  62. ^ Bastien Mennecart; Denis Geraads; Nikolai Spassov; Ivan Zagorchev (2018). "Discovery of the oldest European ruminant in the latest Eocene of Bulgaria: Did tectonics influence the diachronic development of the Grande Coupure?". Palaeogeography, Palaeoclimatology, Palaeoecology. 498: 1–8. doi:10.1016/j.palaeo.2018.01.011.
  63. ^ a b c Alexandra A.E. van der Geer (2018). "Uniformity in variety: Antler morphology and evolution in a predator-free environment". Palaeontologia Electronica. 21 (1): Article number 21.1.9A. doi:10.26879/834.
  64. ^ Su-Kuan Hou; Tao Deng (2018). "A new species of Kubanochoerus (Suidae, Artiodactyla) from the Linxia Basin, Gansu Province, China". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.1000-3118.180402.
  65. ^ Ryan M. Bebej; Kathlyn M. Smith (2018). "Lumbar mobility in archaeocetes (Mammalia: Cetacea) and the evolution of aquatic locomotion in the earliest whales". Zoological Journal of the Linnean Society. 182 (3): 695–721. doi:10.1093/zoolinnean/zlx058.
  66. ^ Mickaël J. Mourlam; Maeva J. Orliac (2018). "Protocetid (Cetacea, Artiodactyla) bullae and petrosals from the middle Eocene locality of Kpogamé, Togo: new insights into the early history of cetacean hearing". Journal of Systematic Palaeontology. 16 (8): 621–644. doi:10.1080/14772019.2017.1328378.
  67. ^ Benjamin Ramassamy; Olivier Lambert; Alberto Collareta; Mario Urbina; Giovanni Bianucci (2018). "Description of the skeleton of the fossil beaked whale Messapicetus gregarius: searching potential proxies for deep-diving abilities". Fossil Record. 21 (1): 11–32. doi:10.5194/fr-21-11-2018.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  68. ^ Indira S. Ritsche; Julia M. Fahlke; Frank Wieder; André Hilger; Ingo Manke; Oliver Hampe (2018). "Relationships of cochlear coiling shape and hearing frequencies in cetaceans, and the occurrence of infrasonic hearing in Miocene Mysticeti". Fossil Record. 21 (1): 33–45. doi:10.5194/fr-21-33-2018.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  69. ^ Mariana Viglino; Mónica R. Buono; Carolina S. Gutstein; Mario A. Cozzuol; José I. Cuitiño (2018). "A new dolphin from the early Miocene of Patagonia, Argentina: Insights into the evolution of Platanistoidea in the Southern Hemisphere". Acta Palaeontologica Polonica. in press. doi:10.4202/app.00441.2017.
  70. ^ Toshiyuki Kimura; Yoshikazu Hasegawa; Naoki Kohno (2018). "A new species of the genus Eschrichtius (Cetacea: Mysticeti) from the Early Pleistocene of Japan". Paleontological Research. 22 (1): 1–19. doi:10.2517/2017PR007.
  71. ^ Olivier Lambert; Christian de Muizon; Guy Duhamel; Johannes van der Plicht (2018). "Neogene and Quaternary fossil remains of beaked whales (Cetacea, Odontoceti, Ziphiidae) from deep-sea deposits off Crozet and Kerguelen islands, Southern Ocean". Geodiversitas. 40 (6): 135–160. doi:10.5252/geodiversitas2018v40a6.
  72. ^ Atzcalli Ehécatl Hernández Cisneros (2018). "A new group of late Oligocene mysticetes from México". Palaeontologia Electronica. 21 (1): Article number 21.1.7A. doi:10.26879/746.
  73. ^ Carlos Mauricio Peredo; Mark D. Uhen; Margot D. Nelson (2018). "A new kentriodontid (Cetacea: Odontoceti) from the early Miocene Astoria Formation and a revision of the stem delphinidan family Kentriodontidae". Journal of Vertebrate Paleontology. Online edition: e1411357. doi:10.1080/02724634.2017.1411357.
  74. ^ Mairin Balisi; Xiaoming Wang; Julia Sankey; Jacob Biewer; Dennis Garber (2018). "Fossil canids from the Mehrten Formation, Late Cenozoic of Northern California". Journal of Vertebrate Paleontology. 38 (1): e1405009. doi:10.1080/02724634.2017.1405009.
  75. ^ Susumu Tomiya; Julie A. Meachen (2018). "Postcranial diversity and recent ecomorphic impoverishment of North American gray wolves". Biology Letters. 14 (1): 20170613. doi:10.1098/rsbl.2017.0613.
  76. ^ Beniamino Mecozzi; Saverio Bartolini Lucenti (2018). "The Late Pleistocene Canis lupus (Canidae, Mammalia) from Avetrana (Apulia, Italy): reappraisal and new insights on the European glacial wolves". Italian Journal of Geosciences. 137 (1): 138–150. doi:10.3301/IJG.2017.22.
  77. ^ Martina L. Steffen; Tara L. Fulton (2018). "On the association of giant short-faced bear (Arctodus simus) and brown bear (Ursus arctos) in late Pleistocene North America". Geobios. 51 (1): 61–74. doi:10.1016/j.geobios.2017.12.001.
  78. ^ Marius Robu; Jonathan G. Wynn; Ionuţ C. Mirea; Alexandru Petculescu; Marius Kenesz; Cristina M. Puşcaş; Marius Vlaicu; Erik Trinkaus; Silviu Constantin (2018). "The diverse dietary profiles of MIS 3 cave bears from the Romanian Carpathians: insights from stable isotope (δ13C and δ15N) analysis". Palaeontology. 61 (2): 209–219. doi:10.1111/pala.12338.
  79. ^ Chris J. Law; Graham J. Slater; Rita S. Mehta (2018). "Lineage diversity and size disparity in Musteloidea: Testing patterns of adaptive radiation using molecular and fossil-based methods". Systematic Biology. 67 (1): 127–144. doi:10.1093/sysbio/syx047.
  80. ^ Juliana Tarquini; Néstor Toledo; Leopoldo H. Soibelzon; Cecilia C. Morgan (2018). "Body mass estimation for †Cyonasua (Procyonidae, Carnivora) and related taxa based on postcranial skeleton". Historical Biology: An International Journal of Paleobiology. 30 (4): 496–506. doi:10.1080/08912963.2017.1295042.
  81. ^ Jonathan J. Calede; Winifred A. Kehl; Edward B. Davis (2018). "Craniodental morphology and diet of Leptarctus oregonensis (Mammalia, Carnivora, Mustelidae) from the Mascall Formation (Miocene) of central Oregon". Journal of Paleontology. 92 (2): 289–304. doi:10.1017/jpa.2017.78.
  82. ^ Robert W. Boessenecker (2018). "A Middle Pleistocene Sea Otter from Northern California and the Antiquity of Enhydra in the Pacific Basin". Journal of Mammalian Evolution. 25 (1): 27–35. doi:10.1007/s10914-016-9373-6.
  83. ^ Ashley W. Poust; Robert W. Boessenecker (2018). "Expanding the geographic and geochronologic range of early pinnipeds: New specimens of Enaliarctos from Northern California and Oregon". Acta Palaeontologica Polonica. 63 (1): 25–40. doi:10.4202/app.00399.2017.
  84. ^ Lindsay Renee Meador; Laurie Rohde Godfrey; Jean Claude Rakotondramavo; Lovasoa Ranivoharimanana; Andrew Zamora; Michael Reed Sutherland; Mitchell T. Irwin (2018). "Cryptoprocta spelea (Carnivora: Eupleridae): What Did It Eat and How Do We Know?". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9391-z.
  85. ^ Nicolás R. Chimento; Alejandro Dondas (2018). "First Record of Puma concolor (Mammalia, Felidae) in the Early-Middle Pleistocene of South America". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9385-x.
  86. ^ Camille Grohé; Beatrice Lee; John J. Flynn (2018). "Recent inner ear specialization for high-speed hunting in cheetahs". Scientific Reports. 8: Article number 2301. doi:10.1038/s41598-018-20198-3.
  87. ^ Fredrick K. Manthi; Francis H. Brown; Michael J. Plavcan; Lars Werdelin (2018). "Gigantic lion, Panthera leo, from the Pleistocene of Natodomeri, eastern Africa". Journal of Paleontology. 92 (2): 305–312. doi:10.1017/jpa.2017.68.
  88. ^ Paolo Piras; Daniele Silvestro; Francesco Carotenuto; Silvia Castiglione; Anastassios Kotsakis; Leonardo Maiorino; Marina Melchionna; Alessandro Mondanaro; Gabriele Sansalone (2018). "Evolution of the sabertooth mandible: A deadly ecomorphological specialization". Palaeogeography, Palaeoclimatology, Palaeoecology. 496: 166–174. doi:10.1016/j.palaeo.2018.01.034.
  89. ^ Aldo Manzuetti; Daniel Perea; Martín Ubilla; Andrés Rinderknecht (2018). "First record of Smilodon fatalis Leidy, 1868 (Felidae, Machairodontinae) in the extra-Andean region of South America (late Pleistocene, Sopas Formation), Uruguay: Taxonomic and paleobiogeographic implications". Quaternary Science Reviews. 180: 57–62. doi:10.1016/j.quascirev.2017.11.024.
  90. ^ Robert W. Boessenecker; Morgan Churchill (2018). "The last of the desmatophocid seals: a new species of Allodesmus from the upper Miocene of Washington, USA, and a revision of the taxonomy of Desmatophocidae". Zoological Journal of the Linnean Society. Online edition. doi:10.1093/zoolinnean/zlx098.
  91. ^ a b Leonard Dewaele; Carlos Mauricio Peredo; Pjotr Meyvisch; Stephen Louwye (2018). "Diversity of late Neogene Monachinae (Carnivora, Phocidae) from the North Atlantic, with the description of two new species". Royal Society Open Science. 5 (3): 172437. doi:10.1098/rsos.172437.
  92. ^ Jean-Baptiste Fourvel (2018). "Civettictis braini nov. sp. (Mammalia: Carnivora), a new viverrid from the hominin-bearing site of Kromdraai (Gauteng, South Africa)". Comptes Rendus Palevol. in press. doi:10.1016/j.crpv.2017.11.005.
  93. ^ a b Brent Adrian; Lars Werdelin; Aryeh Grossman (2018). "New Miocene Carnivora (Mammalia) from Moruorot and Kalodirr, Kenya". Palaeontologia Electronica. 21 (1): Article number 21.1.10A. doi:10.26879/778.
  94. ^ Manuel J. Salesa; Gema Siliceo; Mauricio Antón; Stéphane Peigné; Jorge Morales (2018). "Functional and systematic implications of the postcranial anatomy of a late Miocene feline (Carnivora, Felidae) from Batallones-1 (Madrid, Spain)". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9414-9.
  95. ^ Qi-Gao Jiangzuo; Jin-Yi Liu; Jan Wagner; Jin Chen (2018). "Taxonomical revision of "Arctonyx" fossil remains from the Liucheng Gigantopithecus Cave (South China) by means of morphotype and morphometrics, and a review of Late Pliocene and Early Pleistocene Meles fossil records in China". Palaeoworld. in press. doi:10.1016/j.palwor.2017.12.001.
  96. ^ Louis de Bonis; Stéphane Peigné; Hassane Taisso Mackaye; Andossa Likius; Patrick Vignaud; Michel Brunet (2018). "New sabre toothed Felidae (Carnivora, Mammalia) in the hominid-bearing sites of Toros Menalla (late Miocene, Chad)". Geodiversitas. 40 (3): 69–86. doi:10.5252/geodiversitas2018v40a3.
  97. ^ Fernando Blanco; Ana Rosa Gómez Cano; Juan L. Cantalapiedra; M. Soledad Domingo; Laura Domingo; Iris Menéndez; Lawrence J. Flynn; Manuel Hernández Fernández (2018). "Differential responses of Miocene rodent metacommunities to global climatic changes were mediated by environmental context". Scientific Reports. 8: Article number 2502. doi:10.1038/s41598-018-20900-5.
  98. ^ Myriam Boivin; Laurent Marivaux; Rodolfo Salas-Gismondi; Emma C. Vieytes; Pierre-Olivier Antoine (2018). "Incisor enamel microstructure of Paleogene caviomorph rodents from Contamana and Shapaja (Peruvian Amazonia)". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-018-9430-4.
  99. ^ Laurent Marivaux; Myriam Boivin; Sylvain Adnet; Mohamed Benammi; Rodolphe Tabuce; Mouloud Benammi (2018). "Incisor enamel microstructure of hystricognathous and anomaluroid rodents from the earliest Oligocene of Dakhla, Atlantic Sahara (Morocco)". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9426-5.
  100. ^ Diego H. Verzi; A. Itatí Olivares; Cecilia C. Morgan (2018). "Morphology of the lower deciduous premolars of South American hystricomorph rodents and age of the Octodontoidea". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1427089.
  101. ^ Andrés Rinderknecht; Enrique Bostelmann; Martín Ubilla (2018). "Making a giant rodent: cranial anatomy and ontogenetic development in the genus Isostylomys (Mammalia, Hystricognathi, Dinomyidae)". Journal of Systematic Palaeontology. 16 (3): 245–261. doi:10.1080/14772019.2017.1285360.
  102. ^ Andrés Rinderknecht; Washington W. Jones; Ney Araújo; Gustavo Grinspan; R. Ernesto Blanco (2018). "Bite force and body mass of the fossil rodent Telicomys giganteus (Caviomorpha, Dinomyidae)". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1384475.
  103. ^ Luciano L. Rasia; Adriana M. Candela (2018). "Reappraisal of the giant caviomorph rodent Phoberomys burmeisteri (Ameghino, 1886) from the late Miocene of northeastern Argentina, and the phylogeny and diversity of Neoepiblemidae". Historical Biology: An International Journal of Paleobiology. 30 (4): 486–495. doi:10.1080/08912963.2017.1294168.
  104. ^ Leonardo Kerber; Marcelo R. Sánchez-Villagra (2018). "Morphology of the middle ear ossicles in the rodent Perimys (Neoepiblemidae) and a comprehensive anatomical and morphometric study of the phylogenetic transformations of these structures in caviomorphs". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9422-9.
  105. ^ Raúl I. Vezzosi; Leonardo Kerber (2018). "The southernmost record of a large erethizontid rodent (Hystricomorpha: Erethizontoidea) in the Pleistocene of South America: Biogeographic and paleoenvironmental implications". Journal of South American Earth Sciences. 82: 76–90. doi:10.1016/j.jsames.2017.12.015.
  106. ^ Ornella C. Bertrand; Farrah Amador-Mughal; Madlen M. Lang; Mary T. Silcox (2018). "New virtual endocasts of Eocene Ischyromyidae and their relevance in evaluating neurological changes occurring through time in Rodentia". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9425-6.
  107. ^ Maxim V. Sinitsa (2018). "Phylogenetic position of Sinotamias and the early evolution of Marmotini (Rodentia, Sciuridae, Xerinae)". Journal of Vertebrate Paleontology. 38 (1): e1419251. doi:10.1080/02724634.2017.1419251.
  108. ^ a b Qiang Li; Thomas A. Stidham; Xijun Ni; Lüzhou Li (2018). "Two new Pliocene hamsters (Cricetidae, Rodentia) from southwestern Tibet (China), and their implications for rodent dispersal 'into Tibet'". Journal of Vertebrate Paleontology. 37 (6): e1403443. doi:10.1080/02724634.2017.1403443.
  109. ^ a b c d e f g Myriam Boivin; Laurent Marivaux; François Pujos; Rodolfo Salas-Gismondi; Julia V. Tejada-Lara; Rafael M. Varas-Malca; Pierre-Olivier Antoine (2018). "Early Oligocene caviomorph rodents from Shapaja, Peruvian Amazonia". Palaeontographica Abteilung A. in press.
  110. ^ Thomas Mörs; Yukimitsu Tomida (2018). "Euroxenomys nanus sp. nov., a minute beaver (Rodentia, Castoridae) from the Early Miocene of Japan". Paleontological Research. 22 (2): 145–149. doi:10.2517/2017PR013.
  111. ^ Eduardo Jiménez-Hidalgo; Rosalía Guerrero-Arenas; Krister T. Smith (2018). "Gregorymys veloxikua, The Oldest Pocket Gopher (Rodentia: Geomyidae), and The Early Diversification of Geomyoidea". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9383-z.
  112. ^ Wilma Wessels; Andrew A. van de Weerd; Hans de Bruijn; Zoran Marković (2018). "New Melissiodontinae (Mammalia, Rodentia) from the Paleogene of south-east Serbia". Palaeobiodiversity and Palaeoenvironments. Online edition. doi:10.1007/s12549-017-0311-2.
  113. ^ Pierre Mein; Martin Pickford (2018). "Reithroparamyine rodent from the Eocene of Namibia" (PDF). Communications of the Geological Survey of Namibia. 18: 38–47.
  114. ^ Robert A. Martin; Alexey Tesakov; Jordi Agustí; Karla Johnston (2018). "Orcemys, a new genus of arvicolid rodent from the early Pleistocene of the Guadix–Baza Basin, southern Spain". Comptes Rendus Palevol. in press. doi:10.1016/j.crpv.2017.06.006.
  115. ^ a b Andrew A. van de Weerd; Hans de Bruijn; Zoran Marković; Wilma Wessels (2018). "Paracricetodontinae (Mammalia, Rodentia) from the late Eocene and early Oligocene of south-east Serbia". Palaeobiodiversity and Palaeoenvironments. Online edition. doi:10.1007/s12549-017-0317-9.
  116. ^ Martin Pickford (2018). "New Zegdoumyidae (Rodentia, Mammalia) from the Middle Eocene of Black Crow, Namibia : taxonomy, dental formula" (PDF). Communications of the Geological Survey of Namibia. 18: 48–63.
  117. ^ Maxim V. Sinitsa; Valentin A. Nesin (2018). "Systematics and phylogeny of Vasseuromys (Mammalia, Rodentia, Gliridae) with a description of a new species from the late Miocene of eastern Europe". Palaeontology. Online edition. doi:10.1111/pala.12359.
  118. ^ Jonathan M. G. Perry (2018). "Inferring the diets of extinct giant lemurs from osteological correlates of muscle dimensions". The Anatomical Record. 301 (2): 343–362. doi:10.1002/ar.23719.
  119. ^ Myra F. Laird; Elaine E. Kozma; Amandus Kwekason; Terry Harrison (2018). "A new fossil cercopithecid tibia from Laetoli and its implications for positional behavior and paleoecology". Journal of Human Evolution. 118: 27–42. doi:10.1016/j.jhevol.2018.02.005.
  120. ^ Daniel DeMiguel; Lorenzo Rook (2018). "Understanding climate's influence on the extinction of Oreopithecus (late Miocene, Tusco-Sardinian paleobioprovince, Italy)". Journal of Human Evolution. 116: 14–26. doi:10.1016/j.jhevol.2017.11.008.
  121. ^ Christopher B. Ruff; M. Loring Burgess; Nicole Squyres; Juho-Antti Junno; Erik Trinkaus (2018). "Lower limb articular scaling and body mass estimation in Pliocene and Pleistocene hominins". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.10.014.
  122. ^ Andrew Du; Andrew M. Zipkin; Kevin G. Hatala; Elizabeth Renner; Jennifer L. Baker; Serena Bianchi; Kallista H. Bernal; Bernard A. Wood (2018). "Pattern and process in hominin brain size evolution are scale-dependent". Proceedings of the Royal Society B: Biological Sciences. 285 (1873): 20172738. doi:10.1098/rspb.2017.2738.
  123. ^ Richard S. Meindl; Morgan E. Chaney; C. Owen Lovejoy (2018). "Early hominids may have been weed species". Proceedings of the National Academy of Sciences of the United States of America. 115 (6): 1244–1249. doi:10.1073/pnas.1719669115.
  124. ^ Elaine E. Kozma; Nicole M. Webb; William E. H. Harcourt-Smith; David A. Raichlen; Kristiaan D'Août; Mary H. Brown; Emma M. Finestone; Stephen R. Ross; Peter Aerts; Herman Pontzer (2018). "Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins". Proceedings of the National Academy of Sciences of the United States of America. in press. doi:10.1073/pnas.1715120115.
  125. ^ C.V. Ward; J.M. Plavcan; F.K. Manthi (2018). "New fossils of Australopithecus anamensis from Kanapoi, West Turkana, Kenya (2012–2015)". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.07.008.
  126. ^ Amélie Beaudet; Jean Dumoncel; Frikkie de Beer; Stanley Durrleman; Emmanuel Gilissen; Anna Oettlé; Gérard Subsol; John Francis Thackeray; José Braga (2018). "The endocranial shape of Australopithecus africanus: surface analysis of the endocasts of Sts 5 and Sts 60". Journal of Anatomy. 232 (2): 296–303. doi:10.1111/joa.12745.
  127. ^ Gaokgatlhe M. Tawane; J. Francis Thackeray (2018). "The cranium of Sts 5 ('Mrs Ples') in relation to sexual dimorphism of Australopithecus africanus". South African Journal of Science. 114 (1/2): Art. #a0249. doi:10.17159/sajs.2018/a0249.
  128. ^ Chris Robinson; Timothy L. Campbell; Susanne Cote; Darryl J. de Ruiter (2018). "Temporal ranges and ancestry in the hominin fossil record: The case of Australopithecus sediba". South African Journal of Science. 114 (3/4): Art. #2017-0327. doi:10.17159/sajs.2018/20170327.
  129. ^ Caroline VanSickle; Zachary Cofran; Daniel García-Martínez; Scott A. Williams; Steven E. Churchill; Lee R. Berger; John Hawks (2018). "Homo naledi pelvic remains from the Dinaledi Chamber, South Africa". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.10.001.
  130. ^ Debra R. Bolter; John Hawks; Barry Bogin; Noel Cameron (2018). "Palaeodemographics of individuals in Dinaledi Chamber using dental remains". South African Journal of Science. 114 (1/2): Art. #2017-0066. doi:10.17159/sajs.2018/20170066.
  131. ^ Peter S. Ungar; Lee R. Berger (2018). "Brief communication: Dental microwear and diet of Homo naledi". American Journal of Physical Anthropology. in press. doi:10.1002/ajpa.23418.
  132. ^ Michael A. Berthaume; Lucas K. Delezene; Kornelius Kupczik (2018). "Dental topography and the diet of Homo naledi". Journal of Human Evolution. 118: 14–26. doi:10.1016/j.jhevol.2018.02.006.
  133. ^ Charles P. Egeland; Manuel Domínguez-Rodrigo; Travis Rayne Pickering; Colin G. Menter; Jason L. Heaton (2018). "Hominin skeletal part abundances and claims of deliberate disposal of corpses in the Middle Pleistocene". Proceedings of the National Academy of Sciences of the United States of America. in press. doi:10.1073/pnas.1718678115.
  134. ^ Amélie Vialet; Sandrine Prat; Patricia Wilms; Mehmet Cihat Alçiçek (2018). "The Kocabaş hominin (Denizli Basin, Turkey) at the crossroads of Eurasia: New insights from morphometric and cladistic analyses". Comptes Rendus Palevol. 17 (1–2): 17–32. doi:10.1016/j.crpv.2017.11.003.
  135. ^ Song Xing; Kristian J. Carlson; Pianpian Wei; Jianing He; Wu Liu (2018). "Morphology and structure of Homo erectus humeri from Zhoukoudian, Locality 1". PeerJ. 6: e4279. doi:10.7717/peerj.4279.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  136. ^ Song Xing; María Martinón-Torres; José María Bermúdez de Castro (2018). "The fossil teeth of the Peking Man". Scientific Reports. 8: Article number 2066. doi:10.1038/s41598-018-20432-y.
  137. ^ Amélie Vialet; Mario Modesto-Mata; María Martinón-Torres; Marina Martínez de Pinillos; José-María Bermúdez de Castro (2018). "A reassessment of the Montmaurin-La Niche mandible (Haute Garonne, France) in the context of European Pleistocene human evolution". PLoS ONE. 13 (1): e0189714. doi:10.1371/journal.pone.0189714.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  138. ^ Alison S. Brooks; John E. Yellen; Richard Potts; Anna K. Behrensmeyer; Alan L. Deino; David E. Leslie; Stanley H. Ambrose; Jeffrey R. Ferguson; Francesco d’Errico; Andrew M. Zipkin; Scott Whittaker; Jeffrey Post; Elizabeth G. Veatch; Kimberly Foecke; Jennifer B. Clark (2018). "Long-distance stone transport and pigment use in the earliest Middle Stone Age". Science. 360 (6384): 90–94. doi:10.1126/science.aao2646.
  139. ^ Richard Potts; Anna K. Behrensmeyer; J. Tyler Faith; Christian A. Tryon; Alison S. Brooks; John E. Yellen; Alan L. Deino; Rahab Kinyanjui; Jennifer B. Clark; Catherine Haradon; Naomi E. Levin; Hanneke J. M. Meijer; Elizabeth G. Veatch; R. Bernhart Owen; Robin W. Renaut (2018). "Environmental dynamics during the onset of the Middle Stone Age in eastern Africa". Science. 360 (6384): 86–90. doi:10.1126/science.aao2200.
  140. ^ Alan L. Deino; Anna K. Behrensmeyer; Alison S. Brooks; John E. Yellen; Warren D. Sharp; Richard Potts (2018). "Chronology of the Acheulean to Middle Stone Age transition in eastern Africa". Science. 360 (6384): 95–98. doi:10.1126/science.aao2216.
  141. ^ Kumar Akhilesh; Shanti Pappu; Haresh M. Rajapara; Yanni Gunnell; Anil D. Shukla; Ashok K. Singhvi (2018). "Early Middle Palaeolithic culture in India around 385–172 ka reframes Out of Africa models". Nature. 554 (7690): 97–101. doi:10.1038/nature25444.
  142. ^ Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Richard A. Cerutti; Adam N. Rountrey; Lawrence Vescera; Kathleen A. Holen (2017). "A 130,000-year-old archaeological site in southern California, USA". Nature. 544 (7651): 479–483. doi:10.1038/nature22065.
  143. ^ Joseph V. Ferraro; Katie M. Binetti; Logan A. Wiest; Donald Esker; Lori E. Baker; Steven L. Forman (2018). "Contesting early archaeology in California". Nature. 554 (7691): E1–E2. doi:10.1038/nature25165.
  144. ^ Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Richard A. Cerutti; Adam N. Rountrey; Lawrence Vescera; Kathleen A. Holen (2018). "Holen et al. reply". Nature. 554 (7691): E3. doi:10.1038/nature25166.
  145. ^ Luc Doyon; Zhanyang Li; Hao Li; Francesco d’Errico (2018). "Discovery of circa 115,000-year-old bone retouchers at Lingjing, Henan, China". PLoS ONE. 13 (3): e0194318. doi:10.1371/journal.pone.0194318.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  146. ^ Flavio Altamura; Matthew R. Bennett; Kristiaan D’Août; Sabine Gaudzinski-Windheuser; Rita T. Melis; Sally C. Reynolds; Margherita Mussi (2018). "Archaeology and ichnology at Gombore II-2, Melka Kunture, Ethiopia: everyday life of a mixed-age hominin group 700,000 years ago". Scientific Reports. 8: Article number 2815. doi:10.1038/s41598-018-21158-7.
  147. ^ Ricardo Miguel Godinho; Penny Spikins; Paul O’Higgins (2018). "Supraorbital morphology and social dynamics in human evolution". Nature Ecology & Evolution. in press. doi:10.1038/s41559-018-0528-0.
  148. ^ Sharon R. Browning; Brian L. Browning; Ying Zhou; Serena Tucci; Joshua M. Akey (2018). "Analysis of human sequence data reveals two pulses of archaic Denisovan admixture". Cell. 173 (1): 53–61.e9. doi:10.1016/j.cell.2018.02.031.
  149. ^ Biancamaria Aranguren; Anna Revedin; Nicola Amico; Fabio Cavulli; Gianna Giachi; Stefano Grimaldi; Nicola Macchioni; Fabio Santaniello (2018). "Wooden tools and fire technology in the early Neanderthal site of Poggetti Vecchi (Italy)". Proceedings of the National Academy of Sciences of the United States of America. 115 (9): 2054–2059. doi:10.1073/pnas.1716068115.
  150. ^ Joseba Rios-Garaizar; Oriol López-Bultó; Eneko Iriarte; Carlos Pérez-Garrido; Raquel Piqué; Arantza Aranburu; María José Iriarte-Chiapusso; Illuminada Ortega-Cordellat; Laurence Bourguignon; Diego Garate; Iñaki Libano (2018). "A Middle Palaeolithic wooden digging stick from Aranbaltza III, Spain". PLoS ONE. 13 (3): e0195044. doi:10.1371/journal.pone.0195044.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  151. ^ D. L. Hoffmann; C. D. Standish; M. García-Diez; P. B. Pettitt; J. A. Milton; J. Zilhão; J. J. Alcolea-González; P. Cantalejo-Duarte; H. Collado; R. de Balbín; M. Lorblanchet; J. Ramos-Muñoz; G.-Ch. Weniger; A. W. G. Pike (2018). "U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art". Science. 359 (6378): 912–915. doi:10.1126/science.aap7778.
  152. ^ Mateja Hajdinjak; Qiaomei Fu; Alexander Hübner; Martin Petr; Fabrizio Mafessoni; Steffi Grote; Pontus Skoglund; Vagheesh Narasimham; Hélène Rougier; Isabelle Crevecoeur; Patrick Semal; Marie Soressi; Sahra Talamo; Jean-Jacques Hublin; Ivan Gušić; Željko Kućan; Pavao Rudan; Liubov V. Golovanova; Vladimir B. Doronichev; Cosimo Posth; Johannes Krause; Petra Korlević; Sarah Nagel; Birgit Nickel; Montgomery Slatkin; Nick Patterson; David Reich; Kay Prüfer; Matthias Meyer; Svante Pääbo; Janet Kelso (2018). "Reconstructing the genetic history of late Neanderthals". Nature. 555 (7698): 652–656. doi:10.1038/nature26151.
  153. ^ Stephen Wroe; William C. H. Parr; Justin A. Ledogar; Jason Bourke; Samuel P. Evans; Luca Fiorenza; Stefano Benazzi; Jean-Jacques Hublin; Chris Stringer; Ottmar Kullmer; Michael Curry; Todd C. Rae; Todd R. Yokley (2018). "Computer simulations show that Neanderthal facial morphology represents adaptation to cold and high energy demands, but not heavy biting". Proceedings of the Royal Society B: Biological Sciences. 285 (1876): 20180085. doi:10.1098/rspb.2018.0085.
  154. ^ Henry F. Lamb; C. Richard Bates; Charlotte L. Bryant; Sarah J. Davies; Dei G. Huws; Michael H. Marshall; Helen M. Roberts (2018). "150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa". Scientific Reports. 8: Article number 1077. doi:10.1038/s41598-018-19601-w.
  155. ^ Simon Neubauer; Jean-Jacques Hublin; Philipp Gunz (2018). "The evolution of modern human brain shape". Science Advances. 4 (1): eaao5961. doi:10.1126/sciadv.aao5961.
  156. ^ Charles W. Helm; Richard T. McCrea; Hayley C. Cawthra; Martin G. Lockley; Richard M. Cowling; Curtis W. Marean; Guy H. H. Thesen; Tammy S. Pigeon; Sinèad Hattingh (2018). "A new Pleistocene hominin tracksite from the Cape south coast, South Africa". Scientific Reports. 8: Article number 3772. doi:10.1038/s41598-018-22059-5.
  157. ^ Israel Hershkovitz; Gerhard W. Weber; Rolf Quam; Mathieu Duval; Rainer Grün; Leslie Kinsley; Avner Ayalon; Miryam Bar-Matthews; Helene Valladas; Norbert Mercier; Juan Luis Arsuaga; María Martinón-Torres; José María Bermúdez de Castro; Cinzia Fornai; Laura Martín-Francés; Rachel Sarig; Hila May; Viktoria A. Krenn; Viviane Slon; Laura Rodríguez; Rebeca García; Carlos Lorenzo; Jose Miguel Carretero; Amos Frumkin; Ruth Shahack-Gross; Daniella E. Bar-Yosef Mayer; Yaming Cui; Xinzhi Wu; Natan Peled; Iris Groman-Yaroslavski; Lior Weissbrod; Reuven Yeshurun; Alexander Tsatskin; Yossi Zaidner; Mina Weinstein-Evron (2018). "The earliest modern humans outside Africa". Science. 359 (6374): 456–459. doi:10.1126/science.aap8369.
  158. ^ Huw S. Groucutt; Rainer Grün; Iyad A. S. Zalmout; Nick A. Drake; Simon J. Armitage; Ian Candy; Richard Clark-Wilson; Julien Louys; Paul S. Breeze; Mathieu Duval; Laura T. Buck; Tracy L. Kivell; Emma Pomeroy; Nicholas B. Stephens; Jay T. Stock; Mathew Stewart; Gilbert J. Price; Leslie Kinsley; Wing Wai Sung; Abdullah Alsharekh; Abdulaziz Al-Omari; Muhammad Zahir; Abdullah M. Memesh; Ammar J. Abdulshakoor; Abdu M. Al-Masari; Ahmed A. Bahameem; Khaled M. S. Al Murayyi; Badr Zahrani; Eleanor L. M. Scerri; Michael D. Petraglia (2018). "Homo sapiens in Arabia by 85,000 years ago". Nature Ecology & Evolution. in press. doi:10.1038/s41559-018-0518-2.
  159. ^ Chad L. Yost; Lily J. Jackson; Jeffery R. Stone; Andrew S. Cohen (2018). "Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ∼74 ka Toba supereruption". Journal of Human Evolution. 116: 75–94. doi:10.1016/j.jhevol.2017.11.005.
  160. ^ Eugene I. Smith; Zenobia Jacobs; Racheal Johnsen; Minghua Ren; Erich C. Fisher; Simen Oestmo; Jayne Wilkins; Jacob A. Harris; Panagiotis Karkanas; Shelby Fitch; Amber Ciravolo; Deborah Keenan; Naomi Cleghorn; Christine S. Lane; Thalassa Matthews; Curtis W. Marean (2018). "Humans thrived in South Africa through the Toba eruption about 74,000 years ago". Nature. 555 (7697): 511–515. doi:10.1038/nature25967.
  161. ^ Marieke van de Loosdrecht; Abdeljalil Bouzouggar; Louise Humphrey; Cosimo Posth; Nick Barton; Ayinuer Aximu-Petri; Birgit Nickel; Sarah Nagel; El Hassan Talbi; Mohammed Abdeljalil El Hajraoui; Saaïd Amzazi; Jean-Jacques Hublin; Svante Pääbo; Stephan Schiffels; Matthias Meyer; Wolfgang Haak; Choongwon Jeong; Johannes Krause (2018). "Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations". Science. in press. doi:10.1126/science.aar8380.
  162. ^ Heather L. Smith; Ted Goebel (2018). "Origins and spread of fluted-point technology in the Canadian Ice-Free Corridor and eastern Beringia". Proceedings of the National Academy of Sciences of the United States of America. in press. doi:10.1073/pnas.1800312115.
  163. ^ Moreno-Mayar, J. Víctor; Potter, Ben A.; Vinner, Lasse; Steinrücken, Matthias; Rasmussen, Simon; et al. (2018). "Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans". Nature. 553 (7687): 203–207. doi:10.1038/nature25173.
  164. ^ Becker, Rachel (January 3, 2018). "Ancient baby's DNA reveals completely unknown branch of Native American family tree". The Verge. Retrieved January 4, 2018.
  165. ^ Simon Blockley; Ian Candy; Ian Matthews; Pete Langdon; Cath Langdon; Adrian Palmer; Paul Lincoln; Ashley Abrook; Barry Taylor; Chantal Conneller; Alex Bayliss; Alison MacLeod; Laura Deeprose; Chris Darvill; Rebecca Kearney; Nancy Beavan; Richard Staff; Michael Bamforth; Maisie Taylor; Nicky Milner (2018). "The resilience of postglacial hunter-gatherers to abrupt climate change". Nature Ecology & Evolution. in press. doi:10.1038/s41559-018-0508-4.
  166. ^ Yuan-Qing Wang; Nao Kusuhashi; Xun Jin; Chuan-Kui Li; Takeshi Setoguchi; Chun-Ling Gao; Jin-Yuan Liu (2018). "Reappraisal of Endotherium niinomii Shikama, 1947, a eutherian mammal from the Lower Cretaceous Fuxin Formation, Fuxin-Jinzhou Basin, Liaoning, China". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.1000-3118.180226.
  167. ^ James G. Napoli; Thomas E. Williamson; Sarah L. Shelley; Stephen L. Brusatte (2018). "A Digital Endocranial Cast of the Early Paleocene (Puercan) 'Archaic' Mammal Onychodectes tisonensis (Eutheria: Taeniodonta)". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9381-1.
  168. ^ Antonio Borrani; Andrea Savorelli; Federico Masini; Paul P. A. Mazza (2018). "The tangled cases of Deinogalerix (Late Miocene endemic erinaceid of Gargano) and Galericini (Eulipotyphla, Erinaceidae): a cladistic perspective". Cladistics. in press. doi:10.1111/cla.12215.
  169. ^ Lars W. van den Hoek Ostende (2018). "Cladistics and insular evolution, an unfortunate marriage? Another tangle in the Deinogalerix analysis of Borrani et al. (2017)". Cladistics. in press. doi:10.1111/cla.12238.
  170. ^ Andrea Corona; Daniel Perea; Martín Ubilla (2018). "The humerus of Proterotherriidae (Mammalia, Litopterna) and its systematic usefulness: the case of "Proterotherium berroi" Kraglievich, 1930". Ameghiniana. in press. doi:10.5710/AMGH.10.12.2017.3148.
  171. ^ Helder Gomes Rodrigues; Raphaël Cornette; Julien Clavel; Guillermo Cassini; Bhart-Anjan S. Bhullar; Marcos Fernández-Monescillo; Karen Moreno; Anthony Herrel; Guillaume Billet (2018). "Differential influences of allometry, phylogeny and environment on the rostral shape diversity of extinct South American notoungulates". Royal Society Open Science. 5 (1): 171816. doi:10.1098/rsos.171816.
  172. ^ Alejo C. Scarano; Bárbara Vera (2018). "Geometric morphometric analysis as a proxy to evaluate age-related change in molar shape variation of low-crowned Notoungulata (Mammalia)". Journal of Morphology. 279 (2): 216–227. doi:10.1002/jmor.20766.
  173. ^ M. D. Ercoli; A. M. Candela; L. L. Rasia; M. A. Ramírez (2018). "Dental shape variation of Neogene Pachyrukhinae (Mammalia, Notoungulata, Hegetotheriidae): systematics and evolutionary implications for the late Miocene Paedotherium species". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2017.1366956.
  174. ^ Renata Sostillo; Esperanza Cerdeño; Claudia I. Montalvo (2018). "Taxonomic implications from a large sample of Tremacyllus (Hegetotheriidae: Pachyrukhinae) from the late Miocene Cerro Azul Formation of La Pampa, Argentina". Ameghiniana. in press. doi:10.5710/AMGH.18.12.2017.3146.
  175. ^ Marcos Fernández-Monescillo; Pierre-Olivier Antoine; François Pujos; Helder Gomes Rodrigues; Bernardino Mamani Quispe; Maeva Orliac (2018). "Virtual endocast morphology of Mesotheriidae (Mammalia, Notoungulata, Typotheria): new insights and implications on notoungulate encephalization and brain evolution". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9416-7.
  176. ^ a b Floréal Solé; Marc Godinot; Yves Laurent; Alain Galoyer; Thierry Smith (2018). "The European Mesonychid Mammals: Phylogeny, Ecology, Biogeography, and Biochronology". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-016-9371-8.
  177. ^ a b J. D. Carrillo; E. Amson; C. Jaramillo; R. Sánchez; L. Quiroz; C. Cuartas; A. F. Rincón; M. R. Sánchez-Villagra (2018). "The Neogene record of northern South American native ungulates". Smithsonian Contributions to Paleobiology.
  178. ^ A. V. Lopatin; A. O. Averianov (2018). "A new stem placental mammal from the Early Cretaceous of Mongolia". Doklady Biological Sciences. 478 (1): 8–11. doi:10.1134/S0012496618010027.
  179. ^ Louis de Bonis; Floreal Solé; Yaowalak Chaimanee; Aung Naing Soe; Chit Sein; Vincent Lazzari; Olivier Chavasseau; Jean-Jacques Jaeger (2018). "New Hyaenodonta (Mammalia) from the middle Eocene of Myanmar". Comptes Rendus Palevol. in press. doi:10.1016/j.crpv.2017.12.003.
  180. ^ Chiara Angelone; Stanislav Čermák; Blanca Moncunill-Solé; Josep Quintana; Caterinella Tuveri; Marisa Arca; Tassos Kotsakis (2018). "Systematics and paleobiogeography of Sardolagus obscurus n. gen. n. sp. (Leporidae, Lagomorpha) from the early Pleistocene of Sardinia". Journal of Paleontology. in press. doi:10.1017/jpa.2017.144.
  181. ^ Vladimir S. Zazhigin; Leonid L. Voyta (2018). "A new middle Miocene crocidosoricine shrew from the Mongolian Shargain Gobi Desert". Acta Palaeontologica Polonica. 63 (1): 171–187. doi:10.4202/app.00396.2017.
  182. ^ Jerry J. Hooker (2018). "A mammal fauna from the Paleocene-Eocene Thermal Maximum of Croydon, London, UK". Proceedings of the Geologists' Association. in press. doi:10.1016/j.pgeola.2018.01.001.
  183. ^ Matías A. Armella; Daniel A. García-López; Lucía Dominguez (2018). "A new species of Xotodon (Notoungulata, Toxodontidae) from northwestern Argentina". Journal of Vertebrate Paleontology. 38 (1): e1425882. doi:10.1080/02724634.2017.1425882.
  184. ^ Ray Stanford; Martin G. Lockley; Compton Tucker; Stephen Godfrey; Sheila M. Stanford (2018). "A diverse mammal-dominated, footprint assemblage from wetland deposits in the Lower Cretaceous of Maryland". Scientific Reports. 8: Article number 741. doi:10.1038/s41598-017-18619-w.
  185. ^ Julia A. Schultz; Bhart-Anjan S. Bhullar; Zhe-Xi Luo (2018). "Re-examination of the Jurassic mammaliaform Docodon victor by computed tomography and occlusal functional analysis". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-017-9418-5.
  186. ^ Jin Meng; Shundong Bi; Xiaoting Zheng; Xiaoli Wang (2018). "Ear ossicle morphology of the Jurassic euharamiyidan Arboroharamiya and evolution of mammalian middle ear". Journal of Morphology. 279 (4): 441–457. doi:10.1002/jmor.20565.
  187. ^ Julia A. Schultz; Irina Ruf; Thomas Martin (2018). "Oldest known multituberculate stapes suggests an asymmetric bicrural pattern as ancestral for Multituberculata". Proceedings of the Royal Society B: Biological Sciences. 285 (1873): 20172779. doi:10.1098/rspb.2017.2779.
  188. ^ Elsa Panciroli; Roger B.J. Benson; Richard J. Butler (2018). "New partial dentaries of amphitheriid mammalian Palaeoxonodon ooliticus from Scotland, and posterior dentary morphology in early cladotherians". Acta Palaeontologica Polonica. in press. doi:10.4202/app.00434.2017.