Page protected with pending changes

Greenhouse gas

From Wikipedia, the free encyclopedia
  (Redirected from Atmospheric lifetime)
Jump to navigation Jump to search

The greenhouse effect of solar radiation on the Earth's surface caused by emission of greenhouse gases.
Radiative forcing of different contributors to climate change in 2011, as reported in the fifth IPCC assessment report.

A greenhouse gas (sometimes abbreviated GHG) is a gas that absorbs and emits radiant energy within the thermal infrared range, causing the greenhouse effect.[1] The primary greenhouse gases in Earth's atmosphere are water vapor (H
2
O
), carbon dioxide (CO
2
), methane (CH
4
), nitrous oxide (N
2
O
), and ozone (O3). Without greenhouse gases, the average temperature of Earth's surface would be about −18 °C (0 °F),[2] rather than the present average of 15 °C (59 °F).[3][4][5] The atmospheres of Venus, Mars and Titan also contain greenhouse gases.

Human activities since the beginning of the Industrial Revolution (around 1750) have produced a 45% increase in the atmospheric concentration of carbon dioxide, from 280 ppm in 1750 to 415 ppm in 2019.[6] The last time the atmospheric concentration of carbon dioxide was this high was over 3 million years ago.[7] This increase has occurred despite the uptake of more than half of the emissions by various natural "sinks" involved in the carbon cycle.[8][9]

At current greenhouse gas emission rates, temperatures could increase by 2 °C (3.6 °F), which the United Nations' Intergovernmental Panel on Climate Change (IPCC) designated as the upper limit to avoid "dangerous" levels, by 2036.[10] The vast majority of anthropogenic carbon dioxide emissions come from combustion of fossil fuels, principally coal, petroleum (including oil) and natural gas, with additional contributions coming from deforestation and other changes in land use.[11][12]

Gases in Earth's atmosphere[edit]

Non-greenhouse gases[edit]

The major constituents of Earth's atmosphere, nitrogen (N
2
)(78%), oxygen (O
2
)(21%), and argon (Ar)(0.9%), are not greenhouse gases because molecules containing two atoms of the same element such as N
2
and O
2
have no net change in the distribution of their electrical charges when they vibrate, and monatomic gases such as Ar do not have vibrational modes. Hence they are almost totally unaffected by infrared radiation. Some molecules containing just two atoms of different elements, such as carbon monoxide (CO) and hydrogen chloride (HCl), do absorb infrared radiation, but these molecules are short-lived in the atmosphere owing to their reactivity or solubility. Therefore, they do not contribute significantly to the greenhouse effect and often are omitted when discussing greenhouse gases.

Greenhouse gases[edit]

refer to caption and adjacent text
Atmospheric absorption and scattering at different wavelengths of electromagnetic waves. The largest absorption band of carbon dioxide is not far from the maximum in the thermal emission from ground, and it partly closes the window of transparency of water; hence its major effect.

Greenhouse gases are those that absorb and emit infrared radiation in the wavelength range emitted by Earth.[1] Carbon dioxide (0.04%), nitrous oxide, methane, and ozone are trace gases that account for almost 0.1% of Earth's atmosphere and have an appreciable greenhouse effect.

In order, the most abundant[clarification needed] greenhouse gases in Earth's atmosphere are:[13]

Atmospheric concentrations are determined by the balance between sources (emissions of the gas from human activities and natural systems) and sinks (the removal of the gas from the atmosphere by conversion to a different chemical compound or absorption by bodies of water).[14] The proportion of an emission remaining in the atmosphere after a specified time is the "airborne fraction" (AF). The annual airborne fraction is the ratio of the atmospheric increase in a given year to that year's total emissions. As of 2006 the annual airborne fraction for CO
2
was about 0.45. The annual airborne fraction increased at a rate of 0.25 ± 0.21% per year over the period 1959–2006.[15]

Indirect radiative effects[edit]

world map of carbon monoxide concentrations in the lower atmosphere
The false colors in this image represent concentrations of carbon monoxide in the lower atmosphere, ranging from about 390 parts per billion (dark brown pixels), to 220 parts per billion (red pixels), to 50 parts per billion (blue pixels).[16]

Some gases have indirect radiative effects (whether or not they are greenhouse gases themselves). This happens in two main ways. One way is that when they break down in the atmosphere they produce another greenhouse gas. For example, methane and carbon monoxide (CO) are oxidized to give carbon dioxide (and methane oxidation also produces water vapor). Oxidation of CO to CO
2
directly produces an unambiguous increase in radiative forcing although the reason is subtle. The peak of the thermal IR emission from Earth's surface is very close to a strong vibrational absorption band of CO
2
(wavelength 15 microns, or wavenumber 667 cm−1). On the other hand, the single CO vibrational band only absorbs IR at much shorter wavelengths (4.7 microns, or 2145 cm−1), where the emission of radiant energy from Earth's surface is at least a factor of ten lower. Oxidation of methane to CO
2
, which requires reactions with the OH radical, produces an instantaneous reduction in radiative absorption and emission since CO
2
is a weaker greenhouse gas than methane. However, the oxidations of CO and CH
4
are entwined since both consume OH radicals. In any case, the calculation of the total radiative effect includes both direct and indirect forcing.

A second type of indirect effect happens when chemical reactions in the atmosphere involving these gases change the concentrations of greenhouse gases. For example, the destruction of non-methane volatile organic compounds (NMVOCs) in the atmosphere can produce ozone. The size of the indirect effect can depend strongly on where and when the gas is emitted.[17]

Methane has indirect effects in addition to forming CO
2
. The main chemical that reacts with methane in the atmosphere is the hydroxyl radical (OH), thus more methane means that the concentration of OH goes down. Effectively, methane increases its own atmospheric lifetime and therefore its overall radiative effect. The oxidation of methane can produce both ozone and water; and is a major source of water vapor in the normally dry stratosphere. CO and NMVOCs produce CO
2
when they are oxidized. They remove OH from the atmosphere, and this leads to higher concentrations of methane. The surprising effect of this is that the global warming potential of CO is three times that of CO
2
.[18] The same process that converts NMVOCs to carbon dioxide can also lead to the formation of tropospheric ozone. Halocarbons have an indirect effect because they destroy stratospheric ozone. Finally, hydrogen can lead to ozone production and CH
4
increases as well as producing stratospheric water vapor.[17]

Contribution of clouds to Earth's greenhouse effect[edit]

The major non-gas contributor to Earth's greenhouse effect, clouds, also absorb and emit infrared radiation and thus have an effect on greenhouse gas radiative properties. Clouds are water droplets or ice crystals suspended in the atmosphere.[19][20]

Role of water vapor[edit]

Increasing water vapor in the stratosphere at Boulder, Colorado
This graph shows changes in the annual greenhouse gas index (AGGI) between 1979 and 2011.[21] The AGGI measures the levels of greenhouse gases in the atmosphere based on their ability to cause changes in Earth's climate.[21]

Water vapor accounts for the largest percentage of the greenhouse effect, between 36% and 66% for clear sky conditions and between 66% and 85% when including clouds.[20] Water vapor concentrations fluctuate regionally, but human activity does not directly affect water vapor concentrations except at local scales, such as near irrigated fields. Indirectly, human activity that increases global temperatures will increase water vapor concentrations, a process known as water vapor feedback.[22] The atmospheric concentration of vapor is highly variable and depends largely on temperature, from less than 0.01% in extremely cold regions up to 3% by mass in saturated air at about 32 °C.[23] (See Relative humidity#Other important facts.)

The average residence time of a water molecule in the atmosphere is only about nine days, compared to years or centuries for other greenhouse gases such as CH
4
and CO
2
.[24] Water vapor responds to and amplifies effects of the other greenhouse gases. The Clausius–Clapeyron relation establishes that more water vapor will be present per unit volume at elevated temperatures. This and other basic principles indicate that warming associated with increased concentrations of the other greenhouse gases also will increase the concentration of water vapor (assuming that the relative humidity remains approximately constant; modeling and observational studies find that this is indeed so). Because water vapor is a greenhouse gas, this results in further warming and so is a "positive feedback" that amplifies the original warming. Eventually other earth processes[which?] offset these positive feedbacks, stabilizing the global temperature at a new equilibrium and preventing the loss of Earth's water through a Venus-like runaway greenhouse effect.[22]

Impacts on the overall greenhouse effect[edit]

refer to caption and adjacent text
Schmidt et al. (2010)[25] analysed how individual components of the atmosphere contribute to the total greenhouse effect. They estimated that water vapor accounts for about 50% of Earth's greenhouse effect, with clouds contributing 25%, carbon dioxide 20%, and the minor greenhouse gases and aerosols accounting for the remaining 5%. In the study, the reference model atmosphere is for 1980 conditions. Image credit: NASA.[26]

The contribution of each gas to the greenhouse effect is determined by the characteristics of that gas, its abundance, and any indirect effects it may cause. For example, the direct radiative effect of a mass of methane is about 84 times stronger than the same mass of carbon dioxide over a 20-year time frame[27] but it is present in much smaller concentrations so that its total direct radiative effect has so far been smaller, in part due to its shorter atmospheric lifetime in the absence of additional carbon sequestration. On the other hand, in addition to its direct radiative impact, methane has a large, indirect radiative effect because it contributes to ozone formation. Shindell et al. (2005)[28] argues that the contribution to climate change from methane is at least double previous estimates as a result of this effect.[29]

When ranked by their direct contribution to the greenhouse effect, the most important are:[19][failed verification]

Compound
 
Formula
 
Concentration in
atmosphere[30] (ppm)
Contribution
(%)
Water vapor and clouds H
2
O
10–50,000(A) 36–72%  
Carbon dioxide CO
2
~400 9–26%
Methane CH
4
~1.8 4–9%  
Ozone O
3
2–8(B) 3–7%  
notes:

(A) Water vapor strongly varies locally[31]
(B) The concentration in stratosphere. About 90% of the ozone in Earth's atmosphere is contained in the stratosphere.

In addition to the main greenhouse gases listed above, other greenhouse gases include sulfur hexafluoride, hydrofluorocarbons and perfluorocarbons (see IPCC list of greenhouse gases). Some greenhouse gases are not often listed. For example, nitrogen trifluoride has a high global warming potential (GWP) but is only present in very small quantities.[32]

Proportion of direct effects at a given moment[edit]

It is not possible to state that a certain gas causes an exact percentage of the greenhouse effect. This is because some of the gases absorb and emit radiation at the same frequencies as others, so that the total greenhouse effect is not simply the sum of the influence of each gas. The higher ends of the ranges quoted are for each gas alone; the lower ends account for overlaps with the other gases.[19][20] In addition, some gases, such as methane, are known to have large indirect effects that are still being quantified.[33]

Atmospheric lifetime[edit]

Aside from water vapor, which has a residence time of about nine days,[34] major greenhouse gases are well mixed and take many years to leave the atmosphere.[35] Although it is not easy to know with precision how long it takes greenhouse gases to leave the atmosphere, there are estimates for the principal greenhouse gases. Jacob (1999)[36] defines the lifetime of an atmospheric species X in a one-box model as the average time that a molecule of X remains in the box. Mathematically can be defined as the ratio of the mass (in kg) of X in the box to its removal rate, which is the sum of the flow of X out of the box (), chemical loss of X (), and deposition of X () (all in kg/s): .[36] If input of this gas into the box ceased, then after time , its concentration would decrease by about 63%.

The atmospheric lifetime of a species therefore measures the time required to restore equilibrium following a sudden increase or decrease in its concentration in the atmosphere. Individual atoms or molecules may be lost or deposited to sinks such as the soil, the oceans and other waters, or vegetation and other biological systems, reducing the excess to background concentrations. The average time taken to achieve this is the mean lifetime.

Carbon dioxide has a variable atmospheric lifetime, and cannot be specified precisely.[37][27] Although more than half of the CO
2
emitted is removed from the atmosphere within a century, some fraction (about 20%) of emitted CO
2
remains in the atmosphere for many thousands of years.[38][39][40] Similar issues apply to other greenhouse gases, many of which have longer mean lifetimes than CO
2
, e.g. N2O has a mean atmospheric lifetime of 121 years.[27]

Radiative forcing and annual greenhouse gas index[edit]

The radiative forcing (warming influence) of long-lived greenhouse gases in earth's atmosphere is undergoing accelerating growth. Nearly one-third of the industrial-era increase ending year 2019 accumulated over just the prior 30 years.[41][42]

Earth absorbs some of the radiant energy received from the sun, reflects some of it as light and reflects or radiates the rest back to space as heat. Earth's surface temperature depends on this balance between incoming and outgoing energy. If this energy balance is shifted, Earth's surface becomes warmer or cooler, leading to a variety of changes in global climate.[43]

A number of natural and man-made mechanisms can affect the global energy balance and force changes in Earth's climate. Greenhouse gases are one such mechanism. Greenhouse gases absorb and emit some of the outgoing energy radiated from Earth's surface, causing that heat to be retained in the lower atmosphere.[43] As explained above, some greenhouse gases remain in the atmosphere for decades or even centuries, and therefore can affect Earth's energy balance over a long period. Radiative forcing quantifies (in Watts per square meter) the effect of factors that influence Earth's energy balance; including changes in the concentrations of greenhouse gases. Positive radiative forcing leads to warming by increasing the net incoming energy, whereas negative radiative forcing leads to cooling.[44]

The Annual Greenhouse Gas Index (AGGI) is defined by atmospheric scientists at NOAA as the ratio of total direct radiative forcing due to long-lived and well-mixed greenhouse gases for any year for which adequate global measurements exist, to that present in year 1990.[42][45] These radiative forcing levels are relative to those present in year 1750 (i.e. prior to the start of the industrial era). 1990 is chosen because it is the baseline year for the Kyoto Protocol, and is the publication year of the first IPCC Scientific Assessment of Climate Change. As such, NOAA states that the AGGI "measures the commitment that (global) society has already made to living in a changing climate. It is based on the highest quality atmospheric observations from sites around the world. Its uncertainty is very low."[46]

Global warming potential[edit]

The global warming potential (GWP) depends on both the efficiency of the molecule as a greenhouse gas and its atmospheric lifetime. GWP is measured relative to the same mass of CO
2
and evaluated for a specific timescale. Thus, if a gas has a high (positive) radiative forcing but also a short lifetime, it will have a large GWP on a 20-year scale but a small one on a 100-year scale. Conversely, if a molecule has a longer atmospheric lifetime than CO
2
its GWP will increase when the timescale is considered. Carbon dioxide is defined to have a GWP of 1 over all time periods.

Methane has an atmospheric lifetime of 12 ± 3 years. The 2007 IPCC report lists the GWP as 72 over a time scale of 20 years, 25 over 100 years and 7.6 over 500 years.[47] A 2014 analysis, however, states that although methane's initial impact is about 100 times greater than that of CO
2
, because of the shorter atmospheric lifetime, after six or seven decades, the impact of the two gases is about equal, and from then on methane's relative role continues to decline.[48] The decrease in GWP at longer times is because methane is degraded to water and CO
2
through chemical reactions in the atmosphere.

Examples of the atmospheric lifetime and GWP relative to CO
2
for several greenhouse gases are given in the following table:

Atmospheric lifetime and GWP relative to CO
2
at different time horizon for various greenhouse gases
Gas name Chemical
formula
Lifetime
(years)[27]
Global warming potential (GWP) for given time horizon
20-yr[27] 100-yr[27] 500-yr[47]
Carbon dioxide CO
2
(A) 1 1 1
Methane CH
4
12 84 28 7.6
Nitrous oxide N
2
O
121 264 265 153
CFC-12 CCl
2
F
2
100 10 800 10 200 5 200
HCFC-22 CHClF
2
12 5 280 1 760 549
Tetrafluoromethane CF
4
50 000 4 880 6 630 11 200
Hexafluoroethane C
2
F
6
10 000 8 210 11 100 18 200
Sulfur hexafluoride SF
6
3 200 17 500 23 500 32 600
Nitrogen trifluoride NF
3
500 12 800 16 100 20 700
(A) No single lifetime for atmospheric CO2 can be given.

The use of CFC-12 (except some essential uses) has been phased out due to its ozone depleting properties.[49] The phasing-out of less active HCFC-compounds will be completed in 2030.[50]

Carbon dioxide in Earth's atmosphere if half of global-warming emissions[51][52] are not absorbed.
(NASA simulation; 9 November 2015)

Natural and anthropogenic sources[edit]

refer to caption and article text
Top: Increasing atmospheric carbon dioxide levels as measured in the atmosphere and reflected in ice cores. Bottom: The amount of net carbon increase in the atmosphere, compared to carbon emissions from burning fossil fuel.

Aside from purely human-produced synthetic halocarbons, most greenhouse gases have both natural and human-caused sources. During the pre-industrial Holocene, concentrations of existing gases were roughly constant, because the large natural sources and sinks roughly balanced. In the industrial era, human activities have added greenhouse gases to the atmosphere, mainly through the burning of fossil fuels and clearing of forests.[53][54]

The 2007 Fourth Assessment Report compiled by the IPCC (AR4) noted that "changes in atmospheric concentrations of greenhouse gases and aerosols, land cover and solar radiation alter the energy balance of the climate system", and concluded that "increases in anthropogenic greenhouse gas concentrations is very likely to have caused most of the increases in global average temperatures since the mid-20th century".[55] In AR4, "most of" is defined as more than 50%.

Abbreviations used in the two tables below: ppm = parts-per-million; ppb = parts-per-billion; ppt = parts-per-trillion; W/m2 = watts per square metre

Current greenhouse gas concentrations[56]
Gas Pre-1750
tropospheric
concentration[57]
Recent
tropospheric
concentration[58]
Absolute increase
since 1750
Percentage
increase
since 1750
Increased
radiative forcing
(W/m2)[59]
Carbon dioxide (CO
2
)
280 ppm[60] 411 ppm[61] 131 ppm 47 % 2.05[62]
Methane (CH
4
)
700 ppb[63] 1893 ppb /[64][65]
1762 ppb[64]
1193 ppb /
1062 ppb
170.4% /
151.7%
0.49
Nitrous oxide (N
2
O
)
270 ppb[59][66] 326 ppb /[64]
324 ppb[64]
56 ppb /
54 ppb
20.7% /
20.0%
0.17
Tropospheric
ozone (O
3
)
237 ppb[57] 337 ppb[57] 100 ppb 42% 0.4[67]
Relevant to radiative forcing and/or ozone depletion; all of the following have no natural sources and hence zero amounts pre-industrial[56]
Gas Recent
tropospheric
concentration
Increased
radiative forcing
(W/m2)
CFC-11
(trichlorofluoromethane)
(CCl
3
F
)
236 ppt /
234 ppt
0.061
CFC-12 (CCl
2
F
2
)
527 ppt /
527 ppt
0.169
CFC-113 (Cl
2
FC-CClF
2
)
74 ppt /
74 ppt
0.022
HCFC-22 (CHClF
2
)
231 ppt /
210 ppt
0.046
HCFC-141b (CH
3
CCl
2
F
)
24 ppt /
21 ppt
0.0036
HCFC-142b (CH
3
CClF
2
)
23 ppt /
21 ppt
0.0042
Halon 1211 (CBrClF
2
)
4.1 ppt /
4.0 ppt
0.0012
Halon 1301 (CBrClF
3
)
3.3 ppt /
3.3 ppt
0.001
HFC-134a (CH
2
FCF
3
)
75 ppt /
64 ppt
0.0108
Carbon tetrachloride (CCl
4
)
85 ppt /
83 ppt
0.0143
Sulfur hexafluoride (SF
6
)
7.79 ppt /[68]
7.39 ppt[68]
0.0043
Other halocarbons Varies by
substance
collectively
0.02
Halocarbons in total 0.3574
refer to caption and article text
400,000 years of ice core data

Ice cores provide evidence for greenhouse gas concentration variations over the past 800,000 years (see the following section). Both CO
2
and CH
4
vary between glacial and interglacial phases, and concentrations of these gases correlate strongly with temperature. Direct data does not exist for periods earlier than those represented in the ice core record, a record that indicates CO
2
mole fractions stayed within a range of 180 ppm to 280 ppm throughout the last 800,000 years, until the increase of the last 250 years. However, various proxies and modeling suggests larger variations in past epochs; 500 million years ago CO
2
levels were likely 10 times higher than now.[69] Indeed, higher CO
2
concentrations are thought to have prevailed throughout most of the Phanerozoic eon, with concentrations four to six times current concentrations during the Mesozoic era, and ten to fifteen times current concentrations during the early Palaeozoic era until the middle of the Devonian period, about 400 Ma.[70][71][72] The spread of land plants is thought to have reduced CO
2
concentrations during the late Devonian, and plant activities as both sources and sinks of CO
2
have since been important in providing stabilising feedbacks.[73] Earlier still, a 200-million year period of intermittent, widespread glaciation extending close to the equator (Snowball Earth) appears to have been ended suddenly, about 550 Ma, by a colossal volcanic outgassing that raised the CO
2
concentration of the atmosphere abruptly to 12%, about 350 times modern levels, causing extreme greenhouse conditions and carbonate deposition as limestone at the rate of about 1 mm per day.[74] This episode marked the close of the Precambrian eon, and was succeeded by the generally warmer conditions of the Phanerozoic, during which multicellular animal and plant life evolved. No volcanic carbon dioxide emission of comparable scale has occurred since. In the modern era, emissions to the atmosphere from volcanoes are approximately 0.645 billion tonnes of CO
2
per year, whereas humans contribute 29 billion tonnes of CO
2
each year.[75][74][76][77]

Ice cores[edit]

Measurements from Antarctic ice cores show that before industrial emissions started atmospheric CO
2
mole fractions were about 280 parts per million (ppm), and stayed between 260 and 280 during the preceding ten thousand years.[78] Carbon dioxide mole fractions in the atmosphere have gone up by approximately 35 percent since the 1900s, rising from 280 parts per million by volume to 387 parts per million in 2009. One study using evidence from stomata of fossilized leaves suggests greater variability, with carbon dioxide mole fractions above 300 ppm during the period seven to ten thousand years ago,[79] though others have argued that these findings more likely reflect calibration or contamination problems rather than actual CO
2
variability.[80][81] Because of the way air is trapped in ice (pores in the ice close off slowly to form bubbles deep within the firn) and the time period represented in each ice sample analyzed, these figures represent averages of atmospheric concentrations of up to a few centuries rather than annual or decadal levels.

Changes since the Industrial Revolution[edit]

Refer to caption
Recent year-to-year increase of atmospheric CO
2
.
Refer to caption
Major greenhouse gas trends.

Since the beginning of the Industrial Revolution, the concentrations of many of the greenhouse gases have increased. For example, the mole fraction of carbon dioxide has increased from 280 ppm to 415 ppm, or 120 ppm over modern pre-industrial levels. The first 30 ppm increase took place in about 200 years, from the start of the Industrial Revolution to 1958; however the next 90 ppm increase took place within 56 years, from 1958 to 2014.[82][83]

Recent data also shows that the concentration is increasing at a higher rate. In the 1960s, the average annual increase was only 37% of what it was in 2000 through 2007.[84]

Total cumulative emissions from 1870 to 2017 were 425±20 GtC (1539 GtCO2) from fossil fuels and industry, and 180±60 GtC (660 GtCO2) from land use change. Land-use change, such as deforestation, caused about 31% of cumulative emissions over 1870–2017, coal 32%, oil 25%, and gas 10%.[85]

Today,[when?] the stock of carbon in the atmosphere increases by more than 3 million tonnes per annum (0.04%) compared with the existing stock.[clarification needed] This increase is the result of human activities by burning fossil fuels, deforestation and forest degradation in tropical and boreal regions.[86]

The other greenhouse gases produced from human activity show similar increases in both amount and rate of increase. Many observations are available online in a variety of Atmospheric Chemistry Observational Databases.

Anthropogenic greenhouse gas emissions[edit]

Since about 1750 human activity has increased the concentration of carbon dioxide and other greenhouse gases. As of 2001, measured atmospheric concentrations of carbon dioxide were 100 ppm higher than pre-industrial levels.[87][needs update] Natural sources of carbon dioxide are more than 20 times greater than sources due to human activity,[88] but over periods longer than a few years natural sources are closely balanced by natural sinks, mainly photosynthesis of carbon compounds by plants and marine plankton. As a result of this balance, the atmospheric mole fraction of carbon dioxide remained between 260 and 280 parts per million for the 10,000 years between the end of the last glacial maximum and the start of the industrial era.[89] Absorption of terrestrial infrared radiation by longwave absorbing gases such as these greenhouse gases make Earth an efficient[clarification needed] emitter. Therefore, in order for Earth to emit as much energy as is absorbed, global temperatures must increase.

It is likely that anthropogenic (human-induced) warming, such as that due to elevated greenhouse gas levels, has had a discernible influence on many physical and biological systems.[90] Warming is having a range of impacts, including sea level rise,[91] increased frequencies and severities of some extreme weather events,[91] loss of biodiversity,[92] and regional changes in agricultural productivity.[93]

Removal from the atmosphere[edit]

Natural processes[edit]

Greenhouse gases can be removed from the atmosphere by various processes, as a consequence of:

  • a physical change (condensation and precipitation remove water vapor from the atmosphere).
  • a chemical reaction within the atmosphere. For example, methane is oxidized by reaction with naturally occurring hydroxyl radical, OH· and degraded to CO
    2
    and water vapor (CO
    2
    from the oxidation of methane is not included in the methane Global warming potential). Other chemical reactions include solution and solid phase chemistry occurring in atmospheric aerosols.
  • a physical exchange between the atmosphere and the other components of the planet. An example is the mixing of atmospheric gases into the oceans.
  • a chemical change at the interface between the atmosphere and the other components of the planet. This is the case for CO
    2
    , which is reduced by photosynthesis of plants, and which, after dissolving in the oceans, reacts to form carbonic acid and bicarbonate and carbonate ions (see ocean acidification).
  • a photochemical change. Halocarbons are dissociated by UV light releasing Cl· and F· as free radicals in the stratosphere with harmful effects on ozone (halocarbons are generally too stable to disappear by chemical reaction in the atmosphere).

Negative emissions[edit]

A number of technologies remove greenhouse gases emissions from the atmosphere. Most widely analysed are those that remove carbon dioxide from the atmosphere, either to geologic formations such as bio-energy with carbon capture and storage and carbon dioxide air capture,[94] or to the soil as in the case with biochar.[94] The IPCC has pointed out that many long-term climate scenario models require large-scale man-made negative emissions to avoid serious climate change.[95]

History of scientific research[edit]

In the late 19th century scientists experimentally discovered that N
2
and O
2
do not absorb infrared radiation (called, at that time, "dark radiation"), while water (both as true vapor and condensed in the form of microscopic droplets suspended in clouds) and CO
2
and other poly-atomic gaseous molecules do absorb infrared radiation.[96][97] In the early 20th century researchers realized that greenhouse gases in the atmosphere made Earth's overall temperature higher than it would be without them. During the late 20th century, a scientific consensus evolved that increasing concentrations of greenhouse gases in the atmosphere cause a substantial rise in global temperatures and changes to other parts of the climate system,[98] with consequences for the environment and for human health.

See also[edit]

References[edit]

  1. ^ a b "IPCC AR4 SYR Appendix Glossary" (PDF). Archived from the original (PDF) on 17 November 2018. Retrieved 14 December 2008.
  2. ^ "NASA GISS: Science Briefs: Greenhouse Gases: Refining the Role of Carbon Dioxide". www.giss.nasa.gov. Retrieved 26 April 2016.
  3. ^ Karl TR, Trenberth KE (2003). "Modern global climate change". Science. 302 (5651): 1719–23. Bibcode:2003Sci...302.1719K. doi:10.1126/science.1090228. PMID 14657489. S2CID 45484084.
  4. ^ Le Treut H.; Somerville R.; Cubasch U.; Ding Y.; Mauritzen C.; Mokssit A.; Peterson T.; Prather M. Historical overview of climate change science (PDF). Retrieved 14 December 2008. in IPCC AR4 WG1 (2007)
  5. ^ "NASA Science Mission Directorate article on the water cycle". Nasascience.nasa.gov. Archived from the original on 17 January 2009. Retrieved 16 October 2010.
  6. ^ "CO2 in the atmosphere just exceeded 415 parts per million for the first time in human history". Retrieved 31 August 2019.
  7. ^ "Climate Change: Atmospheric Carbon Dioxide | NOAA Climate.gov". www.climate.gov. Retrieved 2 March 2020.
  8. ^ "Frequently asked global change questions". Carbon Dioxide Information Analysis Center.
  9. ^ ESRL Web Team (14 January 2008). "Trends in carbon dioxide". Esrl.noaa.gov. Retrieved 11 September 2011.
  10. ^ Mann, Michael E. (1 April 2014). "Earth Will Cross the Climate Danger Threshold by 2036". Scientific American. Retrieved 30 August 2016.
  11. ^ "Global Greenhouse Gas Emissions Data". U.S. Environmental Protection Agency. Retrieved 30 December 2019. The burning of coal, natural gas, and oil for electricity and heat is the largest single source of global greenhouse gas emissions.
  12. ^ "AR4 SYR Synthesis Report Summary for Policymakers – 2 Causes of change". ipcc.ch. Archived from the original on 28 February 2018. Retrieved 9 October 2015.
  13. ^ "Inside the Earth's invisible blanket". sequestration.org. Retrieved 5 March 2021.
  14. ^ "FAQ 7.1". p. 14. in IPCC AR4 WG1 (2007)
  15. ^ Canadell, J.G.; Le Quere, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.A.; Marland, G. (2007). "Contributions to accelerating atmospheric CO
    2
    growth from economic activity, carbon intensity, and efficiency of natural sinks"
    . Proc. Natl. Acad. Sci. USA. 104 (47): 18866–70. Bibcode:2007PNAS..10418866C. doi:10.1073/pnas.0702737104. PMC 2141868. PMID 17962418.
  16. ^ "The Chemistry of Earth's Atmosphere". Earth Observatory. NASA. Archived from the original on 20 September 2008.
  17. ^ a b Forster, P.; et al. (2007). "2.10.3 Indirect GWPs". Changes in Atmospheric Constituents and in Radiative Forcing. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Retrieved 2 December 2012.
  18. ^ MacCarty, N. "Laboratory Comparison of the Global-Warming Potential of Six Categories of Biomass Cooking Stoves" (PDF). Approvecho Research Center. Archived from the original (PDF) on 11 November 2013.
  19. ^ a b c Kiehl, J.T.; Kevin E. Trenberth (1997). "Earth's annual global mean energy budget". Bulletin of the American Meteorological Society. 78 (2): 197–208. Bibcode:1997BAMS...78..197K. doi:10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2.
  20. ^ a b c "Water vapour: feedback or forcing?". RealClimate. 6 April 2005. Retrieved 1 May 2006.
  21. ^ a b "Climate Change Indicators in the United States". NOAA. 2012. Figure 4. The Annual Greenhouse Gas Index, 1979–2011.
  22. ^ a b Held, Isaac M.; Soden, Brian J. (November 2000). "Water vapor feedback and global warming". Annual Review of Energy and the Environment. 25 (1): 441–475. CiteSeerX 10.1.1.22.9397. doi:10.1146/annurev.energy.25.1.441. ISSN 1056-3466.
  23. ^ Evans, Kimberly Masters (2005). "The greenhouse effect and climate change". The environment: a revolution in attitudes. Detroit: Thomson Gale. ISBN 978-0787690823.
  24. ^ "Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2010". U.S. Environmental Protection Agency. 15 April 2012. p. 1.4. Retrieved 30 December 2019.
  25. ^ Schmidt, G.A.; R. Ruedy; R.L. Miller; A.A. Lacis (2010), "The attribution of the present-day total greenhouse effect" (PDF), J. Geophys. Res., 115 (D20), pp. D20106, Bibcode:2010JGRD..11520106S, doi:10.1029/2010JD014287, archived from the original (PDF) on 22 October 2011, D20106. Web page
  26. ^ Lacis, A. (October 2010), NASA GISS: CO2: The Thermostat that Controls Earth's Temperature, New York: NASA GISS
  27. ^ a b c d e f "Appendix 8.A" (PDF). Intergovernmental Panel on Climate Change Fifth Assessment Report. p. 731.
  28. ^ Shindell, Drew T. (2005). "An emissions-based view of climate forcing by methane and tropospheric ozone". Geophysical Research Letters. 32 (4): L04803. Bibcode:2005GeoRL..32.4803S. doi:10.1029/2004GL021900.
  29. ^ "Methane's Impacts on Climate Change May Be Twice Previous Estimates". Nasa.gov. 30 November 2007. Retrieved 16 October 2010.
  30. ^ "Climate Change Indicators: Atmospheric Concentrations of Greenhouse Gases". Climate Change Indicators. United States Environmental Protection Agency. 27 June 2016. Retrieved 20 January 2017.
  31. ^ Wallace, John M. and Peter V. Hobbs. Atmospheric Science; An Introductory Survey. Elsevier. Second Edition, 2006. ISBN 978-0127329512. Chapter 1
  32. ^ Prather, Michael J.; J Hsu (2008). "NF
    3
    , the greenhouse gas missing from Kyoto"
    . Geophysical Research Letters. 35 (12): L12810. Bibcode:2008GeoRL..3512810P. doi:10.1029/2008GL034542.
  33. ^ Isaksen, Ivar S.A.; Michael Gauss; Gunnar Myhre; Katey M. Walter Anthony; Carolyn Ruppel (20 April 2011). "Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions" (PDF). Global Biogeochemical Cycles. 25 (2): n/a. Bibcode:2011GBioC..25.2002I. doi:10.1029/2010GB003845. hdl:1912/4553. Archived from the original (PDF) on 4 March 2016. Retrieved 29 July 2011.
  34. ^ "AGU Water Vapor in the Climate System". Eso.org. 27 April 1995. Retrieved 11 September 2011.
  35. ^ Betts (2001). "6.3 Well-mixed Greenhouse Gases". Chapter 6 Radiative Forcing of Climate Change. Working Group I: The Scientific Basis IPCC Third Assessment Report – Climate Change 2001. UNEP/GRID-Arendal – Publications. Archived from the original on 29 June 2011. Retrieved 16 October 2010.
  36. ^ a b Jacob, Daniel (1999). Introduction to atmospheric chemistry. Princeton University Press. pp. 25–26. ISBN 978-0691001852. Archived from the original on 2 September 2011.
  37. ^ "How long will global warming last?". RealClimate. Retrieved 12 June 2012.
  38. ^ "Frequently Asked Question 10.3: If emissions of greenhouse gases are reduced, how quickly do their concentrations in the atmosphere decrease?". Global Climate Projections. Archived from the original on 24 December 2011. Retrieved 1 June 2011. in IPCC AR4 WG1 (2007)
  39. ^ See also: Archer, David (2005). "Fate of fossil fuel CO
    2
    in geologic time"
    (PDF). Journal of Geophysical Research. 110 (C9): C09S05.1–6. Bibcode:2005JGRC..11009S05A. doi:10.1029/2004JC002625. Retrieved 27 July 2007.
  40. ^ See also: Caldeira, Ken; Wickett, Michael E. (2005). "Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean" (PDF). Journal of Geophysical Research. 110 (C9): C09S04.1–12. Bibcode:2005JGRC..11009S04C. doi:10.1029/2004JC002671. Archived from the original (PDF) on 10 August 2007. Retrieved 27 July 2007.
  41. ^ "Annual Greenhouse Gas Index". U.S. Global Change Research Program. Retrieved 5 September 2020.
  42. ^ a b Butler J. and Montzka S. (2020). "The NOAA Annual Greenhouse Gas Index (AGGI)". NOAA Global Monitoring Laboratory/Earth System Research Laboratories.
  43. ^ a b "Climate Change Indicators in the United States - Greenhouse Gases". U.S. Environmental Protection Agency (EPA). 2016..
  44. ^ "Climate Change Indicators in the United States - Climate Forcing". U.S. Environmental Protection Agency (EPA). 2016.[1]
  45. ^ LuAnn Dahlman (14 August 2020). "Climate change: annual greenhouse gas index". NOAA Climate.gov science news & Information for a climate smart nation.
  46. ^ "The NOAA Annual Greenhouse Gas Index (AGGI) - An Introduction". NOAA Global Monitoring Laboratory/Earth System Research Laboratories. Retrieved 5 September 2020.
  47. ^ a b "Table 2.14" (PDF). IPCC Fourth Assessment Report. p. 212.
  48. ^ Chandler, David L. "How to count methane emissions". MIT News. Retrieved 20 August 2018. Referenced paper is Trancik, Jessika; Edwards, Morgan (25 April 2014). "Climate impacts of energy technologies depend on emissions timing" (PDF). Nature Climate Change. 4 (5): 347. Bibcode:2014NatCC...4..347E. doi:10.1038/nclimate2204. hdl:1721.1/96138. Archived from the original (PDF) on 16 January 2015. Retrieved 15 January 2015.
  49. ^ Vaara, Miska (2003), Use of ozone depleting substances in laboratories, TemaNord, p. 170, ISBN 978-9289308847, archived from the original on 6 August 2011
  50. ^ Montreal Protocol
  51. ^ St. Fleur, Nicholas (10 November 2015). "Atmospheric Greenhouse Gas Levels Hit Record, Report Says". New York Times. Retrieved 11 November 2015.
  52. ^ Ritter, Karl (9 November 2015). "UK: In 1st, global temps average could be 1 degree C higher". AP News. Retrieved 11 November 2015.
  53. ^ "Historical Overview of Climate Change Science – FAQ 1.3 Figure 1" (PDF). p. 116. in IPCC AR4 WG1 (2007)
  54. ^ "Chapter 3, IPCC Special Report on Emissions Scenarios, 2000" (PDF). Intergovernmental Panel on Climate Change. 2000. Retrieved 16 October 2010.
  55. ^ Intergovernmental Panel on Climate Change (17 November 2007). "Climate Change 2007: Synthesis Report" (PDF). p. 5. Retrieved 20 January 2017.
  56. ^ a b Blasing (2013)
  57. ^ a b c Ehhalt, D.; et al., "Table 4.1", Atmospheric Chemistry and Greenhouse Gases, archived from the original on 3 January 2013, in IPCC TAR WG1 (2001), pp. 244–45. Referred to by: Blasing (2013). Based on Blasing (2013): Pre-1750 concentrations of CH4,N2O and current concentrations of O3, are taken from Table 4.1 (a) of the IPCC Intergovernmental Panel on Climate Change, 2001. Following the convention of IPCC (2001), inferred global-scale trace-gas concentrations from prior to 1750 are assumed to be practically uninfluenced by human activities such as increasingly specialized agriculture, land clearing, and combustion of fossil fuels. Preindustrial concentrations of industrially manufactured compounds are given as zero. The short atmospheric lifetime of ozone (hours-days) together with the spatial variability of its sources precludes a globally or vertically homogeneous distribution, so that a fractional unit such as parts per billion would not apply over a range of altitudes or geographical locations. Therefore a different unit is used to integrate the varying concentrations of ozone in the vertical dimension over a unit area, and the results can then be averaged globally. This unit is called a Dobson Unit (D.U.), after G.M.B. Dobson, one of the first investigators of atmospheric ozone. A Dobson unit is the amount of ozone in a column that, unmixed with the rest of the atmosphere, would be 10 micrometers thick at standard temperature and pressure.
  58. ^ Because atmospheric concentrations of most gases tend to vary systematically over the course of a year, figures given represent averages over a 12-month period for all gases except ozone (O3), for which a current global value has been estimated (IPCC, 2001, Table 4.1a). CO
    2
    averages for year 2012 are taken from the National Oceanic and Atmospheric Administration, Earth System Research Laboratory, web site: www.esrl.noaa.gov/gmd/ccgg/trends maintained by Dr. Pieter Tans. For other chemical species, the values given are averages for 2011. These data are found on the CDIAC AGAGE web site: http://cdiac.ornl.gov/ndps/alegage.html or the AGAGE home page: http://agage.eas.gatech.edu.
  59. ^ a b Forster, P.; et al., "Table 2.1", Changes in Atmospheric Constituents and in Radiative Forcing, archived from the original on 12 October 2012, retrieved 30 October 2012, in IPCC AR4 WG1 (2007), p. 141. Referred to by: Blasing (2013)
  60. ^ Prentice, I.C.; et al. "Executive summary". The Carbon Cycle and Atmospheric Carbon Dioxide. Archived from the original on 7 December 2009., in IPCC TAR WG1 (2001), p. 185. Referred to by: Blasing (2013)
  61. ^ "Carbon dioxide levels continue at record levels, despite COVID-19 lockdown". WMO.int. World Meteorological Organization. 23 November 2020. Archived from the original on 1 December 2020.
  62. ^ IPCC AR4 WG1 (2007), p. 140:"The simple formulae ... in Ramaswamy et al. (2001) are still valid. and give an RF of +3.7 W m–2 for a doubling in the CO2 mixing ratio. ... RF increases logarithmically with mixing ratio" Calculation: ln(new ppm/old ppm)/ln(2)*3.7
  63. ^ ppb = parts-per-billion
  64. ^ a b c d The first value in a cell represents Mace Head, Ireland, a mid-latitude Northern-Hemisphere site, while the second value represents Cape Grim, Tasmania, a mid-latitude Southern-Hemisphere site. "Current" values given for these gases are annual arithmetic averages based on monthly background concentrations for year 2011. The SF
    6
    values are from the AGAGE gas chromatography – mass spectrometer (gc-ms) Medusa measuring system.
  65. ^ "Advanced Global Atmospheric Gases Experiment (AGAGE)". Data compiled from finer time scales in the Prinn; etc (2000). "ALE/GAGE/AGAGE database".
  66. ^ The pre-1750 value for N
    2
    O
    is consistent with ice-core records from 10,000 BCE through 1750 CE: "Summary for policymakers", Figure SPM.1, IPCC, in IPCC AR4 WG1 (2007), p. 3. Referred to by: Blasing (2013)
  67. ^ Changes in stratospheric ozone have resulted in a decrease in radiative forcing of 0.05 W/m2: Forster, P.; et al., "Table 2.12", Changes in Atmospheric Constituents and in Radiative Forcing, archived from the original on 28 January 2013, retrieved 30 October 2012, in IPCC AR4 WG1 (2007), p. 204. Referred to by: Blasing (2013)
  68. ^ a b "SF
    6
    data from January 2004"
    .
    "Data from 1995 through 2004". National Oceanic and Atmospheric Administration (NOAA), Halogenated and other Atmospheric Trace Species (HATS). Sturges, W.T.; et al. "Concentrations of SF
    6
    from 1970 through 1999, obtained from Antarctic firn (consolidated deep snow) air samples"
    .
  69. ^ File:Phanerozoic Carbon Dioxide.png
  70. ^ Berner, Robert A. (January 1994). "GEOCARB II: a revised model of atmospheric CO
    2
    over Phanerozoic time"
    (PDF). American Journal of Science. 294 (1): 56–91. Bibcode:1994AmJS..294...56B. doi:10.2475/ajs.294.1.56.
    [permanent dead link]
  71. ^ Royer, D.L.; R.A. Berner; D.J. Beerling (2001). "Phanerozoic atmospheric CO
    2
    change: evaluating geochemical and paleobiological approaches". Earth-Science Reviews. 54 (4): 349–92. Bibcode:2001ESRv...54..349R. doi:10.1016/S0012-8252(00)00042-8.
  72. ^ Berner, Robert A.; Kothavala, Zavareth (2001). "GEOCARB III: a revised model of atmospheric CO
    2
    over Phanerozoic time"
    (PDF). American Journal of Science. 301 (2): 182–204. Bibcode:2001AmJS..301..182B. CiteSeerX 10.1.1.393.582. doi:10.2475/ajs.301.2.182. Archived from the original (PDF) on 6 August 2004.
  73. ^ Beerling, D.J.; Berner, R.A. (2005). "Feedbacks and the co-evolution of plants and atmospheric CO
    2
    "
    . Proc. Natl. Acad. Sci. USA. 102 (5): 1302–05. Bibcode:2005PNAS..102.1302B. doi:10.1073/pnas.0408724102. PMC 547859. PMID 15668402.
  74. ^ a b Hoffmann, PF; AJ Kaufman; GP Halverson; DP Schrag (1998). "A neoproterozoic snowball earth". Science. 281 (5381): 1342–46. Bibcode:1998Sci...281.1342H. doi:10.1126/science.281.5381.1342. PMID 9721097. S2CID 13046760.
  75. ^ Siegel, Ethan. "How Much CO2 Does A Single Volcano Emit?". Forbes. Retrieved 6 September 2018.
  76. ^ Gerlach, TM (1991). "Present-day CO
    2
    emissions from volcanoes". Transactions of the American Geophysical Union. 72 (23): 249–55. Bibcode:1991EOSTr..72..249.. doi:10.1029/90EO10192.
  77. ^ See also: "U.S. Geological Survey". 14 June 2011. Retrieved 15 October 2012.
  78. ^ Flückiger, Jacqueline (2002). "High-resolution Holocene N
    2
    O
    ice core record and its relationship with CH
    4
    and CO
    2
    "
    . Global Biogeochemical Cycles. 16: 1010. Bibcode:2002GBioC..16a..10F. doi:10.1029/2001GB001417.
  79. ^ Friederike Wagner; Bent Aaby; Henk Visscher (2002). "Rapid atmospheric CO
    2
    changes associated with the 8,200-years-B.P. cooling event"
    . Proc. Natl. Acad. Sci. USA. 99 (19): 12011–14. Bibcode:2002PNAS...9912011W. doi:10.1073/pnas.182420699. PMC 129389. PMID 12202744.
  80. ^ Andreas Indermühle; Bernhard Stauffer; Thomas F. Stocker (1999). "Early Holocene Atmospheric CO
    2
    Concentrations"
    . Science. 286 (5446): 1815. doi:10.1126/science.286.5446.1815a.
    IndermÜhle, A (1999). "Early Holocene atmospheric CO
    2
    concentrations"
    . Science. 286 (5446): 1815a–15. doi:10.1126/science.286.5446.1815a.
  81. ^ H. J. Smith; M. Wahlen; D. Mastroianni (1997). "The CO
    2
    concentration of air trapped in GISP2 ice from the Last Glacial Maximum-Holocene transition". Geophysical Research Letters. 24 (1): 1–4. Bibcode:1997GeoRL..24....1S. doi:10.1029/96GL03700.
  82. ^ Charles J. Kibert (2016). "Background". Sustainable Construction: Green Building Design and Delivery. Wiley. ISBN 978-1119055327.
  83. ^ "Full Mauna Loa CO2 record". Earth System Research Laboratory. 2005. Retrieved 6 May 2017.
  84. ^ Tans, Pieter (3 May 2008). "Annual CO
    2
    mole fraction increase (ppm) for 1959–2007"
    . National Oceanic and Atmospheric Administration Earth System Research Laboratory, Global Monitoring Division.
    "additional details".; see also Masarie, K.A.; Tans, P.P. (1995). "Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record". J. Geophys. Res. 100 (D6): 11593–610. Bibcode:1995JGR...10011593M. doi:10.1029/95JD00859.
  85. ^ "Global Carbon Project (GCP)". www.globalcarbonproject.org. Archived from the original on 4 April 2019. Retrieved 19 May 2019.
  86. ^ Dumitru-Romulus Târziu; Victor-Dan Păcurar (January 2011). "Pădurea, climatul și energia". Rev. pădur. (in Romanian). 126 (1): 34–39. ISSN 1583-7890. 16720. Archived from the original on 16 April 2013. Retrieved 11 June 2012.(webpage has a translation button)
  87. ^ "Climate Change 2001: Working Group I: The Scientific Basis: figure 6-6". Archived from the original on 14 June 2006. Retrieved 1 May 2006.
  88. ^ "The present carbon cycle – Climate Change". Grida.no. Retrieved 16 October 2010.
  89. ^ Couplings Between Changes in the Climate System and Biogeochemistry (PDF). Retrieved 13 May 2008. in IPCC AR4 WG1 (2007)
  90. ^ IPCC (2007d). "6.1 Observed changes in climate and their effects, and their causes". 6 Robust findings, key uncertainties. Climate Change 2007: Synthesis Report. A Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Geneva: IPCC. Archived from the original on 6 November 2012. Retrieved 4 September 2012.
  91. ^ a b "6.2 Drivers and projections of future climate changes and their impacts". 6 Robust findings, key uncertainties. Climate Change 2007: Synthesis Report. A Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Geneva, Switzerland: IPCC. 2007d. Archived from the original on 6 November 2012. Retrieved 4 September 2012.
  92. ^ Armarego-Marriott, Tegan (May 2020). "Climate or biodiversity?". Nature Climate Change. 10 (5): 385. doi:10.1038/s41558-020-0780-6. ISSN 1758-6798. S2CID 217192647.
  93. ^ "3.3.1 Impacts on systems and sectors". 3 Climate change and its impacts in the near and long term under different scenarios. Climate Change 2007: Synthesis Report. A Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Geneva: IPCC. 2007d. Archived from the original on 3 November 2018. Retrieved 31 August 2012.
  94. ^ a b "Geoengineering the climate: science, governance and uncertainty". The Royal Society. 2009. Archived from the original on 7 September 2009. Retrieved 12 September 2009.
  95. ^ Fischer, B.S.; Nakicenovic, N.; Alfsen, K.; Morlot, J. Corfee; de la Chesnaye, F.; Hourcade, J.-Ch.; Jiang, K.; Kainuma, M.; La Rovere, E.; Matysek, A.; Rana, A.; Riahi, K.; Richels, R.; Rose, S.; van Vuuren, D.; Warren, R., Issues related to mitigation in the long term context (PDF) in Rogner et al. (2007)
  96. ^ Arrhenius, Svante (1896). "On the influence of carbonic acid in the air upon the temperature of the ground" (PDF). The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 41 (251): 237–276. doi:10.1080/14786449608620846.
  97. ^ Arrhenius, Svante (1897). "On the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground". Publications of the Astronomical Society of the Pacific. 9 (54): 14. Bibcode:1897PASP....9...14A. doi:10.1086/121158.
  98. ^ Cook, J.; Nuccitelli, D.; Green, S.A.; Richardson, M.; Winkler, B.R.; Painting, R.; Way, R.; Jacobs, P.; Skuce, A. (2013). "Quantifying the consensus on anthropogenic global warming in the scientific literature" (PDF). Environmental Research Letters. 8 (2): 024024. Bibcode:2013ERL.....8b4024C. doi:10.1088/1748-9326/8/2/024024.[permanent dead link]

Further reading[edit]

External links[edit]