Jump to content

Metric prefix: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Tag: repeated addition of external links by non-autoconfirmed user
Line 149: Line 149:
*[http://www.bipm.fr/en/home/ Bureau International des Poids et Mesures] (BIPM)
*[http://www.bipm.fr/en/home/ Bureau International des Poids et Mesures] (BIPM)
*[http://www.bipm.fr/en/si/prefixes.html SI prefixes at BIPM]
*[http://www.bipm.fr/en/si/prefixes.html SI prefixes at BIPM]
*[http://www.startravestiler.net/ travestisiteleri]
*[http://physics.nist.gov/cuu/Units/prefixes.html US NIST ''Definitions of the SI units: The twenty SI prefixes'']
*[http://physics.nist.gov/cuu/Units/prefixes.html US NIST ''Definitions of the SI units: The twenty SI prefixes'']
*[http://physics.nist.gov/cuu/Units/binary.html US NIST ''Definitions of the SI units: The binary prefixes'']
*[http://physics.nist.gov/cuu/Units/binary.html US NIST ''Definitions of the SI units: The binary prefixes'']

Revision as of 05:00, 6 March 2011

The International System of Units (SI) specifies a set of unit prefixes known as SI prefixes or metric prefixes. An SI prefix is a name that precedes a basic unit of measure to indicate a decadic multiple or fraction of the unit. Each prefix has a unique symbol that is prepended to the unit symbol. The SI prefixes are standardized by the International Bureau of Weights and Measures (IBWM)in resolutions dating from 1960 to 1991.[1] Their usage is not limited to SI units and many of these date back to the introduction of the metric system in the 1790s.

SI prefixes are used to reduce the number of zeros shown in numerical quantities before or after a decimal point. For example, an electrical current of 0.000000001ampere, or one-billionth (short scale) of an ampere, is written by using the SI-prefix nano as 1nanoampere or 1nA.

List of SI prefixes

The International System of Units specifies twenty SI prefixes:

Prefix Base 10 Decimal Adoption
[nb 1]
Name Symbol
quetta Q 1030 1000000000000000000000000000000 2022[2]
ronna R 1027 1000000000000000000000000000
yotta Y 1024 1000000000000000000000000 1991
zetta Z 1021 1000000000000000000000
exa E 1018 1000000000000000000 1975[3]
peta P 1015 1000000000000000
tera T 1012 1000000000000 1960
giga G 109 1000000000
mega M 106 1000000 1873
kilo k 103 1000 1795
hecto h 102 100
deca da 101 10
100 1
deci d 10−1 0.1 1795
centi c 10−2 0.01
milli m 10−3 0.001
micro μ 10−6 0.000001 1873
nano n 10−9 0.000000001 1960
pico p 10−12 0.000000000001
femto f 10−15 0.000000000000001 1964
atto a 10−18 0.000000000000000001
zepto z 10−21 0.000000000000000000001 1991
yocto y 10−24 0.000000000000000000000001
ronto r 10−27 0.000000000000000000000000001 2022[2]
quecto q 10−30 0.000000000000000000000000000001
Notes
  1. ^ Prefixes adopted before 1960 already existed before SI. The introduction of the CGS system was in 1873.

Examples

  • 5 cm = 5×10^−2 m = 5×0.01m = 0.05m
  • 3 MW = 3×10^6 W = 3×1000000W = 3000000W

General use of prefix names and symbols

Twenty SI prefixes are available to combine with units of measure. For example, the prefix kilo- denotes a multiple of one thousand, so 1 kilometre equals 1000 metres, 1 kilogram equals 1000 grams, 1 kilowatt equals 1000 watts, and so on. Each SI prefix name has an associated symbol which can be used in combination with the symbols for units of measure. Thus, the "kilo-" symbol, k, can be used to produce km, kg, and kW, (kilometre, kilogram, and kilowatt). SI prefixes are internationally recognized and also exist outside the SI (many of them long pre-date SI, going back to the original introduction of the metric system); prefixes may also be used in combination with non-SI units; for example: milligauss (mG), kilofoot (kft) and microinch (µin).

Prefixes may not be used in combination. This even applies for mass, for which the SI base unit (which is the kilogram, not the gram) already contains a prefix. So milligram (mg) is used instead of microkilogram (µkg), for example.

Prefixed values cannot be multiplied or divided together, and they have to be converted into non-prefixed standard form for such calculations. For example, 5 mV × 5 mA ≠ 25 mW. Thus it has to be converted into 5 × 10−3 V × 5 × 10−3 A = 2.5 x 10−5 W = 0.025 mW

Prefixes corresponding to an exponent that is divisible by three are often recommended. Hence "100 m" rather than "1 hm" (hectometre) or "10 dam" (decametres). The "non-three" prefixes (hecto-, deca-, deci-, and centi-) are however more commonly used for everyday purposes than in science.

SI prefixes with symbols for time and angles

Official policies about the use of these prefixes vary slightly between the Bureau International des Poids et Mesures (BIPM) and the American National Institute of Standards and Technology (NIST); and some of the policies of both bodies are at variance with everyday practice. For instance, the NIST advises that "…to avoid confusion, prefix symbols (and prefixes) are not used with the time-related unit symbols (names) min (minute), h (hour), d (day); nor with the angle-related symbols (names) ° (degree), (minute), and (second)." [4] The BIPM’s position on the use of SI prefixes with units of time larger than the second is the same as that of the NIST but their position with regard to angles differs: they state "However astronomers use milliarcsecond, which they denote mas, and microarcsecond, µas, which they use as units for measuring very small angles." [5]

SI prefixes for temperature in °C

Official policy also varies from common practice for the degree Celsius (°C). NIST states; "Prefix symbols may be used with the unit symbol °C and prefixes may be used with the unit name 'degree Celsius'. For example, 12 m°C (12 millidegrees Celsius) is acceptable."

Exponentiation of symbols

When units occur in exponentiation, for example, in square and cubic forms, any size prefix is considered part of the unit, and thus included in the exponentiation.

Pronunciation

There are two accepted pronunciations for the prefix giga-: /ˈɡɪɡə/ and /ˈdʒɪɡə/. According to the American writer Kevin Self, in the 1920s a German committee member of the International Electrotechnical Commission proposed giga- as a prefix for 109, drawing on a verse by the humorous poet Christian Morgenstern that appeared in the third (1908) edition of Galgenlieder (Gallows Songs). This suggests a hard German g was originally intended as the pronunciation. Self was unable to ascertain at what point the /dʒ/ (soft g) pronunciation became accepted, but as of 1995 current practice had returned to /ɡ/ (hard g). [6] [7]

When an SI prefix is affixed to a root word, the prefix carries the stress, while the root drops its stress but retains a full vowel in the syllable that is stressed when the root word stands alone. For example, gigabyte is Template:Pron-en, with stress on the first syllable. However, words in common use outside the scientific community may follow idiosyncratic stress rules. Kilometre is commonly pronounced /kɨˈlɒmɨtər/, with reduced vowels on both syllables of metre.

Disallowed and obsolete prefixes

The prefix myria- 'ten thousand' [8][9] denoting a factor of 10000, originated from the Greek μύριοι (mýrioi) for ten thousand, and the prefixes demi and double, denoting a factors of 1/2 and 2, respectively,[10] were parts of the original metric system adopted by France in 1795. These were not retained when the SI prefixes were internationally adopted by the 11th CGPM conference in 1960. The binary prefixes were dropped because they were not decimal, nor symmetrical.

Double prefixes such as those formerly used in micromicrofarads (picofarads), hectokilometres (100 kilometres), and millimicrons or micromillimetres (both nanometres) were disallowed with the introduction of the SI. The choice of commonly used prefixes with a given unit is usually dictated by convenience of use, unit prefixes that are much larger or smaller than encountered in practice, are seldom used, albeit valid combinations. In most contexts only a few, the most common, standard combination are established:

  • Mass: hectogram, gram, milligram, microgram, and smaller are common. However, megagram or larger are rarely used; tonnes (and kilotonnes etc.) or scientific notation are used instead. Megagram is occasionally used to disambiguate the (metric) tonne from the various (non-metric) tons.
  • Volume in litres: litre, decilitre, centilitre, millilitre, microlitre, and smaller are common. Larger volumes are sometimes denoted in hectolitres; otherwise in cubic metres or cubic kilometres. In Australia, large quantities of water are measured in kilolitres, megalitres and gigalitres.
  • Length: kilometre, metre, decimetre, centimetre, millimetre, and smaller are common. The micrometre is often referred to by the non-SI term micron. In some fields such as chemistry, the ångström (equal to 0.1 nm) competes with the nanometre. The femtometre, used mainly in particle physics, is usually called a fermi. For large scales, megametre, gigametre, and larger are rarely used. Often used are astronomical units, light years, and parsecs; the astronomical unit is mentioned in the SI standards as an accepted non-SI unit.
  • Time: second, millisecond, microsecond, and shorter are common. The kilosecond and megasecond also have some use, though for these and longer times one usually uses either scientific notation or minutes, hours, and so on.

the United Kingdom, Ireland, Australia and New Zealand previously used the long scale number name conventions, but have now at least partly switched to the short scale usage. In particular, above a million and below a millionth, the same name has different values in the two naming systems, so billion and trillion (for example) have unfortunately become potentially ambiguous terms internationally. Using the SI prefixes can circumvent this problem.

Non-SI units

  • The use of prefixes can be traced back to the introduction of the metric system in the 1790s, long before the SI was introduced in 1960. The prefixes, including those introduced after the introduction of the SI, are used with any metric units, whether officially included in the SI or not (e.g., millidynes).
  • SI prefixes rarely appear with imperial units or English units except in some special cases (e.g., microinches, kilofeet, kilopound or 'kip').
  • They are also used with other specialized units used in particular fields (e.g., megaelectronvolts, gigaparsecs).
  • They are also occasionally used with currency units (e.g., gigadollar), mainly by people who are familiar with the prefixes from scientific usage.

Similar symbols in abbreviations

The symbol K is often used informally to mean a multiple of thousand in many contexts. For example, one may talk of a 40K salary (40 000), or call the Year 2000 problem as Y2K problem. In these cases an uppercase K is often used, although the uppercase K is the official symbol of the kelvin.

In other financial and business contexts, the letter M is often used to denote multiplication by 1000, in recognition of the Latin term mille (meaning one thousand), also used in roman numerals. In these situations one million is often written as 1 MM. In other financial situations, one M can mean million, such as £2M or £2m which is equal to £2 000 000. Similar usage of M occurs in the term CPM (Cost per mille) used in advertising.

For nearly a century, the electrical construction industry used the acronym "MCM" to designate a "thousand circular mils" in specifying thicknesses of large electrical cables. Since the mid-1990s, the term "kcmil" has been adopted as the "official" designation of a thousand circular mils, but the designation "MCM" still remains in wide use.

Units used in computing and telecommunications

The International System of Units does not define units of information, such as the storage size units bit and byte. This has allowed ambiguities to emerge with respect to the symbols in use, as well as their usage and meaning in combination with the SI prefixes. The bit is often given the symbol bit or b, while byte is usually written as byte, B, and occasionally as b. Thus, kb/s often means kilobits per second, but may sometimes refer to kilobytes per second.

The National Institute of Standards and Technology in the United States has suggested the use of bit for bits and B for bytes.[11]

In non-standard use, K is often used as a symbol prefix to the units bit and byte to designate the binary prefix kibi = 210 = 1024.

Binary prefixes

The prefixes kilo, mega, giga and greater are often used in combination with the storage size units bit and byte.

The binary multiple 210 = 1024 is close to the value 1000 of the prefix kilo, therefore computer professionals have historically used the unit kilobyte to refer to 1024 bytes of computer memory, in non-conformance with the SI definition of the prefix kilo. Likewise, 220 = 1048576, which is close to 1000000 has been expressed with the mega prefix. This has led to some confusion, because megabyte is commonly used to refer to 1000000bytes in the specifications of hard disk drive capacities and network transmission bit rates.

To eliminate this ambiguity the International Electrotechnical Commission (IEC) adopted new binary prefixes in 1998 (IEC 80000-13:2008 formerly subclauses 3.8 and 3.9 of IEC 60027-2:2005). Each binary prefix is formed from the first syllable of the decimal prefix with the similar value, and the syllable 'bi' (pronounced 'bee'). The symbols are the decimal symbol, always capitalized, followed by the letter 'i'.

According to this standard one kilobyte (1 kB) is 1000 bytes, whereas one kibibyte (1 KiB) is 1024 bytes. Likewise mebi (Mi; 220), gibi (Gi; 230), tebi (Ti; 240), pebi (Pi; 250), exbi (Ei; 260), zebi (Zi; 270) and yobi (Yi; 280).

The use of these new binary prefixes is increasing,[12] but is largely limited to technical literature and new computer software.

In 2010, an online petition sought to establish hella as the SI prefix for 1027.[13] The prefix, which has since appeared in the San Francisco Chronicle, Daily Telegraph, and Wired, was recognized by Google in May 2010.[14][15][16] Ian Mills, president of the Consultative Committee on Units, considers the chances of official adoption to be remote.[17]

See also

References

This article is based on material taken from the Free On-line Dictionary of Computing prior to 1 November 2008 and incorporated under the "relicensing" terms of the GFDL, version 1.3 or later.

  1. ^ Four Resolutions
  2. ^ a b "On the extension of the range of SI prefixes". 18 November 2022. Retrieved 5 February 2023.
  3. ^ "Metric (SI) Prefixes". NIST.
  4. ^ http://physics.nist.gov/Pubs/SP811/sec06.html
  5. ^ http://www.bipm.fr/en/si/si_brochure/chapter3/prefixes.html
  6. ^ Self, Kevin (October 1994). "Technically speaking". Spectrum. IEEE: 18.
  7. ^ Self, Kevin (April 1995). "Technically speaking". Spectrum. IEEE: 16.
  8. ^ 29th Congress of the United States, Session 1 (13 May 1866). "H.R. 596, An Act to authorize the use of the metric system of weights and measures".{{cite web}}: CS1 maint: numeric names: authors list (link)
  9. ^ D. Brewster (1830). The Edinburgh Encyclopaedia. p. 494.
  10. ^ histoire.du.metre.free.fr
  11. ^ Ambler Thompson, Barry N. Taylor. (2008). Guide for the Use of the International System of Units (SI). Gaithersburg, MD: National Institute of Standards and Technology p. 74. This source recommends B as a symbol for byte, but is silent concerning bits.
  12. ^ Sadat Karim, neowin.net (27 March 2010). "Ubuntu implements units policy, will switch to base-10 units in future release".
  13. ^ Moore, Matthew (2 March 2010). "Hella number: scientists call for new word for 1,000,000,000,000,000,000,000,000,000". The Telegraph. Retrieved 4 June 2010. More than 20,000 scientists, students and members of the public have signed an online petition backing the new quantity, which would be used for figures with 27 zeros after the first digit.
  14. ^ "Jargon Watch". Wired. 18 (6). June 2010. ...a proposed metric prefix...useful for describing mega-measurements like Earth's mass (6 Hellagrams). A Facebook petition garnered 30,000 signatures {{cite journal}}: |access-date= requires |url= (help)
  15. ^ "The Official Petition to Establish "Hella-" as the SI Prefix for 10^27". Facebook. Retrieved 4 June 2010.
  16. ^ Kim, Ryan (24 May 2010). "Google gets behind 'hella' campaign". The San Francisco Chronicle. Retrieved 4 June 2010.
  17. ^ Chawkins, Steve (6 June 2010). "Physics major has a name for a really big number". Los Angeles Times. p. 2.