ALS: Difference between revisions
Undid revision 622229070 by ClueBot NG (talk) Tag: reverting anti-vandal bot |
m Reverted edits by 86.166.182.198 (talk) to last version by ClueBot NG |
||
Line 1: | Line 1: | ||
{{Redirect|ALS}} |
|||
{{Redirect|Motor neurone disease|a broader group of diseases that affect motor neurons|Motor neuron disease}} |
|||
{{Use dmy dates|date=October 2012}} |
|||
<!-- |
|||
PLEASE READ |
|||
DO NOT change "neurone" to "neuron". The British spelling is used on purpose here. |
|||
If you intend to add info to the effect that Lou Gehrig did not have ALS, PLEASE READ THE TALK PAGE first. |
|||
-->{{infobox disease |
|||
| Name = Amyotrophic Lateral Sclerosis |
|||
| Image = ALS Coronal.jpg |
|||
| Caption = This [[Magnetic resonance imaging|MRI]] ([[Sagittal plane|parasagittal]] [[Fluid attenuated inversion recovery|FLAIR]]) demonstrates increased [[Magnetic resonance imaging|T2 signal]] within the posterior part of the [[internal capsule]] and can be tracked to the [[White matter|subcortical white matter]] of the [[motor cortex]], outlining the [[corticospinal tract]], consistent with the clinical diagnosis of ALS. However, typically MRI is unremarkable in a patient with ALS. |
|||
| DiseasesDB = 29148 |
|||
| ICD10 = {{ICD10|G|12|2|g|10}} |
|||
| ICD9 = {{ICD9|335.20}} |
|||
| ICDO = |
|||
| OMIM = 105400 |
|||
| MedlinePlus = 000688 |
|||
| eMedicineSubj = neuro |
|||
| eMedicineTopic = 14 |
|||
| eMedicine_mult = {{eMedicine2|emerg|24}} {{eMedicine2|pmr|10}} |
|||
| MeshID = D000690 |
|||
}} |
|||
'''Amyotrophic lateral sclerosis''' ('''ALS''')—also referred to as '''motor neurone<!-- Please do not change this to "neuron". "Motor neuron disease" is an American term for a group of diseases including ALS. "Motor neurone disease" (with an 'e', per the British spelling) is the Commonwealth term for ALS.--> disease''' ('''MND'''), '''Charcot disease''', and, in the United States, '''[[Lou Gehrig]]'s disease'''—is a [[Neurodegeneration|neurodegenerative disease]] with various causes. It is characterised by muscle [[spasticity]], rapidly progressive weakness due to [[muscle atrophy]], difficulty in speaking ([[dysarthria]]), swallowing ([[dysphagia]]), and breathing ([[dyspnea]]). ALS is the most common of the five [[motor neuron disease]]s. |
|||
==Signs and symptoms== |
|||
The disorder causes muscle weakness and [[atrophy]] throughout the body due to the degeneration of the [[upper motor neuron|upper]] and [[lower motor neuron]]s. Individuals affected by the disorder may ultimately lose the ability to initiate and control all voluntary movement, although bladder and bowel function and the [[Extraocular muscles|muscles responsible for eye movement]] are usually spared until the final stages of the disease.<ref name="PubMed Health">{{cite web|title=Amyotrophic lateral sclerosis|work=A.D.A.M. Medical Encyclopedia|date=27 August 2010|author=Dugdale DC, Hoch DB, Zieve D|url=http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0001708/}}</ref> |
|||
[[Cognition|Cognitive function]] is generally spared for most patients, although some (about 5%) also develop [[frontotemporal dementia]].<ref name="pmid17945153">{{cite journal | author=Phukan J, Pender NP, Hardiman O|title=Cognitive impairment in amyotrophic lateral sclerosis|journal=Lancet Neurol|volume=6|issue=11|pages=994–1003|year=2007|pmid=17945153|doi=10.1016/S1474-4422(07)70265-X|url=http://linkinghub.elsevier.com/retrieve/pii/S1474-4422(07)70265-X}}</ref> A higher proportion of patients (30–50%) also have more subtle cognitive changes which may go unnoticed, but are revealed by detailed [[neuropsychological test]]ing. Infrequently ALS coexists in individuals who also experience dementia, degenerative muscle disease, and degenerative bone disease as part of a syndrome called [[multisystem proteinopathy]].<ref name="Johnson_2010"/> [[Sensory neuron|Sensory nerves]] and the [[autonomic nervous system]] are generally unaffected, meaning the majority of people with ALS will maintain [[hearing]], [[sight]], [[touch]], [[smell]], and [[taste]].<ref>http://www.ninds.nih.gov/disorders/amyotrophiclateralsclerosis/</ref> |
|||
===Initial symptoms=== |
|||
The earliest symptoms of ALS are typically obvious weakness and/or muscle atrophy. Other presenting symptoms include trouble swallowing, cramping, or stiffness of affected muscles; muscle weakness affecting an arm or a leg; and/or slurred and nasal speech. The parts of the body affected by early symptoms of ALS depend on which motor neurons in the body are damaged first. About 75% of people contracting the disease experience "limb onset" ALS, ''i.e.'', first symptoms in the arms or legs. Patients with the leg onset form may experience awkwardness when walking or running or notice that they are tripping or stumbling, often with a "dropped foot" which drags gently along the ground. Arm-onset patients may experience difficulty with tasks requiring manual dexterity such as buttoning a shirt, writing, or turning a key in a lock. Occasionally, the symptoms remain confined to one limb for a long period of time or for the whole length of the illness; this is known as [[monomelic amyotrophy]]. |
|||
About 25% of cases are "[[bulbar]] onset" ALS. These patients first notice difficulty speaking clearly or swallowing. Speech may become slurred, nasal in character, or quieter. Other symptoms include difficulty swallowing and loss of tongue mobility. A smaller proportion of patients experience "respiratory onset" ALS, where the [[intercostal]] muscles that support breathing are affected first. A small proportion of patients may also present with what appears to be [[frontotemporal dementia]], but later progresses to include more typical ALS symptoms. |
|||
Over time, patients experience increasing difficulty moving, swallowing ([[dysphagia]]), and speaking or forming words ([[dysarthria]]). Symptoms of upper motor neuron involvement include tight and stiff muscles ([[spasticity]]) and exaggerated reflexes ([[hyperreflexia]]) including an overactive gag reflex. An abnormal reflex commonly called [[Plantar reflex|Babinski's sign]] also indicates upper motor neuron damage. Symptoms of lower motor neuron degeneration include muscle weakness and atrophy, muscle cramps, and fleeting twitches of muscles that can be seen under the skin (fasciculations). Around 15–45% of patients experience [[pseudobulbar affect]], a [[neurological disorder]] also known as "emotional lability", which consists of uncontrollable laughter, crying or smiling, attributable to degeneration of bulbar upper motor neurons resulting in exaggeration of motor expressions of emotion.{{citation needed|date=June 2013}} To be diagnosed with ALS, patients must have signs and symptoms of both upper and lower motor neuron damage that cannot be attributed to other causes. |
|||
===Progression=== |
|||
Although the order and rate of symptoms varies from person to person, eventually most patients are not able to walk or use their hands and arms. They also lose the ability to speak and swallow food, whilst most end up on a portable [[medical ventilator|ventilator]], called a BiPAP. The rate of progression can be measured using an outcome measure called the "ALS Functional Rating Scale Revised (ALSFRS-R)", a 12-item instrument administered as a clinical interview or patient-reported questionnaire that produces a score between 48 (normal function) and 0 (severe disability). Though there is a high degree of variability and a small percentage of patients have much slower disease, on average, patients lose about 0.9 FRS point per month. A survey-based study amongst clinicians showed that they rated a 20% change in the slope of the ALSFRS-R would be clinically meaningful.<ref>{{cite journal | author = Castrillo-Viguera C, Grasso DL, Simpson E, Shefner J, Cudkowicz ME | title = Clinical significance in the change of decline in ALSFRS-R | journal = Amyotroph Lateral Scler | volume = 11 | issue = 1–2 | pages = 178–80 | year = 2010 | pmid = 19634063 | doi = 10.3109/17482960903093710 | type = Journal Article }}</ref> Regardless of the part of the body first affected by the disease, muscle weakness and atrophy spread to other parts of the body as the disease progresses. In limb-onset ALS, symptoms usually spread from the affected limb to the opposite limb before affecting a new body region, whereas in bulbar-onset ALS symptoms typically spread to the arms before the legs. |
|||
Disease progression tends to be slower in patients who are younger than 40 at onset,<ref>{{cite journal | author = Sabatelli M, Madia F, Conte A, Luigetti M, Zollino M, Mancuso I, Lo Monaco M, Lippi G, Tonali P | title = Natural history of young-adult amyotrophic lateral sclerosis | journal = Neurology | volume = 71 | issue = 12 | pages = 876–81 | date = 16 September 2008 | pmid = 18596241 | doi = 10.1212/01.wnl.0000312378.94737.45 }}</ref><ref>[http://www.ncbi.nlm.nih.gov/pubmed/17974351 [Survival in amyotrophic lateral s... [Srp Arh Celok Lek. 1997 Jan-Feb] - PubMed - NCBI<!-- Bot generated title -->]</ref> are mildly obese,<ref>[http://hms.harvard.edu/news/mild-obesity-appears-improve-survival-als-patients-5-24-11 Mild Obesity Appears to Improve Survival in ALS Patients | HMS<!-- Bot generated title -->]</ref> have disease restricted primarily to one limb, and those with primarily upper motor neuron symptoms.<ref name="pmid21402743">{{cite journal | author = Chiò A, Calvo A, Moglia C, Mazzini L, Mora G | title = Phenotypic heterogeneity of amyotrophic lateral sclerosis: A population based study | journal = Journal of Neurology, Neurosurgery & Psychiatry | volume = 82 | issue = 7 | pages = 740–746 | year = 2011 | pmid = 21402743 | doi = 10.1136/jnnp.2010.235952 }}</ref> Conversely, progression is faster and prognosis poorer in patients with bulbar-onset disease, respiratory-onset disease, and fronto-temporal dementia.<ref name="pmid21402743" /> |
|||
[[CX3CR1]] [[allelic]] variants have also been shown to modify the survival time and the progression of patients.<ref name="pmid24806473">{{cite journal | author = Lopez-Lopez A, Gamez J, Syriani E, Morales M, Salvado M, Rodríguez MJ, Mahy N, Vidal-Taboada JM | title = CX3CR1 Is a Modifying Gene of Survival and Progression in Amyotrophic Lateral Sclerosis | journal = PLoS ONE | volume = 9 | issue = 5 | pages = e96528 | year = 2014 | pmid = 24806473 | pmc = 4013026 | doi = 10.1371/journal.pone.0096528 }}</ref> |
|||
===Late stages=== |
|||
Difficulty in chewing and swallowing makes eating very difficult and increases the risk of choking or of aspirating food into the lungs. In later stages of the disease, [[aspiration pneumonia]] can develop, and maintaining a healthy weight can become a significant problem that may require the insertion of a feeding tube. As the diaphragm and [[intercostal muscle]]s of the [[rib cage]] that support breathing weaken, measures of [[lung function]] such as [[vital capacity]] and inspiratory pressure diminish. In respiratory onset ALS, this may occur before significant limb weakness is apparent. External ventilation machines that use the ventilation mode of [[bilevel positive airway pressure]] (BiPAP) are frequently used to support breathing, initially at night, and later during the daytime as well. The use of BPAP (more often referred to as non-invasive ventilation, NIV) is only a temporary remedy, however, and it is recommended that long before BPAP stops being effective, patients should decide whether to have a [[tracheotomy]] and long term mechanical ventilation. At this point, some patients choose [[Palliative care|palliative hospice care]]. Most people with ALS die of respiratory failure or [[pneumonia]]. |
|||
Although respiratory support can ease problems with breathing and prolong survival, it does not affect the progression of ALS. Most people with ALS die from respiratory failure, usually within three to five years from the onset of symptoms. The median survival time from onset to death is around 39 months, and only 4% survive longer than 10 years.<ref>{{cite journal | author = Turner MR, Parton MJ, Shaw CE, Leigh PN, Al-Chalabi A | title = Prolonged survival in motor neuron disease: a descriptive study of the King's database 1990–2002 | journal = J Neurol Neurosurg Psychiatry | volume = 74 | issue = 7 | pages = 995–997 | year = 2003 | pmid = 12810805 | pmc = 1738535 | doi = 10.1136/jnnp.74.7.995 }}</ref> Guitarist [[Jason Becker]] has lived since 1989 with the disease, while physicist [[Stephen Hawking]] has survived for more than 50 years, but they're considered unusual cases.<ref>{{cite web |url=http://articles.cnn.com/2009-04-20/health/hawking.als_1_als-association-lou-gehrig-s-disease-motor-neuron-disease?_s=PM:HEALTH |title=Stephen Hawking serves as role model for ALS patients |publisher=CNN |date=2009-04-20 }}</ref> |
|||
In late stages the [[oculomotor nerve]] that controls the movements of the eye, can be affected as can the [[extraocular muscles]]. The eye movements remain unaffected largely until the later stages due to differences in the extraocular muscles compared to the skeletal muscles that are initially and readily affected. |
|||
Finally patient condition may be mimicking [[locked-in syndrome]] <ref>James L. Bernat: Ethical Issues in Neurology, p. 336 http://books.google.pl/books?id=o732GWGjPQ4C&pg=PA336</ref> |
|||
==Extraocular and skeletal motor units== |
|||
{{Main|Extraocular muscles}} |
|||
Despite sharing fixed sequences of recruitment, extraocular muscles (EOMs) and skeletal muscles exhibit different characteristics. The following are characteristics of EOMs that differ from skeletal motor units.<ref>Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. McGraw-Hill; 2000</ref> |
|||
* One neural fiber connects with only 1 or 2 muscle fibers |
|||
* No ocular [[stretch reflex]]es, despite being rich in [[muscle spindle]]s |
|||
* No recurrent inhibition |
|||
* No special fast-twitch or slow-twitch muscles |
|||
* All eye motor neurons participate equally in all types of eye movements—not specialized for saccades or smooth pursuit |
|||
There are also noted differences between healthy and affected EOMs. EOMs from postmortem donors preserved their [[cytoarchitecture]], as compared to limb muscles. Healthy EOMs consist of a central global layer (GL) facing the globe and a thin orbital layer (OL) facing the walls of the orbit.<ref name="multiple">Ahmadi M, Liu JX, Brännström T, Andersen PM, Stål P, Pedrosa-Domellöf F. Human extraocular muscles in ALS. Invest Ophthalmol Vis Sci. 2010;51(7):3494-501</ref> EOMs affected by ALS preserve the GL and OL organization.<ref name="multiple"/> EOMs possess the neurotrophic factors [[brain-derived neurotrophic factor]] (BDNF) and [[glial cell line-derived neurotrophic factor]] (GDNF), and these neuroprotective factors are also preserved in EOMs affected by ALS.<ref name="multiple"/> [[Laminin]] is a structural protein typically found in the [[neuromuscular junction]] (NMJ). Lnα4 is a laminin isoform that is a hallmark of skeletal muscle NMJs.<ref name="multiplea">Liu JX, Brännström T, Andersen PM, Pedrosa-Domellöf F. Different Impact of ALS on Laminin Isoforms in Human Extraocular Muscles Versus Limb Muscles. Invest Ophthalmol Vis Sci. 2011</ref> Patients with ALS showed preserved Lnα4 expression in EOM NMJs, but this expression was non-existent in limb muscle NMJs from the same patients.<ref name="multiplea"/> Preservation of laminin expression may play a role in preserving EOM integrity in ALS patients. Patients with sporadic ALS (sALS) have increased levels of intracelluar calcium, causing increased [[neurotransmitter]] release.<ref name="multipleb">Mosier DR, Siklós L, Appel SH. Resistance of extraocular motoneuron terminals to effects of amyotrophic lateral sclerosis sera. Neruology. 2000;54(1):252-5</ref> Passive transfer of sera from sALS patients increases spontaneous transmitter release in spinal but not EOM terminals;<ref name="multipleb"/> therefore, it is assumed that EOMs are resistant to changes in physiologic conditions typically found in ALS. |
|||
However, some effects of disease were noted. EOMs affected by ALS had a larger variation in fiber size compared to those in age-matched healthy controls.<ref name="multiple"/> EOMs exhibited both clustered and scattered atrophic and [[Hypertrophy|hypertrophic]] fibers that are characteristic of disease; however, these muscles showed significantly less damage compared to limb muscles from the same donors.<ref name="multiple"/> These EOMs also showed an increase in [[connective tissue]] and areas of fatty replacement in compensation of fiber loss and atrophy.<ref name="multiple"/> [[Ophthalmoplegia]], a loss of neurons in and around the ocular motor nuclei, has been noted in ALS patients.<ref name="multiplec">Cohen B, Caroscio J. Eye movements in amyotrophic lateral sclerosis. J Neural Transm Suppl. 1983;19:305-15</ref> Additionally, there was altered [[myosin heavy chain]] content of the EOM fibers, with a loss of normal expression of MyHCslow tonic in the GL and the OL did not contain MyHCemb, which is normally expressed in this layer.<ref name="multiple"/> This change may represent a change in innervation pattern that may include reinnervation by a different type of motor neuron or loss of multiple innervations. Changes in MyHCslow and MyHCemb are the only fiber changes seen in EOMs, leaving the EOM fiber composition relatively normal.<ref name="multiple"/> Because EOMs are normally highly innervated, any denervation, is compensated for by neighbouring axons which preserve function.<ref name="multiple"/> |
|||
===Eye movement impairment=== |
|||
Patients with ALS may have difficulty in generating voluntary [[saccade]]s, fast movements of the eye.<ref name="multiplec"/> Saccade velocity is significantly slower in patients with ALS.<ref name="multiplec"/> Problems in generating [[smooth pursuit]] and convergence movements have also been noted in patients with ALS. <ref name="multiplec"/> Testing the [[vestibulo-ocular reflex]] (VOR) should help in identifying these deficits in ALS patients.<ref name="multiplex"/> [[Electrooculography]] (EOG) is a technique that measures the [[resting potential]] of the [[retina]]. EOG findings in patients with ALS show progressive changes that correlate with disease progression, and provide a measurement for clinically evaluating the effects of disease progression on oculomotor activity.<ref name="multiplex">{{cite journal | author = Palmowski A, Jost WH, Prudlo J, Osterhage J, Käsmann B, Schimrigk K, Ruprecht KW | title = Eye movement in amyotrophic lateral sclerosis: a longitudinal study | journal = Ger J Ophthalmol | volume = 4 | issue = 6 | pages = 355–62 | year = 1995 | pmid = 8751101 | doi = }}</ref> Additionally, EOG may allow earlier, subclinical, detection of oculomotor abnormalities in patients with ALS. |
|||
The embryonic lineage of EOMs differs from that of somite-derived muscles. EOMs are unique because they continuously remodel through life and maintain a population of active [[satellite cell]]s during aging.<ref name="multipled">{{cite journal | author = Kallestad KM, Hebert SL, McDonald AA, Daniel ML, Cu SR, McLoon LK | title = Sparing of extraocular muscle in aging and muscular dystrophies: a myogenic precursor cell hypothesis | journal = Exp. Cell Res. | volume = 317 | issue = 6 | pages = 873–85 | year = 2011 | pmid = 21277300 | pmc = 3072110 | doi = 10.1016/j.yexcr.2011.01.018 }}</ref> EOMs have significantly more myogenic precursor cells than limb skeletal muscles.<ref name="multipled"/> |
|||
===Roles of lactate and cinnamate=== |
|||
[[Lactic acid]] is an end product of [[glycolysis]] and is known to cause muscle fatigue. [[Lactate dehydrogenase]] (LDH) is an enzyme that exerts its effects bidirectionally and is able to oxidize lactate into [[pyruvate]] so it can be used in the [[Kreb's Cycle]]. In EOM, lactate sustains muscle contraction during increased activity levels. EOM that have high LDH activity are thought to be resistant to ALS.<ref name="multiplef">{{cite journal | author = Andrade FH, McMullen CA | title = Lactate is a metabolic substrate that sustains extraocular muscle function | journal = Pflugers Arch. | volume = 452 | issue = 1 | pages = 102–8 | year = 2006 | pmid = 16328456 | doi = 10.1007/s00424-005-0010-0 }}</ref> |
|||
[[Cinnamate]] is a blocker of lactate transport and exogenous lactate on fatigue resistance. Cinnamate is able to cause fatigue in EOM, while decreasing EOM endurance and residual force; however, cinnamate has no effect on [[extensor digitorum longus muscle]], a muscle in the leg.<ref name="multiplef"/> In contrast, replacing [[glucose]] with exogenous lactate increases fatiguability of EDL muscles but not EOM.<ref name="multiplef"/> Fatiguability in EOM was only found when a combination of exogenous lactacte plus cinnamate replaced glucose.<ref name="multiplef"/> |
|||
==Causes== |
|||
===Genetics=== |
|||
There is a known hereditary factor in familial ALS, where the condition is known to run in families. A defect on [[chromosome 21]], which codes for [[superoxide dismutase]], is associated with approximately 20% of familial cases of ALS, or about 2% of ALS cases overall.<ref>{{cite journal | author = Conwit RA | title = Preventing familial ALS: A clinical trial may be feasible but is an efficacy trial warranted? | journal = Journal of the Neurological Sciences | volume = 251 | issue = 1–2 | pages = 1–2 | date = December 2006 | pmid = 17070848 | doi = 10.1016/j.jns.2006.07.009 | issn = 0022-510X }}</ref><ref name="advances">{{cite journal | author = Al-Chalabi A, Leigh PN | title = Recent advances in amyotrophic lateral sclerosis | journal = Current Opinion in Neurology | volume = 13 | issue = 4 | pages = 397–405 | date = August 2000 | pmid = 10970056 | doi = 10.1097/00019052-200008000-00006 | issn = 1473-6551 }}</ref><ref>{{cite journal | author = Battistini S, Ricci C, Lotti EM, Benigni M, Gagliardi S, Zucco R, Bondavalli M, Marcello N, Ceroni M, Cereda C | title = Severe familial ALS with a novel exon 4 mutation (L106F) in the SOD1 gene | journal = Journal of the Neurological Sciences | volume = 293 | issue = 1 | pages = 112–115 | date = June 2010 | pmid = 20385392 | doi = 10.1016/j.jns.2010.03.009 }}</ref> This mutation is believed to be transmitted in an [[autosomal dominant]] manner, and has over a hundred different forms of mutation. The most common ALS-causing mutation is a mutant ''SOD1'' gene, seen in North American patients; this is characterized by an exceptionally rapid progression from onset to death. The most common mutation found in Scandinavian countries, [[D90A-SOD1]], is more slowly progressive than typical ALS and patients with this form of the disease survive for an average of 11 years.<ref>{{cite journal | author = Andersen PM, Forsgren L, Binzer M, Nilsson P, Ala-Hurula V, Keränen ML, Bergmark L, Saarinen A, Haltia T, Tarvainen I, Kinnunen E, Udd B, Marklund SL | title = Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala CuZn-superoxide dismutase mutation, A clinical and genealogical study of 36 patients | journal = Brain | volume = 119 | issue = 4 | pages = 1153–1172 | year = 1996 | pmid = 8813280 | doi = 10.1093/brain/119.4.1153 }}</ref> |
|||
In 2011, a genetic abnormality known as a hexanucleotide repeat was found in a region called [[C9orf72]], which is associated with ALS combined with frontotemporal dementia ALS-FTD,<ref>{{cite journal | author = DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R | title = Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS | journal = Neuron | volume = 72 | issue = 2 | pages = 245–56 | year = 2011 | pmid = 21944778 | pmc = 3202986 | doi = 10.1016/j.neuron.2011.09.011 | url = http://download.cell.com/neuron/pdf/PIIS0896627311008282.pdf }}</ref> and accounts for some 6% of cases of ALS among white Europeans.<ref name="pmid22406228">{{cite journal | author = Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S, Chiò A, Restagno G, Nicolaou N, Simon-Sanchez J, van Swieten JC, Abramzon Y, Johnson JO, Sendtner M, Pamphlett R, Orrell RW, Mead S, Sidle KC, Houlden H, Rohrer JD, Morrison KE, Pall H, Talbot K, Ansorge O, Hernandez DG, Arepalli S, Sabatelli M, Mora G, Corbo M, Giannini F, Calvo A, Englund E, Borghero G, Floris GL, Remes AM, Laaksovirta H, McCluskey L, Trojanowski JQ, Van Deerlin VM, Schellenberg GD, Nalls MA, Drory VE, Lu CS, Yeh TH, Ishiura H, Takahashi Y, Tsuji S, Le Ber I, Brice A, Drepper C, Williams N, Kirby J, Shaw P, Hardy J, Tienari PJ, Heutink P, Morris HR, Pickering-Brown S, Traynor BJ | title = Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study | journal = Lancet Neurol | volume = 11 | issue = 4 | pages = 323–30 | year = 2012 | pmid = 22406228 | pmc = 3322422 | doi = 10.1016/S1474-4422(12)70043-1 }}</ref> |
|||
The world's largest genetic study, called [[project MinE]], initiated by two ALS patients is currently ongoing. It is a crowdfunded research project with many countries involved to discover more genes.<ref>Press release project MinE, june 21st 2013 : https://projectmine.com/contents/uploads/press-release-project-mine-21-06-2013.pdf</ref> |
|||
To date, a number of genetic mutations have been associated with various types of ALS. The currently known associations are as follows: |
|||
{| class="wikitable" |
|||
|- |
|||
! style="width: 4.5em;"|Type |
|||
! style="width: 6em;"|[[OMIM]] |
|||
! style="width: 6em;"|[[Gene]] |
|||
! style="width: 8em;"|[[Locus (genetics)|Locus]] |
|||
! Remarks |
|||
|- |
|||
| ALS1 |
|||
| {{OMIM2|105400}} |
|||
| ''[[SOD1]]'' |
|||
| 21q22.1 |
|||
| The most common form of familial ALS |
|||
|- |
|||
| ALS2 |
|||
| {{OMIM2|205100}} |
|||
| ''[[ALS2]]'' |
|||
| 2q33.1 |
|||
| |
|||
|- |
|||
| ALS3 |
|||
| {{OMIM2|606640}} |
|||
| ? |
|||
| 18q21 |
|||
| |
|||
|- |
|||
| ALS4 |
|||
| {{OMIM2|602433}} |
|||
| ''[[SETX]]'' |
|||
| 9q34.13 |
|||
| |
|||
|- |
|||
| ALS5 |
|||
| {{OMIM2|602099}} |
|||
| ? |
|||
| 15q15.1–q21.1 |
|||
| Juvenile onset |
|||
|- |
|||
| ALS6 |
|||
| {{OMIM2|608030}} |
|||
| ''[[FUS]]'' |
|||
| 16p11.2 |
|||
| |
|||
|- |
|||
| ALS7 |
|||
| {{OMIM2|608031}} |
|||
| ? |
|||
| 20p13 |
|||
| |
|||
|- |
|||
| ALS8 |
|||
| {{OMIM2|608627}} |
|||
| ''[[VAPB]]'' |
|||
| 20q13.3 |
|||
| |
|||
|- |
|||
| ALS9 |
|||
| {{OMIM2|611895}} |
|||
| ''[[Angiogenin|ANG]]'' |
|||
| 14q11.2 |
|||
| |
|||
|- |
|||
| ALS10 |
|||
| {{OMIM2|612069}} |
|||
| ''[[TARDBP]]'' |
|||
| 1p36.2 |
|||
| |
|||
|- |
|||
| ALS11 |
|||
| {{OMIM2|612577}} |
|||
| ''[[FIG4]]'' |
|||
| 6q21 |
|||
| |
|||
|- |
|||
| ALS12 |
|||
| {{OMIM2|613435}} |
|||
| ''[[Optineurin|OPTN]]'' |
|||
| 10p13 |
|||
| |
|||
|- |
|||
| ALS13 |
|||
| {{OMIM2|183090}} |
|||
| ''[[ATXN2]]'' |
|||
| 12q24.12 |
|||
| |
|||
|- |
|||
| ALS14 |
|||
| {{OMIM2|613954}} |
|||
| ''[[Valosin-containing protein|VCP]]'' |
|||
| 9p13.3 |
|||
| Recent new study shows strong link in ALS mechanism<ref>{{cite journal | author = Buchan JR, Kolaitis RM, Taylor JP, Parker R | title = Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function | journal = Cell | volume = 153 | issue = 7 | pages = 1461–74 | date = 20 June 2013 | pmid = 23791177 | pmc = 3760148 | doi = 10.1016/j.cell.2013.05.037 }}</ref><ref name = "Johnson_2010">{{cite journal | author = Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, Gibbs JR, Brunetti M, Gronka S, Wuu J, Ding J, McCluskey L, Martinez-Lage M, Falcone D, Hernandez DG, Arepalli S, Chong S, Schymick JC, Rothstein J, Landi F, Wang YD, Calvo A, Mora G, Sabatelli M, Monsurrò MR, Battistini S, Salvi F, Spataro R, Sola P, Borghero G, Galassi G, Scholz SW, Taylor JP, Restagno G, Chiò A, Traynor BJ | title = Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS | journal = Neuron | volume = 68 | issue = 5 | pages = 857–864 | year = 2010 | pmid = 21145000 | pmc = 3032425 | doi = 10.1016/j.neuron.2010.11.036 }}</ref> |
|||
|- |
|||
| ALS15 |
|||
| {{OMIM2|300857}} |
|||
| ''[[UBQLN2]]'' |
|||
| Xp11.23–p11.1 |
|||
| Described in one family<ref>{{cite journal | author = Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H, Jiang H, Hirano M, Rampersaud E, Jansen GH, Donkervoort S, Bigio EH, Brooks BR, Ajroud K, Sufit RL, Haines JL, Mugnaini E, Pericak-Vance MA, Siddique T | title = Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia | journal = Nature | volume = 477 | issue = 7363 | pages = 211–215 | year = 2011 | pmid = 21857683 | pmc = 3169705 | doi = 10.1038/nature10353 }}</ref> |
|||
|- |
|||
| ALS16 |
|||
| {{OMIM2|614373}} |
|||
| ''[[SIGMAR1]]'' |
|||
| 9p13.3 |
|||
| Juvenile onset, very rare, described only in one family<ref>{{cite journal | author = Al-Saif A, Al-Mohanna F, Bohlega S | title = A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis | journal = Annals of Neurology | volume = 70 | issue = 6 | pages = 913–919 | year = 2011 | pmid = 21842496 | pmc = | doi = 10.1002/ana.22534 }}</ref> |
|||
|- |
|||
| ALS17 |
|||
| {{OMIM2|614696}} |
|||
| ''[[CHMP2B]]'' |
|||
| 3p11 |
|||
| Very rare, reported only in a handful of patients |
|||
|- |
|||
| ALS18 |
|||
| {{OMIM2|614808}} |
|||
| ''[[PFN1]]'' |
|||
| 17p13.3 |
|||
| Very rare, described only in a handful of Chinese families<ref>{{cite journal | author = Wu CH, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, Piotrowska K, Lowe P, Koppers M, McKenna-Yasek D, Baron DM, Kost JE, Gonzalez-Perez P, Fox AD, Adams J, Taroni F, Tiloca C, Leclerc AL, Chafe SC, Mangroo D, Moore MJ, Zitzewitz JA, Xu ZS, van den Berg LH, Glass JD, Siciliano G, Cirulli ET, Goldstein DB, Salachas F, Meininger V, Rossoll W, Ratti A, Gellera C, Bosco DA, Bassell GJ, Silani V, Drory VE, Brown RH, Landers JE | title = Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis | journal = Nature | volume = 488 | issue = 7412 | pages = 499–503 | year = 2012 | pmid = 22801503 | pmc = 3575525 | doi = 10.1038/nature11280 }}</ref> |
|||
|- |
|||
| ALS19 |
|||
| {{OMIM2|615515}} |
|||
| ''[[ERBB4]]'' |
|||
| 2q34 |
|||
| Very rare, as of late 2013 described only in four patients<ref name="pmid24119685">{{cite journal | author = Takahashi Y, Fukuda Y, Yoshimura J, Toyoda A, Kurppa K, Moritoyo H, Belzil VV, Dion PA, Higasa K, Doi K, Ishiura H, Mitsui J, Date H, Ahsan B, Matsukawa T, Ichikawa Y, Moritoyo T, Ikoma M, Hashimoto T, Kimura F, Murayama S, Onodera O, Nishizawa M, Yoshida M, Atsuta N, Sobue G, Fifita JA, Williams KL, Blair IP, Nicholson GA, Gonzalez-Perez P, Brown RH, Nomoto M, Elenius K, Rouleau GA, Fujiyama A, Morishita S, Goto J, Tsuji S | title = ERBB4 mutations that disrupt the neuregulin-ErbB4 pathway cause amyotrophic lateral sclerosis type 19 | journal = Am. J. Hum. Genet. | volume = 93 | issue = 5 | pages = 900–5 | year = 2013 | pmid = 24119685 | pmc = 3824132 | doi = 10.1016/j.ajhg.2013.09.008 }}</ref> |
|||
|- |
|||
| ALS20 |
|||
| {{OMIM2|615426}} |
|||
| ''[[HNRNPA1]]'' |
|||
| 12q13 |
|||
| Very rare, as of late 2013 described only in two patients<ref>{{cite journal | author = Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP | title = Mutations in the prion-like domains of hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS | journal = Nature | volume = 495 | issue = 7442 | pages = 467–73 | date = 28 March 2013 | pmid = 23455423 | pmc = 3756911 | doi = 10.1038/nature11922 }}</ref> |
|||
|- |
|||
| ALS-FTD |
|||
| {{OMIM2|105550}} |
|||
| ''[[C9orf72]]'' |
|||
| 9p21.2 |
|||
| Accounts for around 6% of ALS cases among white Europeans |
|||
|} |
|||
====''SOD1''==== |
|||
The precise cause of ALS is still not known, though a first important step toward determining the cause came in 1993 when scientists discovered that mutations in the gene that produces the [[Copper (element)|Cu]]/[[Zinc (element)|Zn]] [[superoxide dismutase]] ([[SOD1]]) enzyme were associated with some cases (approximately 20%) of familial ALS. This enzyme is a powerful [[antioxidant]] that protects the body from damage caused by [[superoxide]], a toxic free radical generated in the mitochondria. [[Free radicals]] are highly reactive molecules produced by cells during normal [[metabolism]]. Free radicals can accumulate and cause damage to both mitochondrial and nuclear DNA and proteins within cells. To date, over 110 different mutations in SOD1 have been linked with the disease, some of which have a very long clinical course (e.g. [[H46R]]), while others, such as [[A4V]], being exceptionally aggressive. Evidence suggests that failure of defenses against oxidative stress up-regulates programmed cell death ([[apoptosis]]), among many other possible consequences. Although it is not yet clear how the SOD1 gene mutation leads to motor neuron degeneration, researchers have theorized that an accumulation of free radicals may result from the faulty functioning of this gene. Current research, however, indicates that motor neuron death is not likely a result of lost or compromised dismutase activity, suggesting mutant SOD1 induces toxicity in some other way (a gain of function).<ref name="wtSOD1 elevatation/elimination do not change disease course">{{cite journal | author = Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, Reaume AG, Scott RW, Cleveland DW | title = Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1 | journal = Science | volume = 281 | issue = 5384 | pages = 1851–4 | year = 1998 | pmid = 9743498 | doi = 10.1126/science.281.5384.1851 }}</ref><ref name="mSOD1 gene deletion does not cause MND">{{cite journal | author = Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RH, Scott RW, Snider WD | title = Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury | journal = Nat Genet | volume = 13 | issue = 1 | pages = 43–7 | year = 1996 | pmid = 8673102 | doi = 10.1038/ng0596-43 }}</ref> |
|||
Studies involving [[transgenic]] mice have yielded several theories about the role of SOD1 in mutant SOD1 familial amyotrophic lateral sclerosis. Mice lacking the SOD1 gene entirely do not customarily develop ALS, although they do exhibit an acceleration of age-related muscle atrophy ([[sarcopenia]]) and a shortened lifespan (see article on [[superoxide dismutase]]). This indicates that the toxic properties of the mutant SOD1 are a result of a gain in function rather than a loss of normal function. In addition, aggregation of proteins has been found to be a common pathological feature of both familial and sporadic ALS (see article on [[proteopathy]]). Interestingly, in mutant SOD1 mice (most commonly, the [[G93A]] mutant), aggregates (misfolded protein accumulations) of mutant SOD1 were found only in diseased tissues, and greater amounts were detected during motor neuron degeneration.<ref>{{cite journal | author = Furukawa Y, Fu R, Deng HX, Siddique T, O'Halloran TV | title = Disulfide cross-linked protein represents a significant fraction of ALS-associated Cu, Zn-superoxide dismutase aggregates in spinal cords of model mice | journal = Proc Natl Acad Sci USA | volume = 103 | issue = 18 | pages = 7148–53 | year = 2006 | pmid = 16636274 | pmc = 1447524 | doi = 10.1073/pnas.0602048103 }}</ref> It is speculated that aggregate accumulation of mutant SOD1 plays a role in disrupting cellular functions by damaging [[mitochondria]], [[proteasomes]], protein folding [[chaperone (protein)|chaperones]], or other proteins.<ref>{{cite journal | author = Boillée S, Vande Velde C, Cleveland DW | title = ALS: a disease of motor neurons and their nonneuronal neighbors | journal = Neuron | volume = 52 | issue = 1 | pages = 39–59 | year = 2006 | pmid = 17015226 | doi = 10.1016/j.neuron.2006.09.018 }}</ref> Any such disruption, if proven, would lend significant credibility to the theory that aggregates are involved in mutant SOD1 toxicity. Critics have noted that in humans, SOD1 mutations cause only 2% or so of overall cases and the etiological mechanisms may be distinct from those responsible for the sporadic form of the disease. To date, the ALS-SOD1 mice remain the best model of the disease for preclinical studies but it is hoped that more useful models will be developed. |
|||
There is an online database available which was designed to provide both the [[scientific community]] and the wider public with up-to-date information on ALS genetics. This is known as '''ALSOD''' - website originally designed for the SOD1 gene in 1999, but since upgraded to include over 40 ALS-related genes. |
|||
===Other factors=== |
|||
Where no family history of the disease is present – i.e., in around 90% of cases – there is no known cause for ALS. Potential causes for which there is inconclusive evidence includes head trauma, military service, and participation in contact sports. More recently, some research has suggested that there may be a link between ALS and food contaminated by blue-green algae.<ref>{{cite journal | author = Dunlop RA, Cox PA, Banack SA, Rodgers KJ | title = The Non-Protein Amino Acid BMAA Is Misincorporated into Human Proteins in Place of l-Serine Causing Protein Misfolding and Aggregation | journal = PLoS ONE | volume = 8 | issue = 9 | pages = e75376 | year = 2013 | pmid = 24086518 | pmc = 3783393 | doi = 10.1371/journal.pone.0075376 | editor1-last = Guillemin | editor1-first = Gilles J }}</ref>{{medrs|date=November 2013}} |
|||
Studies also have focused on the role of [[glutamate]] in motor neuron degeneration. Glutamate is one of the chemical messengers or [[neurotransmitters]] in the brain. Scientists have found that, compared to healthy people, ALS patients have higher levels of glutamate in the [[blood plasma|serum]] and spinal fluid.<ref name="advances" /> [[Riluzole]] is currently the only FDA approved drug for ALS and targets glutamate transporters. It only has a modest effect on survival, however, suggesting that excess glutamate is not the sole cause of the disease. |
|||
Certain studies suggested a link between sporadic ALS, specifically in athletes, and a diet enriched with [[branched-chain amino acid]]s. BCAAs, a common dietary supplement among athletes, cause cell hyper-excitability resembling that usually observed in ALS patients. The proposed underlying mechanism is that cell hyper-excitability results in increased calcium absorption by the cell and thus brings about cell death of neuronal cells, which have particularly low calcium buffering capabilities.<ref> |
|||
{{cite journal | author = Manuel M, Heckman CJ | title = Stronger is not always better: could a bodybuilding dietary supplement lead to ALS? | journal = Exp Neurol | volume = 228 | issue = 1 | pages = 5–8 | date = March 2011 | pmid = 21167830 | pmc = 3049458 | doi = 10.1016/j.expneurol.2010.12.007 | type = Review }} |
|||
</ref><ref>{{cite journal | author = Carunchio I, Curcio L, Pieri M, Pica F, Caioli S, Viscomi MT, Molinari M, Canu N, Bernardi G, Zona C | title = Increased levels of p70S6 phosphorylation in the G93A mouse model of amyotrophic lateral sclerosis and in valine-exposed cortical neurons in culture | journal = Experimental Neurology | volume = 226 | issue = 1 | pages = 218–230 | year = 2010 | pmid = 20832409 | doi = 10.1016/j.expneurol.2010.08.033 }} |
|||
</ref> |
|||
There is evidence that superoxide dismutase 1 (SOD1) protein misfolding propagates between molecules in a similar fashion to [[prion]]s.<ref>{{cite journal | author = Fernández-Borges N, Eraña H, Elezgarai SR, Harrathi C, Gayosso M, Castilla J | title = Infectivity versus seeding in neurodegenerative diseases sharing a prion-like mechanism | journal = Int J Cell Biol. | volume = 2013 | page = 583498 | date = 25 September 2013 | pmid = 24187553 | pmc = 3800648 | doi = 10.1155/2013/583498 }}</ref> |
|||
Another very common cause of ALS is a [[lesion]] to the motor system in areas such as the frontotemporal lobes.<ref name="Rosenbohm">Rosenbohm, A., Kassubek, J., Weydt, P., Marroquin, N., Volk, A., Kubisch, C., Huppertz, H., & Weber, M. (2014). Can lesions to the motor cortex induce amyotrophic lateral sclerosis? . J Neurol, 261, 283-290.</ref> Lesions in these areas often show signs of early deficit, which can be used to predict the loss of [[motor function]], and result in the spread of ALS.<ref name="Rosenbohm"/> The mechanisms of ALS are present long before any signs or symptoms become apparent.<ref name="Walling">Walling, A. (1999). Amyotrophic lateral sclerosis: Lou Gehrig's disease. ''American Family Physician'', 59(6), 1489-96.</ref> It is estimated that before any muscular atrophy becomes apparent during ALS, roughly one-third of the [[motor neurons]] must be destroyed.<ref name="Walling"/> |
|||
Many other potential causes, including chemical exposure, electromagnetic field exposure, occupation, physical trauma, and electric shock, have been investigated but without consistent findings.<ref>{{cite journal | author = Sutedja NA, Fischer K, Veldink JH, van der Heijden GJ, Kromhout H, Heederik D, Huisman MH, Wokke JJ, van den Berg LH | title = What we truly know about occupation as a risk factor for ALS: a critical and systematic review | journal = Amyotrophic Lateral Sclerosis | volume = 10 | issue = 5–6 | pages = 295–301 | year = 2009 | pmid = 19922116 | doi = 10.3109/17482960802430799 }}</ref> |
|||
==Pathophysiology== |
|||
The defining feature of ALS is the death of both upper and lower motor neurons in the motor cortex of the brain, the brain stem, and the spinal cord. Prior to their destruction, motor neurons develop protein-rich [[inclusion bodies|inclusions]] in their cell bodies and [[axon]]s. This may be partly due to defects in protein degradation.<ref>{{cite journal | author = Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H, Jiang H, Hirano M, Rampersaud E, Jansen GH, Donkervoort S, Bigio EH, Brooks BR, Ajroud K, Sufit RL, Haines JL, Mugnaini E, Pericak-Vance MA, Siddique T | title = Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia | journal = Nature | volume = 477 | issue = 7363 | pages = 211–5 | date = 2011-08-21 | pmid = 21857683 | pmc = 3169705 | doi = 10.1038/nature10353 }}</ref> These inclusions often contain [[ubiquitin]], and generally incorporate one of the ALS-associated proteins: [[SOD1]], [[TDP-43|TAR DNA binding protein]] (TDP-43, or TARDBP), or [[FUS]]. |
|||
==Diagnosis== |
|||
No test can provide a definite diagnosis of ALS, although the presence of upper and lower motor neuron signs in a single limb is strongly suggestive. Instead, the diagnosis of ALS is primarily based on the symptoms and signs the [[physician]] observes in the patient and a series of tests to rule out other diseases.<ref name="pmid4051456">{{cite journal | author = Tandan R, Bradley WG | title = Amyotrophic lateral sclerosis: Part 1. Clinical features, pathology, and ethical issues in management | journal = Ann. Neurol. | volume = 18 | issue = 3 | pages = 271–80 | year = 1985 | pmid = 4051456 | doi = 10.1002/ana.410180302 }}</ref> Physicians obtain the patient's full medical history and usually conduct a neurologic examination at regular intervals to assess whether symptoms such as muscle weakness, atrophy of muscles, hyperreflexia, and spasticity are getting progressively worse. |
|||
[[File:ALS cross.jpg|thumb|MRI (axial FLAIR) demonstrates increased T2 signal within the posterior part of the internal capsule, consistent with the clinical diagnosis of ALS.]] |
|||
Because symptoms of ALS can be similar to those of a wide variety of other, more treatable diseases or disorders, appropriate tests must be conducted to exclude the possibility of other conditions. One of these tests is [[electromyography]] (EMG), a special recording technique that detects electrical activity in muscles. Certain EMG findings can support the diagnosis of ALS. Another common test measures [[nerve conduction velocity]] (NCV). Specific abnormalities in the NCV results may suggest, for example, that the patient has a form of [[peripheral neuropathy]] (damage to peripheral nerves) or [[myopathy]] (muscle disease) rather than ALS. The physician may order [[magnetic resonance imaging]] (MRI), a noninvasive procedure that uses a magnetic field and radio waves to take detailed images of the brain and spinal cord. Although these MRI scans are often normal in patients with ALS, they can reveal evidence of other problems that may be causing the symptoms, such as a spinal cord tumor, [[multiple sclerosis]], a [[hernia]]ted disk in the neck, [[syringomyelia]], or cervical [[spondylosis]]. |
|||
Based on the patient's symptoms and findings from the examination and from these tests, the physician may order tests on blood and [[urine]] samples to eliminate the possibility of other diseases as well as routine laboratory tests. In some cases, for example, if a physician suspects that the patient may have a myopathy rather than ALS, a muscle biopsy may be performed. |
|||
Infectious diseases such as human immunodeficiency virus ([[HIV]]), human T-cell leukaemia virus ([[HTLV]]), [[Lyme disease]],<ref name="Lyme">{{cite journal | author = Hänsel Y, Ackerl M, Stanek G | title = ALS-like sequelae in chronic neuroborreliosis | journal = Wien Med Wochenschr. | volume = 145 | issue = 7–8 | pages = 186–8 | year = 1995 | pmid = 7610670 }}</ref> [[syphilis]]<ref name="5cases">{{cite journal | author = el Alaoui-Faris M, Medejel A, al Zemmouri K, Yahyaoui M, Chkili T | title = Amyotrophic lateral sclerosis syndrome of syphilitic origin. 5 cases | journal = Rev Neurol (Paris) | volume = 146 | issue = 1 | pages = 41–4 | year = 1990 | pmid = 2408129 }}</ref> and [[tick-borne encephalitis]]<ref name="TBE">{{cite journal | author = Umanekiĭ KG, Dekonenko EP | title = Structure of progressive forms of tick-borne encephalitis | journal = Zh Nevropatol Psikhiatr Im S S Korsakova. | volume = 83 | issue = 8 | pages = 1173–9 | year = 1983 | pmid = 6414202 }}</ref> viruses can in some cases cause ALS-like symptoms. Neurological disorders such as [[multiple sclerosis]], [[post-polio syndrome]], [[multifocal motor neuropathy]], [[CIDP]], [[spinal muscular atrophy]] and [[spinal and bulbar muscular atrophy]] (SBMA) can also mimic certain facets of the disease and should be considered by physicians attempting to make a diagnosis. |
|||
ALS must be differentiated from the "ALS mimic syndromes" which are unrelated disorders that may have a similar presentation and clinical features to ALS or its variants.<ref>{{cite journal | author = Silani V, Messina S, Poletti B, Morelli C, Doretti A, Ticozzi N, Maderna L | title = The diagnosis of Amyotrophic lateral sclerosis in 2010 | journal = Archives italiennes de biologie | volume = 149 | issue = 1 | pages = 5–27 | year = 2011 | pmid = 21412713 | pmc = | doi = 10.4449/aib.v149i1.1260 }}</ref> Because of the prognosis carried by this diagnosis and the variety of diseases or disorders that can resemble ALS in the early stages of the disease, patients should always obtain a specialist neurological opinion, so that alternative diagnoses are clinically ruled out. |
|||
However, most cases of ALS are readily diagnosed and the error rate of diagnosis in large ALS clinics is less than 10%.<ref>{{cite journal|author = Eisen, A.|title = Amyotrophic lateral sclerosis: A review |journal = BCMJ | volume = 44 | issue = 7 | year = 2002 | pages = 362–366| url = http://www.bcmj.org/article/amyotrophic-lateral-sclerosis-review}}</ref><ref name="pmid8708642">{{cite journal | author = Davenport RJ, Swingler RJ, Chancellor AM, Warlow CP | title = Avoiding false positive diagnoses of motor neuron disease: lessons from the Scottish Motor Neuron Disease Register | journal = J. Neurol. Neurosurg. Psychiatr. | volume = 60 | issue = 2 | pages = 147–51 | year = 1996 | pmid = 8708642 | pmc = 1073793 | doi = 10.1136/jnnp.60.2.147 }}</ref> In one study, 190 patients who met the MND / ALS diagnostic criteria, complemented with laboratory research in compliance with both research protocols and regular monitoring. Thirty of these patients (16%) had their diagnosis completely changed, during the clinical observation development period.<ref>{{cite journal | author = Chieia MA, Oliveira AS, Silva HC, Gabbai AA | title = Amyotrophic lateral sclerosis: Considerations on diagnostic criteria | journal = Arquivos de Neuro-Psiquiatria | volume = 68 | issue = 6 | pages = 837–842 | year = 2010 | pmid = 21243238 | pmc = | doi = 10.1590/S0004-282X2010000600002 | url = http://www.scielo.br/pdf/anp/v68n6/02.pdf }}</ref> In the same study, three patients had a false negative diagnoses, [[myasthenia gravis]] (MG), an auto-immune disease. MG can mimic ALS and other neurological disorders leading to a delay in diagnosis and treatment. MG is eminently treatable; ALS is not.<ref>{{cite journal | author = Al-Asmi A, Nandhagopal R, Jacob PC, Gujjar A | title = Misdiagnosis of Myasthenia Gravis and Subsequent Clinical Implication: A case report and review of literature | journal = Sultan Qaboos University medical journal | volume = 12 | issue = 1 | pages = 103–108 | year = 2012 | pmid = 22375266 | pmc = 3286704 | doi=10.12816/0003095}}</ref> Myasthenic syndrome, also known as Lambert-Eaton syndrome (LES), can mimic ALS and its initial presentation can be similar to that of MG.<ref>{{cite web|url=http://misc.medscape.com/pi/android/medscapeapp/html/A1170810-business.html |title=Lambert-Eaton Myasthenic Syndrome (LEMS) |publisher=Misc.medscape.com |accessdate=18 April 2013}}</ref><ref>{{cite web|url=http://www.lems.com/what_is_lems |title=LEMS.com, Lambert-Eaton Myasthenic Syndrome: About |publisher=Lems.com |accessdate=18 April 2013}}</ref> |
|||
Current research focuses on abnormalities of neuronal cell metabolism involving glutamate and the role of potential neurotoxins and neurotrophic factors.<ref name = "Walling_1999">{{cite journal | author = Walling AD | title = Amyotrophic lateral sclerosis: Lou Gehrig's disease | journal = American Family Physician | volume = 59 | issue = 6 | pages = 1489–1496 | year = 1999 | pmid = 10193591 }} |
|||
</ref> |
|||
==Management== |
|||
[[Riluzole]] (Rilutek) is the only treatment that has been found to improve survival but only to a modest extent.<ref>{{cite journal | author = Carlesi C, Pasquali L, Piazza S, Lo Gerfo A, Caldarazzo Ienco E, Alessi R, Fornai F, Siciliano G | title = Strategies for clinical approach to neurodegeneration in Amyotrophic lateral sclerosis | journal = Archives italiennes de biologie | volume = 149 | issue = 1 | pages = 151–67 | date = March 2011 | pmid = 21412722 | doi = 10.4449/aib.v149i1.1267 }}</ref> It lengthens survival by several months, and may have a greater survival benefit for those with a [[Medulla Oblongata|bulbar]] onset. It also extends the time before a person needs ventilation support. Riluzole does not reverse the damage already done to motor neurons, and people taking it must be monitored for liver damage (occurring in ~10% of people taking the drug).<ref>{{cite journal | author = Miller RG, Mitchell JD, Lyon M, Moore DH | title = Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND) | journal = Cochrane Database of Systematic Reviews | issue = 1 | pages = CD001447 | year = 2007 | pmid = 17253460 | doi = 10.1002/14651858.CD001447.pub2 | editor1-last = Miller | editor1-first = Robert G }}</ref> It is approved by [[Food and Drug Administration]] (FDA) and recommended by the [[National Institute for Clinical Excellence]] (NICE). |
|||
Other treatments for ALS are designed to relieve symptoms and improve the quality of life for patients. This supportive care is best provided by multidisciplinary teams of health care professionals working with patients and caregivers to keep patients as mobile and comfortable as possible. |
|||
===Medications=== |
|||
Medications may be used to help reduce fatigue, ease muscle cramps, control spasticity, and reduce excess saliva and [[phlegm]]. Drugs also are available to help patients with pain, depression, sleep disturbances, dysphagia, and constipation. [[Baclofen]] and [[diazepam]] are often prescribed to control the spasticity caused by ALS, and [[trihexyphenidyl]] or [[amitriptyline]] may be prescribed when ALS patients begin having trouble swallowing their saliva.<ref name="PubMed Health"/> |
|||
===Therapy=== |
|||
[[Physical therapists]] and [[occupational therapists]] play a large role in rehabilitation for individuals with ALS. Specifically, physical and occupational therapists can set goals and promote benefits for individuals with ALS by delaying loss of strength, maintaining endurance, limiting pain, preventing complications, and promoting functional independence.<ref name="Lewis & Rushanan">{{cite journal | author = Lewis M, Rushanan S | title = The role of physical therapy and occupational therapy in the treatment of Amyotrophic Lateral Sclerosis | journal = NeuroRehabilitation | volume = 22 | issue = 6 | pages = 451–461 | year = 2007 | pmid = 18198431 }}</ref> |
|||
Occupational therapy and special equipment such as [[assistive technology]] can also enhance patients' independence and safety throughout the course of ALS. Gentle, low-impact [[aerobic exercise]] such as performing activities of daily living (ADL's), walking, swimming, and [[Exercise bicycle|stationary bicycling]] can strengthen unaffected muscles, improve cardiovascular health, and help patients fight fatigue and depression. Range of motion and stretching exercises can help prevent painful spasticity and shortening (contracture) of muscles. Physical and occupational therapists can recommend exercises that provide these benefits without overworking muscles. They can suggest devices such as ramps, braces, walkers, bathroom equipment (shower chairs, toilet risers, etc.) and wheelchairs that help patients remain mobile. Occupational therapists can provide or recommend equipment and adaptations to enable people to retain as much safety and independence in activities of daily living as possible. |
|||
ALS patients who have difficulty speaking may benefit from working with a [[speech-language pathologist]]. These health professionals can teach patients adaptive strategies such as techniques to help them speak louder and more clearly. As ALS progresses, speech-language pathologists can recommend the use of [[augmentative and alternative communication]] such as voice amplifiers, speech-generating devices (or voice output communication devices) and/or low tech communication techniques such as [[letter board|alphabet boards]] or yes/no signals. |
|||
===Nutrition=== |
|||
Patients and caregivers can learn from speech-language pathologists and nutritionists how to plan and prepare numerous small meals throughout the day that provide enough calories, fiber, and fluid and how to avoid foods that are difficult to swallow. Patients may begin using suction devices to remove excess fluids or saliva and prevent choking. Occupational therapists can assist with recommendations for adaptive equipment to ease the physical task of self-feeding. Speech language pathologists make food choice recommendations that are more conducive to their unique deficits and abilities. When patients can no longer get enough nourishment from eating, doctors may advise inserting a [[Percutaneous endoscopic gastrostomy|feeding tube]] into the stomach. The use of a feeding tube also reduces the risk of choking and pneumonia that can result from inhaling liquids into the lungs. The tube is not painful and does not prevent patients from eating food orally if they wish. |
|||
Researchers have stated that "ALS patients have a chronically deficient intake of energy and recommended augmentation of energy intake"<ref name=Kasarskis96/> and that patients suffer from a severe loss of appetite.<ref>{{cite journal | author = Holm T, Maier A, Wicks P, Lang D, Linke P, Münch C, Steinfurth L, Meyer R, Meyer T | title = Severe Loss of Appetite in Amyotrophic Lateral Sclerosis Patients: Online Self-Assessment Study | journal = Interact J Med Res | volume = 2 | issue = 1 | pages = e8 | date = Apr 2013 | pmid = 23608722 | pmc = 3632382 | doi = 10.2196/ijmr.2463 }}</ref> Both animal<ref>{{cite journal | author = Hamadeh MJ, Rodriguez MC, Kaczor JJ, Tarnopolsky MA | title = Caloric restriction transiently improves motor performance but hastens clinical onset of disease in the Cu/Zn-superoxide dismutase mutant G93A mouse | journal = Muscle Nerve | volume = 31 | issue = 2 | pages = 214–20 | date = Feb 2005 | pmid = 15625688 | doi = 10.1002/mus.20255 }}</ref> and human research<ref name=Kasarskis96>{{cite journal | author = Kasarskis EJ, Berryman S, Vanderleest JG, Schneider AR, McClain CJ | title = Nutritional status of patients with amyotrophic lateral sclerosis: relation to the proximity of death | journal = Am J Clin Nutr. | volume = 63 | issue = 1 | pages = 130–7 | date = Jan 1996 | pmid = 8604660 | doi = | url = http://www.ajcn.org/cgi/pmidlookup?view=long&pmid=8604660 }}</ref>{{medrs|date=November 2013|reason=consider PMID 22677356 per wp:MEDDATE }}<ref>{{cite journal | author = Slowie LA, Paige MS, Antel JP | title = Nutritional considerations in the management of patients with amyotrophic lateral sclerosis (ALS) | journal = J Am Diet Assoc | volume = 83 | issue = 1 | pages = 44–7 | date = Jul 1983 | pmid = 6863783 }}</ref>{{medrs|date=November 2013}} suggest that ALS patients should be encouraged to consume as many calories as possible and not to restrict their calorie intake. As of 2012 there remained "a lack of robust evidence for interventions" for the management of weight loss.<ref>{{cite cochrane|review=CD008427|title=Interventions for fatigue and weight loss in adults with advanced progressive illness |author=Payne C, Wiffen PJ, Martin S |date=18 Jan 2012}}</ref> |
|||
[[File:MP900177958.JPG|thumb|Fruits and vegetables containing carotenoids.]] |
|||
Research has found that people who ate fruits and vegetables containing [[carotenoids]], an oxidative compound which strengthens the immune system response, had reduced chance of developing ALS.<ref>Argiroplis, Krista. "New Research: Eating More Fruits and Veggies Can Lower ALS Risk."Breakthrough ALS. Living with ALS, 18 Sep 2013. Web. 18 Feb 2014. <http://www.breakthroughals.org/breakthroughblog/entry/new-research-eating-more-fruits-and-veggies-can-lower-als-risk>.</ref> There are three primary carotenoids that act as oxidative compounds called [[beta-carotene]], [[lycopene]], and [[lutein]] found in fruits and vegetables each found in different foods like carrots, watermelon, and tomatoes.<ref>"Argiroplis">.</ref> |
|||
===Breathing support=== |
|||
When the muscles that assist in breathing weaken, use of ventilatory assistance ([[intermittent positive pressure ventilation]] (IPPV), [[bilevel positive airway pressure]] (BiPAP), or [[Biphasic Cuirass Ventilation|biphasic cuirass ventilation]] (BCV) may be used to aid breathing. Such devices artificially inflate the patient's lungs from various external sources that are applied directly to the face or body. When muscles are no longer able to maintain oxygen and carbon dioxide levels, these devices may be used full-time. BCV has the added advantage of being able to assist in clearing secretions by using high-frequency oscillations followed by several positive expiratory breaths.<ref>{{cite journal | author = Sviri S, Linton DM, van Heerden PV | title = Non-invasive Mechanical Ventilation Enhances Patient Autonomy in Decision-Making Regarding Chronic Ventilation | journal = Critical Care and Resuscitation | volume = 7 | issue = 2 | pages = 116–118 | date = Jun 2005 | pmid = 16548804 | doi = }}</ref> Patients may eventually consider forms of mechanical ventilation (respirators) in which a machine inflates and deflates the lungs. To be effective, this may require a tube that passes from the nose or mouth to the windpipe ([[vertebrate trachea|trachea]]) and for long-term use, an operation such as a [[tracheotomy]], in which a plastic [[Tracheal tube|breathing tube]] is inserted directly in the patient's windpipe through an opening in the neck. |
|||
Patients and their families should consider several factors when deciding whether and when to use one of these options. Ventilation devices differ in their effect on the patient's quality of life and in cost. Although ventilation support can ease problems with breathing and prolong survival, it does not affect the progression of ALS. Patients need to be fully informed about these considerations and the long-term effects of life without movement before they make decisions about ventilation support and have deep discussions on quality of life. Some patients under long-term tracheotomy intermittent positive pressure ventilation with deflated cuffs or cuffless tracheotomy tubes (leak ventilation) are able to speak, provided their bulbar muscles are strong enough, though in all cases speech will be lost as the disease progresses. This technique preserves speech in some patients with long-term mechanical ventilation. Other patients may be able to utilize a speaking valve such as a Passey-Muir Speaking Valve with the assistance and guidance of a speech-language pathologist. |
|||
===Palliative care=== |
|||
[[Social work]]ers and home care and [[Hospice care|hospice]] nurses help patients, families, and caregivers with the medical, emotional, and financial challenges of coping with ALS, particularly during the final stages of the disease. Social workers provide support such as assistance in obtaining financial aid, arranging durable [[power of attorney]], preparing a [[advance health care directive|living will]], and finding support groups for patients and caregivers. Home nurses are available not only to provide medical care but also to teach caregivers about tasks such as maintaining respirators, giving feedings, and moving patients to avoid painful skin problems and contractures. Home hospice nurses work in consultation with physicians to ensure proper medication, pain control, and other care affecting the quality of life of patients who wish to remain at home. The home hospice team can also counsel patients and caregivers about end-of-life issues. |
|||
==Epidemiology== |
|||
ALS is classified as a rare disease but is the most common motor neuron disease. People of all races and ethnic backgrounds are affected. One or two out of 100,000 people develop ALS each year.<ref>{{cite web|url=http://www.webmd.com/brain/tc/Amyotrophic-Lateral-Sclerosis-ALS-Topic-Overview |title=ALS Topic Overview |accessdate=2008-05-01| archiveurl= http://web.archive.org/web/20080501194730/http://www.webmd.com/brain/tc/amyotrophic-lateral-sclerosis-als-topic-overview| archivedate= 1 May 2008 <!--DASHBot-->| deadurl= no}}</ref> Amyotrophic lateral sclerosis affects approximately 30,000 Americans.<ref name = "Walling_1999"/> ALS cases are estimated at 1.2–4.0 per 100,000 individuals in Caucasian populations with a lower rate in other ethnic populations.<ref>Gordon, Paul. "Amyotrophic Lateral Sclerosis. Pathophysiology, Diagnosis and Management." CNS Drugs, 25.1 (2011):1-15.</ref> ALS most commonly strikes people between 40 and 60 years of age, but younger and older people can also develop the disease. Men are affected slightly more often than women. |
|||
Although the incidence of ALS is thought to be regionally uniform, there are three regions in the West Pacific where there has in the past been an elevated occurrence of ALS. This seems to be declining in recent decades. The largest is the area of [[Guam]] inhabited by the [[Chamorro people]], who have historically had a high incidence (as much as 143 cases per 100,000 people per year) of a condition called [[Lytico-Bodig disease]] which is a combination of symptoms similar to ALS, [[parkinsonism]], and dementia. Lytico-Bodig disease has been linked to the consumption and topical use of [[cycad]] seeds and in particular, the chemical found in cycad seeds, [[β-methylamino-L-alanine]] (BMAA).<ref>{{cite journal | author = Reed D, Labarthe D, Chen KM, Stallones R | title = A cohort study of amyotrophic lateral sclerosis and parkinsonism-dementia on Guam and Rota | journal = Am J Epidemiol. | volume = 125 | issue = 1 | pages = 92–100 | date = Jan 1987 | pmid = 3788958 | url = http://aje.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=3788958 }}</ref> Two more areas of increased incidence are [[West Papua (region)|West Papua]] and the [[Kii Peninsula]] of Japan, both with topical cycad seed use.<ref>{{cite journal |author=S. Kuzuhara, Y. Kokubo |title=P3-146: Marked increase of parkinsonism dementia (P-D) phenotypes in the high incidence amyotrophic lateral sclerosis (ALS) focus in the Kii peninsula of Japan |journal=Alzheimer's and Dementia |year=2006 |volume=2 |issue=3 |page=S417 |doi=10.1016/j.jalz.2006.05.1414}}</ref><ref>{{cite journal | author = Spencer PS, Palmer VS, Ludolph AC | title = On the decline and etiology of high-incidence motor system disease in West Papua (southwest New Guinea) | journal = Mov. Disord. | volume = 20 | issue = Suppl 12 | pages = S119–26 | date = Aug 2005 | pmid = 16092101 | doi = 10.1002/mds.20552 }}</ref> |
|||
Although there have been reports of several "clusters" including three [[American football]] players from the [[San Francisco 49ers]], more than fifty [[association football]] players in Italy,<ref name="corriere.it">{{cite web|url=http://www.corriere.it/sport/08_ottobre_03/sla_indagine_pesticidi_fd04f986-911c-11dd-9f28-00144f02aabc.shtml |title=Sla, indagini nei club. Pesticidi nel mirino |accessdate=2008-10-02| archiveurl= http://web.archive.org/web/20081003220654/http://www.corriere.it/sport/08_ottobre_03/sla_indagine_pesticidi_fd04f986-911c-11dd-9f28-00144f02aabc.shtml| archivedate= 3 October 2008 <!--DASHBot-->| deadurl= no}}</ref> three association football-playing friends in the south of England,<ref>{{cite journal |author=Wicks P, Abrahams S, Masi D, Hejda-Forde S, Leigh PN, Goldstein LH |year=2005 |title=The Prevalence of Depression and Anxiety in MND |journal=Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders |volume=6 |issue=Supplement 1 |pages=147 |issn=1466-0822}}</ref> and reports of conjugal (husband and wife) cases in the south of France,<ref name="ALS1">{{cite journal | author = Rachele MG, Mascia V, Tacconi P, Dessi N, Marrosu F, Giagheddu M | title = Conjugal amyotrophic lateral sclerosis: a report on a couple from Sardinia, Italy | journal = Ital J Neurol Sci. | volume = 19 | issue = 2 | pages = 97–100 | date = April 1998 | pmid = 10935845 | doi = 10.1007/BF02427565 }}</ref><ref name="ALS2">{{cite journal | author = Poloni M, Micheli A, Facchetti D, Mai R, Ceriani F, Cattalini C | title = Conjugal amyotrophic lateral sclerosis: toxic clustering or change? | journal = Ital J Neurol Sci. | volume = 18 | issue = 2 | pages = 109–12 | date = April 1997 | pmid = 9239532 | doi = 10.1007/BF01999572 }}</ref><ref name="ALS3">{{cite journal | author = Camu W, Cadilhac J, Billiard M | title = Conjugal amyotrophic lateral sclerosis: a report on two couples from southern France | journal = [[Neurology (journal)|Neurology]] | volume = 44 | issue = 3 Pt 1 | pages = 547–8 | date = March 1994 | pmid = 8145930 | doi = 10.1212/WNL.44.3_Part_1.547 }}</ref><ref name="ALS4">{{cite journal | author = Cornblath DR, Kurland LT, Boylan KB, Morrison L, Radhakrishnan K, Montgomery M | title = Conjugal amyotrophic lateral sclerosis: report of a young married couple | journal = Neurology | volume = 43 | issue = 11 | pages = 2378–80 | date = November 1993 | pmid = 8232960 | doi = 10.1212/WNL.43.11.2378 }}</ref><ref name="9couples">{{cite journal | author = Corcia P, Jafari-Schluep HF, Lardillier D, Mazyad H, Giraud P, Clavelou P, Pouget J, Camu W | title = A clustering of conjugal amyotrophic lateral sclerosis in southeastern France | journal = Neurol. | volume = 60 | issue = 4 | pages = 553–7 | date = November 2003 | pmid = 12707069 | doi = 10.1001/archneur.60.4.553 }}</ref> these are statistically plausible chance events{{Citation needed|date=July 2011}}. Although many authors consider ALS to be caused by a combination of genetic and environmental risk factors, so far the latter have not been firmly identified, other than a higher risk with increasing age. |
|||
==History== |
|||
{| class="wikitable" |
|||
! Year |
|||
! Event |
|||
|- |
|||
| 1850 |
|||
| English scientist [[Augustus Volney Waller|Augustus Waller]] describes the appearance of shriveled nerve fibers |
|||
|- |
|||
| 1869 |
|||
| French doctor [[Jean-Martin Charcot]] first describes ALS symptoms in autopsy patients<ref name="Rowland">{{cite journal | author = Rowland LP | title = How amyotrophic lateral sclerosis got its name: the clinical-pathologic genius of Jean-Martin Charcot | journal = Arch. Neurol. | volume = 58 | issue = 3 | pages = 512–5 | date = March 2001 | pmid = 11255459 | doi = 10.1001/archneur.58.3.512 | url = http://archneur.jamanetwork.com.proxy1.athensams.net/article.aspx?articleid=778657 }}</ref> |
|||
|- |
|||
| 1874 |
|||
| Charcot publishes a paper describing the disease whose title is the first formal use of the term ALS (''De la sclérose latérale amyotrophique'')<ref name="Rowland"/> |
|||
|- |
|||
| 1881 |
|||
| "Amyotrophic Lateral Sclerosis" is translated into English and published in a three-volume edition of Lectures on the Diseases of the Nervous System |
|||
|- |
|||
| 1939 |
|||
| ALS becomes a ''[[cause célèbre]]'' in the United States when baseball legend [[Lou Gehrig]]'s career—and, two years later, his life—is ended by the disease. He gives his farewell speech on 4 July 1939.<ref>{{cite web|url=http://www.lougehrig.com/about/speech.htm |title=Farewell Speech |accessdate=16 April 2008 |last= |first= |date=4 July 1939 |work= |publisher=lougehrig.com| archiveurl= http://web.archive.org/web/20080412123358/http://www.lougehrig.com/about/speech.htm| archivedate= 12 April 2008 <!--DASHBot-->| deadurl= no}}</ref> |
|||
|- |
|||
| 1950s |
|||
| ALS epidemic occurs among the Chamorro people on Guam |
|||
|- |
|||
| 1991 |
|||
| Researchers link chromosome 21 to FALS (Familial ALS) |
|||
|- |
|||
| 1993 |
|||
| [[SOD1]] gene on chromosome 21 found to play a role in some cases of FALS |
|||
|- |
|||
| 1996 |
|||
| [[Rilutek]] becomes the first FDA-approved drug for ALS |
|||
|- |
|||
| 1998 |
|||
| The El Escorial criteria is developed as the standard for classifying ALS patient in clinical research |
|||
|- |
|||
| 1999 |
|||
| The revised ALS Functional Rating Scale (ALSFRS-R) is published and soon becomes a gold standard measure for rating decline in ALS patient in clinical research |
|||
|- |
|||
| 2011 |
|||
| Noncoding repeat expansions in [[C9orf72|C9ORF72]] are found to be a major cause of ALS and frontotemporal dementia |
|||
|- |
|||
| 2014 |
|||
| Various videos across the web spread awareness of ALS and raise funds for research with the "ALS Ice Bucket Challenge" |
|||
|} |
|||
===Etymology=== |
|||
''Amyotrophic'' comes from the [[Greek language|Greek]] word ''[[amyotrophia]]'': ''a-'' means "no", ''myo'' refers to "muscle", and ''trophia'' means "nourishment"; ''amyotrophia'' therefore means "no muscle nourishment," which describes the characteristic [[atrophy]] of the sufferer's disused muscle tissue. ''Lateral'' identifies the areas in a person's spinal cord where portions of the nerve cells that are affected are located. As this area degenerates it leads to scarring or hardening ("[[Sclerosis (medicine)|sclerosis]]") in the region. |
|||
==Clinical research== |
|||
A number of [[clinical trial]]s are underway globally for ALS; a comprehensive listing of trials in the US can be found at [[ClinicalTrials.gov]]. |
|||
A phase II trial on tirasemtiv has been completed with a follow-on Phase IIb study in progress under the name "BENEFIT-ALS". Results of the first study are available here.<ref>http://www.cytokinetics.com/pdf/2013-MDA_Jinsy.pdf</ref>{{medrs|date=November 2013}}<ref>{{cite journal | author = Shefner JM, Watson ML, Meng L, Wolff AA | title = A study to evaluate safety and tolerability of repeated doses of tirasemtiv in patients with amyotrophic lateral sclerosis | journal = Amyotroph Lateral Scler Frontotemporal Degener. | volume = 14 | issue = 7–8 | pages = 574–81 | date = December 2013 | pmid = 23952636 | doi = 10.3109/21678421.2013.822517 }}</ref>{{vn|date=December 2013}} The current trial is an international, placebo-controlled, multi-center study on 680 participants. This makes it one of the largest studies to date. A phase II trial on [[Ozanezumab]] is in progress. It is a large multi-site international research project sponsored by [[GlaxoSmithKline]] (GSK). |
|||
A phase II clinical trial is being conducted by BrainStorm Cell Therapeutics at the [[Hadassah Medical Center]] in Israel and interim results "demonstrated a tendency toward stabilization in some parameters in the ALS Functional Rating Scale."<ref>{{cite web|url = http://www.fiercebiotech.com/press-releases/brainstorm-reports-outstanding-als-interim-clinical-trial-results|title = BrainStorm Reports Outstanding ALS Interim Clinical Trial Results|website = FierceBiotech|accessdate = 2013-08-12}}</ref><ref>{{cite web|url = http://clinicaltrials.gov/ct2/show/NCT01777646|title = Autologous Cultured Mesenchymal Bone Marrow Stromal Cells Secreting Neurotrophic Factors (MSC-NTF), in Patients With Amyotrophic Lateral Sclerosis (ALS)|website = ClinicalTrials.gov|accessdate = 2013-08-12}}</ref> Patients in the trial have bone marrow stem cells removed and differentiated in a clean room into cells that express neurotropic factors. The cells are injected back into the same patient via an intrathecal injection and intramuscular injections. A second phase II trial is expected to open in the United States at several institutions including the [[Mayo Clinic]].<ref>{{Cite news|title = Mayo Clinic to hold trial for BrainStorm's ALS stem cell therapy|date = 18 March 2013|url = http://www.reuters.com/article/2013/03/18/us-brainstorm-mayo-trial-idUSBRE92H03520130318|newspaper = Reuters}}</ref> |
|||
== Charity fundraising == |
|||
{{main|Ice Bucket Challenge}} |
|||
In August 2014, a challenge went [[Viral phenomenon|viral]] online which was commonly known as the "ALS Ice Bucket Challenge".<ref name=bush>{{cite web|title=George Bush delivers possibly the best ALS ice bucket challenge yet|url=http://www.independent.co.uk/news/people/george-bush-delivers-possibly-the-best-als-ice-bucket-challenge-yet-9680934.html|website=Independent|publisher=Independent|accessdate=20 August 2014}}</ref> A contestant will fill a bucket full of [[ice]] and [[water]]; they will then state who summoned them to do the challenge and will summon three other individuals of their choice to take part in it. The contestant then dumps the bucket of ice and water onto themselves. The contestant should then donate US [[US $|$]]10 (or a similar amount in their local currency) to ALS research at the [[ALS Association]], or [[Macmillan Cancer Support]] in the UK. Any contestant who refuses to have the ice and water dumped on then is expected to donate US $100 to ALS research. |
|||
Many celebrities have taken part in the challenge, including, [[Vanessa Hudgens]], [[Cristiano_Ronaldo]] [[Chris Pratt]], <ref>{{cite web|title=10 of the Best Celebrity Ice Bucket Challenges|url=http://metro.co.uk/2014/08/20/10-of-the-best-celebrity-ice-bucket-challenges-4839428/|website=Metro|accessdate= 20 August 2014}}</ref> [[Anna Wintour]], [[David Beckham]], [[Reba McEntire]], [[Cheryl Cole]], [[George Bush]],<ref name=bush></ref> [[Lady Gaga]],<ref>{{cite web|title=The 10 best celebrity takes on the ice bucket challenge|url=http://www.theguardian.com/society/2014/aug/19/celebrities-ice-bucket-challenge-charity-donations-als|website=Guardian|accessdate=20 August 2014}}</ref> [[Mark Zuckerberg]], [[Justin Bieber]], [[Oprah]], [[Meg Whitman]] and [[Bill Gates]], among many other well-known personalities and members of the general public.<ref>{{cite web|last1=Alexander|first1=Ella|title=Ice Bucket Challenge: Lady Gaga, Justin Bieber and Oprah – the most entertaining reactions so}}</ref>. |
|||
==References== |
|||
{{Reflist|35em}} |
|||
==Further reading== |
|||
<div class="references-small> |
|||
* {{cite web |url=http://www.alshopefoundation.org/ |title=ALS Hope Foundation |
|||
|accessdate=2008-06-21 |
|||
|quote=Dedicated to the care and cure of people with Lou Gehrig's Disease. (from site page us.php) | archiveurl= http://web.archive.org/web/20080512012521/http://www.alshopefoundation.org/| archivedate= 12 May 2008 <!--DASHBot-->| deadurl= no}} |
|||
* {{cite web |url=http://www.lougehrig.com |title=Lou Gehrig: The Official Web Site |
|||
|accessdate=2008-06-21 |publisher=CMG Worldwide |
|||
|quote=The Official Web site of Lou Gehrig is an informational Web site intended to honor the life, the legend and the career of Lou Gehrig. (from site page siteinfo/index.htm) | archiveurl= http://web.archive.org/web/20080509101328/http://www.lougehrig.com/| archivedate= 9 May 2008 <!--DASHBot-->| deadurl= no}} |
|||
* {{Cite news |authorlink=Patrick Aebischer |author=Patrick Aebischer |author2=Ann C. Kato |
|||
|title=Playing defense against Lou Gehrig's Disease |
|||
|url=http://www.sciam.com/article.cfm?id=playing-defense-against-l |format=Paper |
|||
|work=[[Scientific American]] |publisher=[[Verlagsgruppe Georg von Holtzbrinck]] |pages=86–93 |
|||
|date = November 2007| accessdate=2008-06-21 |
|||
|quote=Researchers have proposed potential therapies for a paralyzing disorder once thought to be untreatable (sub-title) }} |
|||
</div> |
|||
* http://www.feinberg.northwestern.edu/news/2011/2011E-August/ALS_Breakthrough.html |
|||
==External links== |
|||
{{commons category}} |
|||
<!-- PLEASE READ |
|||
If you intend to add links to non-profit organizations, charities, or webpages that you think may be of interest to patients, please ensure you have thoroughly read and understand [[WP:EL]], Wikipedia's policies on external links. Most links are *not* suitable for wikipedia, even if they would be helpful to patients. |
|||
--> |
|||
*[http://alsod.iop.kcl.ac.uk/ ALSOD] |
|||
* [https://www.nlm.nih.gov/medlineplus/amyotrophiclateralsclerosis.html Medline Plus article on ALS] |
|||
{{Diseases of the nervous system|state=collapsed}} |
|||
{{DEFAULTSORT:Amyotrophic Lateral Sclerosis}} |
|||
[[Category:Motor neurone disease]] |
|||
[[Category:Rare diseases]] |
|||
[[Category:Unsolved problems in neuroscience]] |
|||
[[Category:Systemic atrophies primarily affecting the central nervous system]] |
|||
[[Category:Cytoskeletal defects]] |
Revision as of 18:21, 21 August 2014
ALS | |
---|---|
Specialty | Neurology |
Amyotrophic lateral sclerosis (ALS)—also referred to as motor neurone disease (MND), Charcot disease, and, in the United States, Lou Gehrig's disease—is a neurodegenerative disease with various causes. It is characterised by muscle spasticity, rapidly progressive weakness due to muscle atrophy, difficulty in speaking (dysarthria), swallowing (dysphagia), and breathing (dyspnea). ALS is the most common of the five motor neuron diseases.
Signs and symptoms
The disorder causes muscle weakness and atrophy throughout the body due to the degeneration of the upper and lower motor neurons. Individuals affected by the disorder may ultimately lose the ability to initiate and control all voluntary movement, although bladder and bowel function and the muscles responsible for eye movement are usually spared until the final stages of the disease.[1]
Cognitive function is generally spared for most patients, although some (about 5%) also develop frontotemporal dementia.[2] A higher proportion of patients (30–50%) also have more subtle cognitive changes which may go unnoticed, but are revealed by detailed neuropsychological testing. Infrequently ALS coexists in individuals who also experience dementia, degenerative muscle disease, and degenerative bone disease as part of a syndrome called multisystem proteinopathy.[3] Sensory nerves and the autonomic nervous system are generally unaffected, meaning the majority of people with ALS will maintain hearing, sight, touch, smell, and taste.[4]
Initial symptoms
The earliest symptoms of ALS are typically obvious weakness and/or muscle atrophy. Other presenting symptoms include trouble swallowing, cramping, or stiffness of affected muscles; muscle weakness affecting an arm or a leg; and/or slurred and nasal speech. The parts of the body affected by early symptoms of ALS depend on which motor neurons in the body are damaged first. About 75% of people contracting the disease experience "limb onset" ALS, i.e., first symptoms in the arms or legs. Patients with the leg onset form may experience awkwardness when walking or running or notice that they are tripping or stumbling, often with a "dropped foot" which drags gently along the ground. Arm-onset patients may experience difficulty with tasks requiring manual dexterity such as buttoning a shirt, writing, or turning a key in a lock. Occasionally, the symptoms remain confined to one limb for a long period of time or for the whole length of the illness; this is known as monomelic amyotrophy.
About 25% of cases are "bulbar onset" ALS. These patients first notice difficulty speaking clearly or swallowing. Speech may become slurred, nasal in character, or quieter. Other symptoms include difficulty swallowing and loss of tongue mobility. A smaller proportion of patients experience "respiratory onset" ALS, where the intercostal muscles that support breathing are affected first. A small proportion of patients may also present with what appears to be frontotemporal dementia, but later progresses to include more typical ALS symptoms.
Over time, patients experience increasing difficulty moving, swallowing (dysphagia), and speaking or forming words (dysarthria). Symptoms of upper motor neuron involvement include tight and stiff muscles (spasticity) and exaggerated reflexes (hyperreflexia) including an overactive gag reflex. An abnormal reflex commonly called Babinski's sign also indicates upper motor neuron damage. Symptoms of lower motor neuron degeneration include muscle weakness and atrophy, muscle cramps, and fleeting twitches of muscles that can be seen under the skin (fasciculations). Around 15–45% of patients experience pseudobulbar affect, a neurological disorder also known as "emotional lability", which consists of uncontrollable laughter, crying or smiling, attributable to degeneration of bulbar upper motor neurons resulting in exaggeration of motor expressions of emotion.[citation needed] To be diagnosed with ALS, patients must have signs and symptoms of both upper and lower motor neuron damage that cannot be attributed to other causes.
Progression
Although the order and rate of symptoms varies from person to person, eventually most patients are not able to walk or use their hands and arms. They also lose the ability to speak and swallow food, whilst most end up on a portable ventilator, called a BiPAP. The rate of progression can be measured using an outcome measure called the "ALS Functional Rating Scale Revised (ALSFRS-R)", a 12-item instrument administered as a clinical interview or patient-reported questionnaire that produces a score between 48 (normal function) and 0 (severe disability). Though there is a high degree of variability and a small percentage of patients have much slower disease, on average, patients lose about 0.9 FRS point per month. A survey-based study amongst clinicians showed that they rated a 20% change in the slope of the ALSFRS-R would be clinically meaningful.[5] Regardless of the part of the body first affected by the disease, muscle weakness and atrophy spread to other parts of the body as the disease progresses. In limb-onset ALS, symptoms usually spread from the affected limb to the opposite limb before affecting a new body region, whereas in bulbar-onset ALS symptoms typically spread to the arms before the legs.
Disease progression tends to be slower in patients who are younger than 40 at onset,[6][7] are mildly obese,[8] have disease restricted primarily to one limb, and those with primarily upper motor neuron symptoms.[9] Conversely, progression is faster and prognosis poorer in patients with bulbar-onset disease, respiratory-onset disease, and fronto-temporal dementia.[9]
CX3CR1 allelic variants have also been shown to modify the survival time and the progression of patients.[10]
Late stages
Difficulty in chewing and swallowing makes eating very difficult and increases the risk of choking or of aspirating food into the lungs. In later stages of the disease, aspiration pneumonia can develop, and maintaining a healthy weight can become a significant problem that may require the insertion of a feeding tube. As the diaphragm and intercostal muscles of the rib cage that support breathing weaken, measures of lung function such as vital capacity and inspiratory pressure diminish. In respiratory onset ALS, this may occur before significant limb weakness is apparent. External ventilation machines that use the ventilation mode of bilevel positive airway pressure (BiPAP) are frequently used to support breathing, initially at night, and later during the daytime as well. The use of BPAP (more often referred to as non-invasive ventilation, NIV) is only a temporary remedy, however, and it is recommended that long before BPAP stops being effective, patients should decide whether to have a tracheotomy and long term mechanical ventilation. At this point, some patients choose palliative hospice care. Most people with ALS die of respiratory failure or pneumonia.
Although respiratory support can ease problems with breathing and prolong survival, it does not affect the progression of ALS. Most people with ALS die from respiratory failure, usually within three to five years from the onset of symptoms. The median survival time from onset to death is around 39 months, and only 4% survive longer than 10 years.[11] Guitarist Jason Becker has lived since 1989 with the disease, while physicist Stephen Hawking has survived for more than 50 years, but they're considered unusual cases.[12]
In late stages the oculomotor nerve that controls the movements of the eye, can be affected as can the extraocular muscles. The eye movements remain unaffected largely until the later stages due to differences in the extraocular muscles compared to the skeletal muscles that are initially and readily affected.
Finally patient condition may be mimicking locked-in syndrome [13]
Extraocular and skeletal motor units
Despite sharing fixed sequences of recruitment, extraocular muscles (EOMs) and skeletal muscles exhibit different characteristics. The following are characteristics of EOMs that differ from skeletal motor units.[14]
- One neural fiber connects with only 1 or 2 muscle fibers
- No ocular stretch reflexes, despite being rich in muscle spindles
- No recurrent inhibition
- No special fast-twitch or slow-twitch muscles
- All eye motor neurons participate equally in all types of eye movements—not specialized for saccades or smooth pursuit
There are also noted differences between healthy and affected EOMs. EOMs from postmortem donors preserved their cytoarchitecture, as compared to limb muscles. Healthy EOMs consist of a central global layer (GL) facing the globe and a thin orbital layer (OL) facing the walls of the orbit.[15] EOMs affected by ALS preserve the GL and OL organization.[15] EOMs possess the neurotrophic factors brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), and these neuroprotective factors are also preserved in EOMs affected by ALS.[15] Laminin is a structural protein typically found in the neuromuscular junction (NMJ). Lnα4 is a laminin isoform that is a hallmark of skeletal muscle NMJs.[16] Patients with ALS showed preserved Lnα4 expression in EOM NMJs, but this expression was non-existent in limb muscle NMJs from the same patients.[16] Preservation of laminin expression may play a role in preserving EOM integrity in ALS patients. Patients with sporadic ALS (sALS) have increased levels of intracelluar calcium, causing increased neurotransmitter release.[17] Passive transfer of sera from sALS patients increases spontaneous transmitter release in spinal but not EOM terminals;[17] therefore, it is assumed that EOMs are resistant to changes in physiologic conditions typically found in ALS.
However, some effects of disease were noted. EOMs affected by ALS had a larger variation in fiber size compared to those in age-matched healthy controls.[15] EOMs exhibited both clustered and scattered atrophic and hypertrophic fibers that are characteristic of disease; however, these muscles showed significantly less damage compared to limb muscles from the same donors.[15] These EOMs also showed an increase in connective tissue and areas of fatty replacement in compensation of fiber loss and atrophy.[15] Ophthalmoplegia, a loss of neurons in and around the ocular motor nuclei, has been noted in ALS patients.[18] Additionally, there was altered myosin heavy chain content of the EOM fibers, with a loss of normal expression of MyHCslow tonic in the GL and the OL did not contain MyHCemb, which is normally expressed in this layer.[15] This change may represent a change in innervation pattern that may include reinnervation by a different type of motor neuron or loss of multiple innervations. Changes in MyHCslow and MyHCemb are the only fiber changes seen in EOMs, leaving the EOM fiber composition relatively normal.[15] Because EOMs are normally highly innervated, any denervation, is compensated for by neighbouring axons which preserve function.[15]
Eye movement impairment
Patients with ALS may have difficulty in generating voluntary saccades, fast movements of the eye.[18] Saccade velocity is significantly slower in patients with ALS.[18] Problems in generating smooth pursuit and convergence movements have also been noted in patients with ALS. [18] Testing the vestibulo-ocular reflex (VOR) should help in identifying these deficits in ALS patients.[19] Electrooculography (EOG) is a technique that measures the resting potential of the retina. EOG findings in patients with ALS show progressive changes that correlate with disease progression, and provide a measurement for clinically evaluating the effects of disease progression on oculomotor activity.[19] Additionally, EOG may allow earlier, subclinical, detection of oculomotor abnormalities in patients with ALS.
The embryonic lineage of EOMs differs from that of somite-derived muscles. EOMs are unique because they continuously remodel through life and maintain a population of active satellite cells during aging.[20] EOMs have significantly more myogenic precursor cells than limb skeletal muscles.[20]
Roles of lactate and cinnamate
Lactic acid is an end product of glycolysis and is known to cause muscle fatigue. Lactate dehydrogenase (LDH) is an enzyme that exerts its effects bidirectionally and is able to oxidize lactate into pyruvate so it can be used in the Kreb's Cycle. In EOM, lactate sustains muscle contraction during increased activity levels. EOM that have high LDH activity are thought to be resistant to ALS.[21]
Cinnamate is a blocker of lactate transport and exogenous lactate on fatigue resistance. Cinnamate is able to cause fatigue in EOM, while decreasing EOM endurance and residual force; however, cinnamate has no effect on extensor digitorum longus muscle, a muscle in the leg.[21] In contrast, replacing glucose with exogenous lactate increases fatiguability of EDL muscles but not EOM.[21] Fatiguability in EOM was only found when a combination of exogenous lactacte plus cinnamate replaced glucose.[21]
Causes
Genetics
There is a known hereditary factor in familial ALS, where the condition is known to run in families. A defect on chromosome 21, which codes for superoxide dismutase, is associated with approximately 20% of familial cases of ALS, or about 2% of ALS cases overall.[22][23][24] This mutation is believed to be transmitted in an autosomal dominant manner, and has over a hundred different forms of mutation. The most common ALS-causing mutation is a mutant SOD1 gene, seen in North American patients; this is characterized by an exceptionally rapid progression from onset to death. The most common mutation found in Scandinavian countries, D90A-SOD1, is more slowly progressive than typical ALS and patients with this form of the disease survive for an average of 11 years.[25]
In 2011, a genetic abnormality known as a hexanucleotide repeat was found in a region called C9orf72, which is associated with ALS combined with frontotemporal dementia ALS-FTD,[26] and accounts for some 6% of cases of ALS among white Europeans.[27]
The world's largest genetic study, called project MinE, initiated by two ALS patients is currently ongoing. It is a crowdfunded research project with many countries involved to discover more genes.[28]
To date, a number of genetic mutations have been associated with various types of ALS. The currently known associations are as follows:
Type | OMIM | Gene | Locus | Remarks |
---|---|---|---|---|
ALS1 | Template:OMIM2 | SOD1 | 21q22.1 | The most common form of familial ALS |
ALS2 | Template:OMIM2 | ALS2 | 2q33.1 | |
ALS3 | Template:OMIM2 | ? | 18q21 | |
ALS4 | Template:OMIM2 | SETX | 9q34.13 | |
ALS5 | Template:OMIM2 | ? | 15q15.1–q21.1 | Juvenile onset |
ALS6 | Template:OMIM2 | FUS | 16p11.2 | |
ALS7 | Template:OMIM2 | ? | 20p13 | |
ALS8 | Template:OMIM2 | VAPB | 20q13.3 | |
ALS9 | Template:OMIM2 | ANG | 14q11.2 | |
ALS10 | Template:OMIM2 | TARDBP | 1p36.2 | |
ALS11 | Template:OMIM2 | FIG4 | 6q21 | |
ALS12 | Template:OMIM2 | OPTN | 10p13 | |
ALS13 | Template:OMIM2 | ATXN2 | 12q24.12 | |
ALS14 | Template:OMIM2 | VCP | 9p13.3 | Recent new study shows strong link in ALS mechanism[29][3] |
ALS15 | Template:OMIM2 | UBQLN2 | Xp11.23–p11.1 | Described in one family[30] |
ALS16 | Template:OMIM2 | SIGMAR1 | 9p13.3 | Juvenile onset, very rare, described only in one family[31] |
ALS17 | Template:OMIM2 | CHMP2B | 3p11 | Very rare, reported only in a handful of patients |
ALS18 | Template:OMIM2 | PFN1 | 17p13.3 | Very rare, described only in a handful of Chinese families[32] |
ALS19 | Template:OMIM2 | ERBB4 | 2q34 | Very rare, as of late 2013 described only in four patients[33] |
ALS20 | Template:OMIM2 | HNRNPA1 | 12q13 | Very rare, as of late 2013 described only in two patients[34] |
ALS-FTD | Template:OMIM2 | C9orf72 | 9p21.2 | Accounts for around 6% of ALS cases among white Europeans |
SOD1
The precise cause of ALS is still not known, though a first important step toward determining the cause came in 1993 when scientists discovered that mutations in the gene that produces the Cu/Zn superoxide dismutase (SOD1) enzyme were associated with some cases (approximately 20%) of familial ALS. This enzyme is a powerful antioxidant that protects the body from damage caused by superoxide, a toxic free radical generated in the mitochondria. Free radicals are highly reactive molecules produced by cells during normal metabolism. Free radicals can accumulate and cause damage to both mitochondrial and nuclear DNA and proteins within cells. To date, over 110 different mutations in SOD1 have been linked with the disease, some of which have a very long clinical course (e.g. H46R), while others, such as A4V, being exceptionally aggressive. Evidence suggests that failure of defenses against oxidative stress up-regulates programmed cell death (apoptosis), among many other possible consequences. Although it is not yet clear how the SOD1 gene mutation leads to motor neuron degeneration, researchers have theorized that an accumulation of free radicals may result from the faulty functioning of this gene. Current research, however, indicates that motor neuron death is not likely a result of lost or compromised dismutase activity, suggesting mutant SOD1 induces toxicity in some other way (a gain of function).[35][36]
Studies involving transgenic mice have yielded several theories about the role of SOD1 in mutant SOD1 familial amyotrophic lateral sclerosis. Mice lacking the SOD1 gene entirely do not customarily develop ALS, although they do exhibit an acceleration of age-related muscle atrophy (sarcopenia) and a shortened lifespan (see article on superoxide dismutase). This indicates that the toxic properties of the mutant SOD1 are a result of a gain in function rather than a loss of normal function. In addition, aggregation of proteins has been found to be a common pathological feature of both familial and sporadic ALS (see article on proteopathy). Interestingly, in mutant SOD1 mice (most commonly, the G93A mutant), aggregates (misfolded protein accumulations) of mutant SOD1 were found only in diseased tissues, and greater amounts were detected during motor neuron degeneration.[37] It is speculated that aggregate accumulation of mutant SOD1 plays a role in disrupting cellular functions by damaging mitochondria, proteasomes, protein folding chaperones, or other proteins.[38] Any such disruption, if proven, would lend significant credibility to the theory that aggregates are involved in mutant SOD1 toxicity. Critics have noted that in humans, SOD1 mutations cause only 2% or so of overall cases and the etiological mechanisms may be distinct from those responsible for the sporadic form of the disease. To date, the ALS-SOD1 mice remain the best model of the disease for preclinical studies but it is hoped that more useful models will be developed.
There is an online database available which was designed to provide both the scientific community and the wider public with up-to-date information on ALS genetics. This is known as ALSOD - website originally designed for the SOD1 gene in 1999, but since upgraded to include over 40 ALS-related genes.
Other factors
Where no family history of the disease is present – i.e., in around 90% of cases – there is no known cause for ALS. Potential causes for which there is inconclusive evidence includes head trauma, military service, and participation in contact sports. More recently, some research has suggested that there may be a link between ALS and food contaminated by blue-green algae.[39][unreliable medical source?]
Studies also have focused on the role of glutamate in motor neuron degeneration. Glutamate is one of the chemical messengers or neurotransmitters in the brain. Scientists have found that, compared to healthy people, ALS patients have higher levels of glutamate in the serum and spinal fluid.[23] Riluzole is currently the only FDA approved drug for ALS and targets glutamate transporters. It only has a modest effect on survival, however, suggesting that excess glutamate is not the sole cause of the disease.
Certain studies suggested a link between sporadic ALS, specifically in athletes, and a diet enriched with branched-chain amino acids. BCAAs, a common dietary supplement among athletes, cause cell hyper-excitability resembling that usually observed in ALS patients. The proposed underlying mechanism is that cell hyper-excitability results in increased calcium absorption by the cell and thus brings about cell death of neuronal cells, which have particularly low calcium buffering capabilities.[40][41]
There is evidence that superoxide dismutase 1 (SOD1) protein misfolding propagates between molecules in a similar fashion to prions.[42]
Another very common cause of ALS is a lesion to the motor system in areas such as the frontotemporal lobes.[43] Lesions in these areas often show signs of early deficit, which can be used to predict the loss of motor function, and result in the spread of ALS.[43] The mechanisms of ALS are present long before any signs or symptoms become apparent.[44] It is estimated that before any muscular atrophy becomes apparent during ALS, roughly one-third of the motor neurons must be destroyed.[44]
Many other potential causes, including chemical exposure, electromagnetic field exposure, occupation, physical trauma, and electric shock, have been investigated but without consistent findings.[45]
Pathophysiology
The defining feature of ALS is the death of both upper and lower motor neurons in the motor cortex of the brain, the brain stem, and the spinal cord. Prior to their destruction, motor neurons develop protein-rich inclusions in their cell bodies and axons. This may be partly due to defects in protein degradation.[46] These inclusions often contain ubiquitin, and generally incorporate one of the ALS-associated proteins: SOD1, TAR DNA binding protein (TDP-43, or TARDBP), or FUS.
Diagnosis
No test can provide a definite diagnosis of ALS, although the presence of upper and lower motor neuron signs in a single limb is strongly suggestive. Instead, the diagnosis of ALS is primarily based on the symptoms and signs the physician observes in the patient and a series of tests to rule out other diseases.[47] Physicians obtain the patient's full medical history and usually conduct a neurologic examination at regular intervals to assess whether symptoms such as muscle weakness, atrophy of muscles, hyperreflexia, and spasticity are getting progressively worse.
Because symptoms of ALS can be similar to those of a wide variety of other, more treatable diseases or disorders, appropriate tests must be conducted to exclude the possibility of other conditions. One of these tests is electromyography (EMG), a special recording technique that detects electrical activity in muscles. Certain EMG findings can support the diagnosis of ALS. Another common test measures nerve conduction velocity (NCV). Specific abnormalities in the NCV results may suggest, for example, that the patient has a form of peripheral neuropathy (damage to peripheral nerves) or myopathy (muscle disease) rather than ALS. The physician may order magnetic resonance imaging (MRI), a noninvasive procedure that uses a magnetic field and radio waves to take detailed images of the brain and spinal cord. Although these MRI scans are often normal in patients with ALS, they can reveal evidence of other problems that may be causing the symptoms, such as a spinal cord tumor, multiple sclerosis, a herniated disk in the neck, syringomyelia, or cervical spondylosis.
Based on the patient's symptoms and findings from the examination and from these tests, the physician may order tests on blood and urine samples to eliminate the possibility of other diseases as well as routine laboratory tests. In some cases, for example, if a physician suspects that the patient may have a myopathy rather than ALS, a muscle biopsy may be performed.
Infectious diseases such as human immunodeficiency virus (HIV), human T-cell leukaemia virus (HTLV), Lyme disease,[48] syphilis[49] and tick-borne encephalitis[50] viruses can in some cases cause ALS-like symptoms. Neurological disorders such as multiple sclerosis, post-polio syndrome, multifocal motor neuropathy, CIDP, spinal muscular atrophy and spinal and bulbar muscular atrophy (SBMA) can also mimic certain facets of the disease and should be considered by physicians attempting to make a diagnosis.
ALS must be differentiated from the "ALS mimic syndromes" which are unrelated disorders that may have a similar presentation and clinical features to ALS or its variants.[51] Because of the prognosis carried by this diagnosis and the variety of diseases or disorders that can resemble ALS in the early stages of the disease, patients should always obtain a specialist neurological opinion, so that alternative diagnoses are clinically ruled out.
However, most cases of ALS are readily diagnosed and the error rate of diagnosis in large ALS clinics is less than 10%.[52][53] In one study, 190 patients who met the MND / ALS diagnostic criteria, complemented with laboratory research in compliance with both research protocols and regular monitoring. Thirty of these patients (16%) had their diagnosis completely changed, during the clinical observation development period.[54] In the same study, three patients had a false negative diagnoses, myasthenia gravis (MG), an auto-immune disease. MG can mimic ALS and other neurological disorders leading to a delay in diagnosis and treatment. MG is eminently treatable; ALS is not.[55] Myasthenic syndrome, also known as Lambert-Eaton syndrome (LES), can mimic ALS and its initial presentation can be similar to that of MG.[56][57]
Current research focuses on abnormalities of neuronal cell metabolism involving glutamate and the role of potential neurotoxins and neurotrophic factors.[58]
Management
Riluzole (Rilutek) is the only treatment that has been found to improve survival but only to a modest extent.[59] It lengthens survival by several months, and may have a greater survival benefit for those with a bulbar onset. It also extends the time before a person needs ventilation support. Riluzole does not reverse the damage already done to motor neurons, and people taking it must be monitored for liver damage (occurring in ~10% of people taking the drug).[60] It is approved by Food and Drug Administration (FDA) and recommended by the National Institute for Clinical Excellence (NICE).
Other treatments for ALS are designed to relieve symptoms and improve the quality of life for patients. This supportive care is best provided by multidisciplinary teams of health care professionals working with patients and caregivers to keep patients as mobile and comfortable as possible.
Medications
Medications may be used to help reduce fatigue, ease muscle cramps, control spasticity, and reduce excess saliva and phlegm. Drugs also are available to help patients with pain, depression, sleep disturbances, dysphagia, and constipation. Baclofen and diazepam are often prescribed to control the spasticity caused by ALS, and trihexyphenidyl or amitriptyline may be prescribed when ALS patients begin having trouble swallowing their saliva.[1]
Therapy
Physical therapists and occupational therapists play a large role in rehabilitation for individuals with ALS. Specifically, physical and occupational therapists can set goals and promote benefits for individuals with ALS by delaying loss of strength, maintaining endurance, limiting pain, preventing complications, and promoting functional independence.[61]
Occupational therapy and special equipment such as assistive technology can also enhance patients' independence and safety throughout the course of ALS. Gentle, low-impact aerobic exercise such as performing activities of daily living (ADL's), walking, swimming, and stationary bicycling can strengthen unaffected muscles, improve cardiovascular health, and help patients fight fatigue and depression. Range of motion and stretching exercises can help prevent painful spasticity and shortening (contracture) of muscles. Physical and occupational therapists can recommend exercises that provide these benefits without overworking muscles. They can suggest devices such as ramps, braces, walkers, bathroom equipment (shower chairs, toilet risers, etc.) and wheelchairs that help patients remain mobile. Occupational therapists can provide or recommend equipment and adaptations to enable people to retain as much safety and independence in activities of daily living as possible.
ALS patients who have difficulty speaking may benefit from working with a speech-language pathologist. These health professionals can teach patients adaptive strategies such as techniques to help them speak louder and more clearly. As ALS progresses, speech-language pathologists can recommend the use of augmentative and alternative communication such as voice amplifiers, speech-generating devices (or voice output communication devices) and/or low tech communication techniques such as alphabet boards or yes/no signals.
Nutrition
Patients and caregivers can learn from speech-language pathologists and nutritionists how to plan and prepare numerous small meals throughout the day that provide enough calories, fiber, and fluid and how to avoid foods that are difficult to swallow. Patients may begin using suction devices to remove excess fluids or saliva and prevent choking. Occupational therapists can assist with recommendations for adaptive equipment to ease the physical task of self-feeding. Speech language pathologists make food choice recommendations that are more conducive to their unique deficits and abilities. When patients can no longer get enough nourishment from eating, doctors may advise inserting a feeding tube into the stomach. The use of a feeding tube also reduces the risk of choking and pneumonia that can result from inhaling liquids into the lungs. The tube is not painful and does not prevent patients from eating food orally if they wish.
Researchers have stated that "ALS patients have a chronically deficient intake of energy and recommended augmentation of energy intake"[62] and that patients suffer from a severe loss of appetite.[63] Both animal[64] and human research[62][unreliable medical source?][65][unreliable medical source?] suggest that ALS patients should be encouraged to consume as many calories as possible and not to restrict their calorie intake. As of 2012 there remained "a lack of robust evidence for interventions" for the management of weight loss.[66]
Research has found that people who ate fruits and vegetables containing carotenoids, an oxidative compound which strengthens the immune system response, had reduced chance of developing ALS.[67] There are three primary carotenoids that act as oxidative compounds called beta-carotene, lycopene, and lutein found in fruits and vegetables each found in different foods like carrots, watermelon, and tomatoes.[68]
Breathing support
When the muscles that assist in breathing weaken, use of ventilatory assistance (intermittent positive pressure ventilation (IPPV), bilevel positive airway pressure (BiPAP), or biphasic cuirass ventilation (BCV) may be used to aid breathing. Such devices artificially inflate the patient's lungs from various external sources that are applied directly to the face or body. When muscles are no longer able to maintain oxygen and carbon dioxide levels, these devices may be used full-time. BCV has the added advantage of being able to assist in clearing secretions by using high-frequency oscillations followed by several positive expiratory breaths.[69] Patients may eventually consider forms of mechanical ventilation (respirators) in which a machine inflates and deflates the lungs. To be effective, this may require a tube that passes from the nose or mouth to the windpipe (trachea) and for long-term use, an operation such as a tracheotomy, in which a plastic breathing tube is inserted directly in the patient's windpipe through an opening in the neck.
Patients and their families should consider several factors when deciding whether and when to use one of these options. Ventilation devices differ in their effect on the patient's quality of life and in cost. Although ventilation support can ease problems with breathing and prolong survival, it does not affect the progression of ALS. Patients need to be fully informed about these considerations and the long-term effects of life without movement before they make decisions about ventilation support and have deep discussions on quality of life. Some patients under long-term tracheotomy intermittent positive pressure ventilation with deflated cuffs or cuffless tracheotomy tubes (leak ventilation) are able to speak, provided their bulbar muscles are strong enough, though in all cases speech will be lost as the disease progresses. This technique preserves speech in some patients with long-term mechanical ventilation. Other patients may be able to utilize a speaking valve such as a Passey-Muir Speaking Valve with the assistance and guidance of a speech-language pathologist.
Palliative care
Social workers and home care and hospice nurses help patients, families, and caregivers with the medical, emotional, and financial challenges of coping with ALS, particularly during the final stages of the disease. Social workers provide support such as assistance in obtaining financial aid, arranging durable power of attorney, preparing a living will, and finding support groups for patients and caregivers. Home nurses are available not only to provide medical care but also to teach caregivers about tasks such as maintaining respirators, giving feedings, and moving patients to avoid painful skin problems and contractures. Home hospice nurses work in consultation with physicians to ensure proper medication, pain control, and other care affecting the quality of life of patients who wish to remain at home. The home hospice team can also counsel patients and caregivers about end-of-life issues.
Epidemiology
ALS is classified as a rare disease but is the most common motor neuron disease. People of all races and ethnic backgrounds are affected. One or two out of 100,000 people develop ALS each year.[70] Amyotrophic lateral sclerosis affects approximately 30,000 Americans.[58] ALS cases are estimated at 1.2–4.0 per 100,000 individuals in Caucasian populations with a lower rate in other ethnic populations.[71] ALS most commonly strikes people between 40 and 60 years of age, but younger and older people can also develop the disease. Men are affected slightly more often than women.
Although the incidence of ALS is thought to be regionally uniform, there are three regions in the West Pacific where there has in the past been an elevated occurrence of ALS. This seems to be declining in recent decades. The largest is the area of Guam inhabited by the Chamorro people, who have historically had a high incidence (as much as 143 cases per 100,000 people per year) of a condition called Lytico-Bodig disease which is a combination of symptoms similar to ALS, parkinsonism, and dementia. Lytico-Bodig disease has been linked to the consumption and topical use of cycad seeds and in particular, the chemical found in cycad seeds, β-methylamino-L-alanine (BMAA).[72] Two more areas of increased incidence are West Papua and the Kii Peninsula of Japan, both with topical cycad seed use.[73][74]
Although there have been reports of several "clusters" including three American football players from the San Francisco 49ers, more than fifty association football players in Italy,[75] three association football-playing friends in the south of England,[76] and reports of conjugal (husband and wife) cases in the south of France,[77][78][79][80][81] these are statistically plausible chance events[citation needed]. Although many authors consider ALS to be caused by a combination of genetic and environmental risk factors, so far the latter have not been firmly identified, other than a higher risk with increasing age.
History
Year | Event |
---|---|
1850 | English scientist Augustus Waller describes the appearance of shriveled nerve fibers |
1869 | French doctor Jean-Martin Charcot first describes ALS symptoms in autopsy patients[82] |
1874 | Charcot publishes a paper describing the disease whose title is the first formal use of the term ALS (De la sclérose latérale amyotrophique)[82] |
1881 | "Amyotrophic Lateral Sclerosis" is translated into English and published in a three-volume edition of Lectures on the Diseases of the Nervous System |
1939 | ALS becomes a cause célèbre in the United States when baseball legend Lou Gehrig's career—and, two years later, his life—is ended by the disease. He gives his farewell speech on 4 July 1939.[83] |
1950s | ALS epidemic occurs among the Chamorro people on Guam |
1991 | Researchers link chromosome 21 to FALS (Familial ALS) |
1993 | SOD1 gene on chromosome 21 found to play a role in some cases of FALS |
1996 | Rilutek becomes the first FDA-approved drug for ALS |
1998 | The El Escorial criteria is developed as the standard for classifying ALS patient in clinical research |
1999 | The revised ALS Functional Rating Scale (ALSFRS-R) is published and soon becomes a gold standard measure for rating decline in ALS patient in clinical research |
2011 | Noncoding repeat expansions in C9ORF72 are found to be a major cause of ALS and frontotemporal dementia |
2014 | Various videos across the web spread awareness of ALS and raise funds for research with the "ALS Ice Bucket Challenge" |
Etymology
Amyotrophic comes from the Greek word amyotrophia: a- means "no", myo refers to "muscle", and trophia means "nourishment"; amyotrophia therefore means "no muscle nourishment," which describes the characteristic atrophy of the sufferer's disused muscle tissue. Lateral identifies the areas in a person's spinal cord where portions of the nerve cells that are affected are located. As this area degenerates it leads to scarring or hardening ("sclerosis") in the region.
Clinical research
A number of clinical trials are underway globally for ALS; a comprehensive listing of trials in the US can be found at ClinicalTrials.gov.
A phase II trial on tirasemtiv has been completed with a follow-on Phase IIb study in progress under the name "BENEFIT-ALS". Results of the first study are available here.[84][unreliable medical source?][85][verification needed] The current trial is an international, placebo-controlled, multi-center study on 680 participants. This makes it one of the largest studies to date. A phase II trial on Ozanezumab is in progress. It is a large multi-site international research project sponsored by GlaxoSmithKline (GSK).
A phase II clinical trial is being conducted by BrainStorm Cell Therapeutics at the Hadassah Medical Center in Israel and interim results "demonstrated a tendency toward stabilization in some parameters in the ALS Functional Rating Scale."[86][87] Patients in the trial have bone marrow stem cells removed and differentiated in a clean room into cells that express neurotropic factors. The cells are injected back into the same patient via an intrathecal injection and intramuscular injections. A second phase II trial is expected to open in the United States at several institutions including the Mayo Clinic.[88]
Charity fundraising
In August 2014, a challenge went viral online which was commonly known as the "ALS Ice Bucket Challenge".[89] A contestant will fill a bucket full of ice and water; they will then state who summoned them to do the challenge and will summon three other individuals of their choice to take part in it. The contestant then dumps the bucket of ice and water onto themselves. The contestant should then donate US $10 (or a similar amount in their local currency) to ALS research at the ALS Association, or Macmillan Cancer Support in the UK. Any contestant who refuses to have the ice and water dumped on then is expected to donate US $100 to ALS research.
Many celebrities have taken part in the challenge, including, Vanessa Hudgens, Cristiano_Ronaldo Chris Pratt, [90] Anna Wintour, David Beckham, Reba McEntire, Cheryl Cole, George Bush,[89] Lady Gaga,[91] Mark Zuckerberg, Justin Bieber, Oprah, Meg Whitman and Bill Gates, among many other well-known personalities and members of the general public.[92].
References
- ^ a b Dugdale DC, Hoch DB, Zieve D (27 August 2010). "Amyotrophic lateral sclerosis". A.D.A.M. Medical Encyclopedia.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - ^ Phukan J, Pender NP, Hardiman O (2007). "Cognitive impairment in amyotrophic lateral sclerosis". Lancet Neurol. 6 (11): 994–1003. doi:10.1016/S1474-4422(07)70265-X. PMID 17945153.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ a b Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, Gibbs JR, Brunetti M, Gronka S, Wuu J, Ding J, McCluskey L, Martinez-Lage M, Falcone D, Hernandez DG, Arepalli S, Chong S, Schymick JC, Rothstein J, Landi F, Wang YD, Calvo A, Mora G, Sabatelli M, Monsurrò MR, Battistini S, Salvi F, Spataro R, Sola P, Borghero G, Galassi G, Scholz SW, Taylor JP, Restagno G, Chiò A, Traynor BJ (2010). "Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS". Neuron. 68 (5): 857–864. doi:10.1016/j.neuron.2010.11.036. PMC 3032425. PMID 21145000.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ http://www.ninds.nih.gov/disorders/amyotrophiclateralsclerosis/
- ^ Castrillo-Viguera C, Grasso DL, Simpson E, Shefner J, Cudkowicz ME (2010). "Clinical significance in the change of decline in ALSFRS-R". Amyotroph Lateral Scler (Journal Article). 11 (1–2): 178–80. doi:10.3109/17482960903093710. PMID 19634063.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Sabatelli M, Madia F, Conte A, Luigetti M, Zollino M, Mancuso I, Lo Monaco M, Lippi G, Tonali P (16 September 2008). "Natural history of young-adult amyotrophic lateral sclerosis". Neurology. 71 (12): 876–81. doi:10.1212/01.wnl.0000312378.94737.45. PMID 18596241.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ [Survival in amyotrophic lateral s... [Srp Arh Celok Lek. 1997 Jan-Feb] - PubMed - NCBI
- ^ Mild Obesity Appears to Improve Survival in ALS Patients | HMS
- ^ a b Chiò A, Calvo A, Moglia C, Mazzini L, Mora G (2011). "Phenotypic heterogeneity of amyotrophic lateral sclerosis: A population based study". Journal of Neurology, Neurosurgery & Psychiatry. 82 (7): 740–746. doi:10.1136/jnnp.2010.235952. PMID 21402743.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Lopez-Lopez A, Gamez J, Syriani E, Morales M, Salvado M, Rodríguez MJ, Mahy N, Vidal-Taboada JM (2014). "CX3CR1 Is a Modifying Gene of Survival and Progression in Amyotrophic Lateral Sclerosis". PLoS ONE. 9 (5): e96528. doi:10.1371/journal.pone.0096528. PMC 4013026. PMID 24806473.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) - ^ Turner MR, Parton MJ, Shaw CE, Leigh PN, Al-Chalabi A (2003). "Prolonged survival in motor neuron disease: a descriptive study of the King's database 1990–2002". J Neurol Neurosurg Psychiatry. 74 (7): 995–997. doi:10.1136/jnnp.74.7.995. PMC 1738535. PMID 12810805.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ "Stephen Hawking serves as role model for ALS patients". CNN. 20 April 2009.
- ^ James L. Bernat: Ethical Issues in Neurology, p. 336 http://books.google.pl/books?id=o732GWGjPQ4C&pg=PA336
- ^ Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. McGraw-Hill; 2000
- ^ a b c d e f g h i Ahmadi M, Liu JX, Brännström T, Andersen PM, Stål P, Pedrosa-Domellöf F. Human extraocular muscles in ALS. Invest Ophthalmol Vis Sci. 2010;51(7):3494-501
- ^ a b Liu JX, Brännström T, Andersen PM, Pedrosa-Domellöf F. Different Impact of ALS on Laminin Isoforms in Human Extraocular Muscles Versus Limb Muscles. Invest Ophthalmol Vis Sci. 2011
- ^ a b Mosier DR, Siklós L, Appel SH. Resistance of extraocular motoneuron terminals to effects of amyotrophic lateral sclerosis sera. Neruology. 2000;54(1):252-5
- ^ a b c d Cohen B, Caroscio J. Eye movements in amyotrophic lateral sclerosis. J Neural Transm Suppl. 1983;19:305-15
- ^ a b Palmowski A, Jost WH, Prudlo J, Osterhage J, Käsmann B, Schimrigk K, Ruprecht KW (1995). "Eye movement in amyotrophic lateral sclerosis: a longitudinal study". Ger J Ophthalmol. 4 (6): 355–62. PMID 8751101.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ a b Kallestad KM, Hebert SL, McDonald AA, Daniel ML, Cu SR, McLoon LK (2011). "Sparing of extraocular muscle in aging and muscular dystrophies: a myogenic precursor cell hypothesis". Exp. Cell Res. 317 (6): 873–85. doi:10.1016/j.yexcr.2011.01.018. PMC 3072110. PMID 21277300.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ a b c d Andrade FH, McMullen CA (2006). "Lactate is a metabolic substrate that sustains extraocular muscle function". Pflugers Arch. 452 (1): 102–8. doi:10.1007/s00424-005-0010-0. PMID 16328456.
- ^ Conwit RA (December 2006). "Preventing familial ALS: A clinical trial may be feasible but is an efficacy trial warranted?". Journal of the Neurological Sciences. 251 (1–2): 1–2. doi:10.1016/j.jns.2006.07.009. ISSN 0022-510X. PMID 17070848.
- ^ a b Al-Chalabi A, Leigh PN (August 2000). "Recent advances in amyotrophic lateral sclerosis". Current Opinion in Neurology. 13 (4): 397–405. doi:10.1097/00019052-200008000-00006. ISSN 1473-6551. PMID 10970056.
- ^ Battistini S, Ricci C, Lotti EM, Benigni M, Gagliardi S, Zucco R, Bondavalli M, Marcello N, Ceroni M, Cereda C (June 2010). "Severe familial ALS with a novel exon 4 mutation (L106F) in the SOD1 gene". Journal of the Neurological Sciences. 293 (1): 112–115. doi:10.1016/j.jns.2010.03.009. PMID 20385392.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Andersen PM, Forsgren L, Binzer M, Nilsson P, Ala-Hurula V, Keränen ML, Bergmark L, Saarinen A, Haltia T, Tarvainen I, Kinnunen E, Udd B, Marklund SL (1996). "Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala CuZn-superoxide dismutase mutation, A clinical and genealogical study of 36 patients". Brain. 119 (4): 1153–1172. doi:10.1093/brain/119.4.1153. PMID 8813280.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung GY, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R (2011). "Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS" (PDF). Neuron. 72 (2): 245–56. doi:10.1016/j.neuron.2011.09.011. PMC 3202986. PMID 21944778.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S, Chiò A, Restagno G, Nicolaou N, Simon-Sanchez J, van Swieten JC, Abramzon Y, Johnson JO, Sendtner M, Pamphlett R, Orrell RW, Mead S, Sidle KC, Houlden H, Rohrer JD, Morrison KE, Pall H, Talbot K, Ansorge O, Hernandez DG, Arepalli S, Sabatelli M, Mora G, Corbo M, Giannini F, Calvo A, Englund E, Borghero G, Floris GL, Remes AM, Laaksovirta H, McCluskey L, Trojanowski JQ, Van Deerlin VM, Schellenberg GD, Nalls MA, Drory VE, Lu CS, Yeh TH, Ishiura H, Takahashi Y, Tsuji S, Le Ber I, Brice A, Drepper C, Williams N, Kirby J, Shaw P, Hardy J, Tienari PJ, Heutink P, Morris HR, Pickering-Brown S, Traynor BJ (2012). "Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study". Lancet Neurol. 11 (4): 323–30. doi:10.1016/S1474-4422(12)70043-1. PMC 3322422. PMID 22406228.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Press release project MinE, june 21st 2013 : https://projectmine.com/contents/uploads/press-release-project-mine-21-06-2013.pdf
- ^ Buchan JR, Kolaitis RM, Taylor JP, Parker R (20 June 2013). "Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function". Cell. 153 (7): 1461–74. doi:10.1016/j.cell.2013.05.037. PMC 3760148. PMID 23791177.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H, Jiang H, Hirano M, Rampersaud E, Jansen GH, Donkervoort S, Bigio EH, Brooks BR, Ajroud K, Sufit RL, Haines JL, Mugnaini E, Pericak-Vance MA, Siddique T (2011). "Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia". Nature. 477 (7363): 211–215. doi:10.1038/nature10353. PMC 3169705. PMID 21857683.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Al-Saif A, Al-Mohanna F, Bohlega S (2011). "A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis". Annals of Neurology. 70 (6): 913–919. doi:10.1002/ana.22534. PMID 21842496.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Wu CH, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, Piotrowska K, Lowe P, Koppers M, McKenna-Yasek D, Baron DM, Kost JE, Gonzalez-Perez P, Fox AD, Adams J, Taroni F, Tiloca C, Leclerc AL, Chafe SC, Mangroo D, Moore MJ, Zitzewitz JA, Xu ZS, van den Berg LH, Glass JD, Siciliano G, Cirulli ET, Goldstein DB, Salachas F, Meininger V, Rossoll W, Ratti A, Gellera C, Bosco DA, Bassell GJ, Silani V, Drory VE, Brown RH, Landers JE (2012). "Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis". Nature. 488 (7412): 499–503. doi:10.1038/nature11280. PMC 3575525. PMID 22801503.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Takahashi Y, Fukuda Y, Yoshimura J, Toyoda A, Kurppa K, Moritoyo H, Belzil VV, Dion PA, Higasa K, Doi K, Ishiura H, Mitsui J, Date H, Ahsan B, Matsukawa T, Ichikawa Y, Moritoyo T, Ikoma M, Hashimoto T, Kimura F, Murayama S, Onodera O, Nishizawa M, Yoshida M, Atsuta N, Sobue G, Fifita JA, Williams KL, Blair IP, Nicholson GA, Gonzalez-Perez P, Brown RH, Nomoto M, Elenius K, Rouleau GA, Fujiyama A, Morishita S, Goto J, Tsuji S (2013). "ERBB4 mutations that disrupt the neuregulin-ErbB4 pathway cause amyotrophic lateral sclerosis type 19". Am. J. Hum. Genet. 93 (5): 900–5. doi:10.1016/j.ajhg.2013.09.008. PMC 3824132. PMID 24119685.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP (28 March 2013). "Mutations in the prion-like domains of hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS". Nature. 495 (7442): 467–73. doi:10.1038/nature11922. PMC 3756911. PMID 23455423.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, Reaume AG, Scott RW, Cleveland DW (1998). "Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1". Science. 281 (5384): 1851–4. doi:10.1126/science.281.5384.1851. PMID 9743498.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RH, Scott RW, Snider WD (1996). "Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury". Nat Genet. 13 (1): 43–7. doi:10.1038/ng0596-43. PMID 8673102.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Furukawa Y, Fu R, Deng HX, Siddique T, O'Halloran TV (2006). "Disulfide cross-linked protein represents a significant fraction of ALS-associated Cu, Zn-superoxide dismutase aggregates in spinal cords of model mice". Proc Natl Acad Sci USA. 103 (18): 7148–53. doi:10.1073/pnas.0602048103. PMC 1447524. PMID 16636274.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Boillée S, Vande Velde C, Cleveland DW (2006). "ALS: a disease of motor neurons and their nonneuronal neighbors". Neuron. 52 (1): 39–59. doi:10.1016/j.neuron.2006.09.018. PMID 17015226.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Dunlop RA, Cox PA, Banack SA, Rodgers KJ (2013). Guillemin, Gilles J (ed.). "The Non-Protein Amino Acid BMAA Is Misincorporated into Human Proteins in Place of l-Serine Causing Protein Misfolding and Aggregation". PLoS ONE. 8 (9): e75376. doi:10.1371/journal.pone.0075376. PMC 3783393. PMID 24086518.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) - ^ Manuel M, Heckman CJ (March 2011). "Stronger is not always better: could a bodybuilding dietary supplement lead to ALS?". Exp Neurol (Review). 228 (1): 5–8. doi:10.1016/j.expneurol.2010.12.007. PMC 3049458. PMID 21167830.
- ^ Carunchio I, Curcio L, Pieri M, Pica F, Caioli S, Viscomi MT, Molinari M, Canu N, Bernardi G, Zona C (2010). "Increased levels of p70S6 phosphorylation in the G93A mouse model of amyotrophic lateral sclerosis and in valine-exposed cortical neurons in culture". Experimental Neurology. 226 (1): 218–230. doi:10.1016/j.expneurol.2010.08.033. PMID 20832409.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Fernández-Borges N, Eraña H, Elezgarai SR, Harrathi C, Gayosso M, Castilla J (25 September 2013). "Infectivity versus seeding in neurodegenerative diseases sharing a prion-like mechanism". Int J Cell Biol. 2013: 583498. doi:10.1155/2013/583498. PMC 3800648. PMID 24187553.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) - ^ a b Rosenbohm, A., Kassubek, J., Weydt, P., Marroquin, N., Volk, A., Kubisch, C., Huppertz, H., & Weber, M. (2014). Can lesions to the motor cortex induce amyotrophic lateral sclerosis? . J Neurol, 261, 283-290.
- ^ a b Walling, A. (1999). Amyotrophic lateral sclerosis: Lou Gehrig's disease. American Family Physician, 59(6), 1489-96.
- ^ Sutedja NA, Fischer K, Veldink JH, van der Heijden GJ, Kromhout H, Heederik D, Huisman MH, Wokke JJ, van den Berg LH (2009). "What we truly know about occupation as a risk factor for ALS: a critical and systematic review". Amyotrophic Lateral Sclerosis. 10 (5–6): 295–301. doi:10.3109/17482960802430799. PMID 19922116.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H, Jiang H, Hirano M, Rampersaud E, Jansen GH, Donkervoort S, Bigio EH, Brooks BR, Ajroud K, Sufit RL, Haines JL, Mugnaini E, Pericak-Vance MA, Siddique T (21 August 2011). "Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia". Nature. 477 (7363): 211–5. doi:10.1038/nature10353. PMC 3169705. PMID 21857683.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Tandan R, Bradley WG (1985). "Amyotrophic lateral sclerosis: Part 1. Clinical features, pathology, and ethical issues in management". Ann. Neurol. 18 (3): 271–80. doi:10.1002/ana.410180302. PMID 4051456.
- ^ Hänsel Y, Ackerl M, Stanek G (1995). "ALS-like sequelae in chronic neuroborreliosis". Wien Med Wochenschr. 145 (7–8): 186–8. PMID 7610670.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ el Alaoui-Faris M, Medejel A, al Zemmouri K, Yahyaoui M, Chkili T (1990). "Amyotrophic lateral sclerosis syndrome of syphilitic origin. 5 cases". Rev Neurol (Paris). 146 (1): 41–4. PMID 2408129.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Umanekiĭ KG, Dekonenko EP (1983). "Structure of progressive forms of tick-borne encephalitis". Zh Nevropatol Psikhiatr Im S S Korsakova. 83 (8): 1173–9. PMID 6414202.
- ^ Silani V, Messina S, Poletti B, Morelli C, Doretti A, Ticozzi N, Maderna L (2011). "The diagnosis of Amyotrophic lateral sclerosis in 2010". Archives italiennes de biologie. 149 (1): 5–27. doi:10.4449/aib.v149i1.1260. PMID 21412713.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Eisen, A. (2002). "Amyotrophic lateral sclerosis: A review". BCMJ. 44 (7): 362–366.
- ^ Davenport RJ, Swingler RJ, Chancellor AM, Warlow CP (1996). "Avoiding false positive diagnoses of motor neuron disease: lessons from the Scottish Motor Neuron Disease Register". J. Neurol. Neurosurg. Psychiatr. 60 (2): 147–51. doi:10.1136/jnnp.60.2.147. PMC 1073793. PMID 8708642.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Chieia MA, Oliveira AS, Silva HC, Gabbai AA (2010). "Amyotrophic lateral sclerosis: Considerations on diagnostic criteria" (PDF). Arquivos de Neuro-Psiquiatria. 68 (6): 837–842. doi:10.1590/S0004-282X2010000600002. PMID 21243238.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Al-Asmi A, Nandhagopal R, Jacob PC, Gujjar A (2012). "Misdiagnosis of Myasthenia Gravis and Subsequent Clinical Implication: A case report and review of literature". Sultan Qaboos University medical journal. 12 (1): 103–108. doi:10.12816/0003095. PMC 3286704. PMID 22375266.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ "Lambert-Eaton Myasthenic Syndrome (LEMS)". Misc.medscape.com. Retrieved 18 April 2013.
- ^ "LEMS.com, Lambert-Eaton Myasthenic Syndrome: About". Lems.com. Retrieved 18 April 2013.
- ^ a b Walling AD (1999). "Amyotrophic lateral sclerosis: Lou Gehrig's disease". American Family Physician. 59 (6): 1489–1496. PMID 10193591.
- ^ Carlesi C, Pasquali L, Piazza S, Lo Gerfo A, Caldarazzo Ienco E, Alessi R, Fornai F, Siciliano G (March 2011). "Strategies for clinical approach to neurodegeneration in Amyotrophic lateral sclerosis". Archives italiennes de biologie. 149 (1): 151–67. doi:10.4449/aib.v149i1.1267. PMID 21412722.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Miller RG, Mitchell JD, Lyon M, Moore DH (2007). Miller, Robert G (ed.). "Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND)". Cochrane Database of Systematic Reviews (1): CD001447. doi:10.1002/14651858.CD001447.pub2. PMID 17253460.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Lewis M, Rushanan S (2007). "The role of physical therapy and occupational therapy in the treatment of Amyotrophic Lateral Sclerosis". NeuroRehabilitation. 22 (6): 451–461. PMID 18198431.
- ^ a b Kasarskis EJ, Berryman S, Vanderleest JG, Schneider AR, McClain CJ (January 1996). "Nutritional status of patients with amyotrophic lateral sclerosis: relation to the proximity of death". Am J Clin Nutr. 63 (1): 130–7. PMID 8604660.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Holm T, Maier A, Wicks P, Lang D, Linke P, Münch C, Steinfurth L, Meyer R, Meyer T (April 2013). "Severe Loss of Appetite in Amyotrophic Lateral Sclerosis Patients: Online Self-Assessment Study". Interact J Med Res. 2 (1): e8. doi:10.2196/ijmr.2463. PMC 3632382. PMID 23608722.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link) - ^ Hamadeh MJ, Rodriguez MC, Kaczor JJ, Tarnopolsky MA (February 2005). "Caloric restriction transiently improves motor performance but hastens clinical onset of disease in the Cu/Zn-superoxide dismutase mutant G93A mouse". Muscle Nerve. 31 (2): 214–20. doi:10.1002/mus.20255. PMID 15625688.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Slowie LA, Paige MS, Antel JP (July 1983). "Nutritional considerations in the management of patients with amyotrophic lateral sclerosis (ALS)". J Am Diet Assoc. 83 (1): 44–7. PMID 6863783.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Template:Cite cochrane
- ^ Argiroplis, Krista. "New Research: Eating More Fruits and Veggies Can Lower ALS Risk."Breakthrough ALS. Living with ALS, 18 Sep 2013. Web. 18 Feb 2014. <http://www.breakthroughals.org/breakthroughblog/entry/new-research-eating-more-fruits-and-veggies-can-lower-als-risk>.
- ^ "Argiroplis">.
- ^ Sviri S, Linton DM, van Heerden PV (June 2005). "Non-invasive Mechanical Ventilation Enhances Patient Autonomy in Decision-Making Regarding Chronic Ventilation". Critical Care and Resuscitation. 7 (2): 116–118. PMID 16548804.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ "ALS Topic Overview". Archived from the original on 1 May 2008. Retrieved 1 May 2008.
{{cite web}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help) - ^ Gordon, Paul. "Amyotrophic Lateral Sclerosis. Pathophysiology, Diagnosis and Management." CNS Drugs, 25.1 (2011):1-15.
- ^ Reed D, Labarthe D, Chen KM, Stallones R (January 1987). "A cohort study of amyotrophic lateral sclerosis and parkinsonism-dementia on Guam and Rota". Am J Epidemiol. 125 (1): 92–100. PMID 3788958.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ S. Kuzuhara, Y. Kokubo (2006). "P3-146: Marked increase of parkinsonism dementia (P-D) phenotypes in the high incidence amyotrophic lateral sclerosis (ALS) focus in the Kii peninsula of Japan". Alzheimer's and Dementia. 2 (3): S417. doi:10.1016/j.jalz.2006.05.1414.
- ^ Spencer PS, Palmer VS, Ludolph AC (August 2005). "On the decline and etiology of high-incidence motor system disease in West Papua (southwest New Guinea)". Mov. Disord. 20 (Suppl 12): S119–26. doi:10.1002/mds.20552. PMID 16092101.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ "Sla, indagini nei club. Pesticidi nel mirino". Archived from the original on 3 October 2008. Retrieved 2 October 2008.
{{cite web}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help) - ^ Wicks P, Abrahams S, Masi D, Hejda-Forde S, Leigh PN, Goldstein LH (2005). "The Prevalence of Depression and Anxiety in MND". Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders. 6 (Supplement 1): 147. ISSN 1466-0822.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Rachele MG, Mascia V, Tacconi P, Dessi N, Marrosu F, Giagheddu M (April 1998). "Conjugal amyotrophic lateral sclerosis: a report on a couple from Sardinia, Italy". Ital J Neurol Sci. 19 (2): 97–100. doi:10.1007/BF02427565. PMID 10935845.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Poloni M, Micheli A, Facchetti D, Mai R, Ceriani F, Cattalini C (April 1997). "Conjugal amyotrophic lateral sclerosis: toxic clustering or change?". Ital J Neurol Sci. 18 (2): 109–12. doi:10.1007/BF01999572. PMID 9239532.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Camu W, Cadilhac J, Billiard M (March 1994). "Conjugal amyotrophic lateral sclerosis: a report on two couples from southern France". Neurology. 44 (3 Pt 1): 547–8. doi:10.1212/WNL.44.3_Part_1.547. PMID 8145930.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Cornblath DR, Kurland LT, Boylan KB, Morrison L, Radhakrishnan K, Montgomery M (November 1993). "Conjugal amyotrophic lateral sclerosis: report of a young married couple". Neurology. 43 (11): 2378–80. doi:10.1212/WNL.43.11.2378. PMID 8232960.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Corcia P, Jafari-Schluep HF, Lardillier D, Mazyad H, Giraud P, Clavelou P, Pouget J, Camu W (November 2003). "A clustering of conjugal amyotrophic lateral sclerosis in southeastern France". Neurol. 60 (4): 553–7. doi:10.1001/archneur.60.4.553. PMID 12707069.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ a b Rowland LP (March 2001). "How amyotrophic lateral sclerosis got its name: the clinical-pathologic genius of Jean-Martin Charcot". Arch. Neurol. 58 (3): 512–5. doi:10.1001/archneur.58.3.512. PMID 11255459.
- ^ "Farewell Speech". lougehrig.com. 4 July 1939. Archived from the original on 12 April 2008. Retrieved 16 April 2008.
{{cite web}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help) - ^ http://www.cytokinetics.com/pdf/2013-MDA_Jinsy.pdf
- ^ Shefner JM, Watson ML, Meng L, Wolff AA (December 2013). "A study to evaluate safety and tolerability of repeated doses of tirasemtiv in patients with amyotrophic lateral sclerosis". Amyotroph Lateral Scler Frontotemporal Degener. 14 (7–8): 574–81. doi:10.3109/21678421.2013.822517. PMID 23952636.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ "BrainStorm Reports Outstanding ALS Interim Clinical Trial Results". FierceBiotech. Retrieved 12 August 2013.
- ^ "Autologous Cultured Mesenchymal Bone Marrow Stromal Cells Secreting Neurotrophic Factors (MSC-NTF), in Patients With Amyotrophic Lateral Sclerosis (ALS)". ClinicalTrials.gov. Retrieved 12 August 2013.
- ^ "Mayo Clinic to hold trial for BrainStorm's ALS stem cell therapy". Reuters. 18 March 2013.
- ^ a b "George Bush delivers possibly the best ALS ice bucket challenge yet". Independent. Independent. Retrieved 20 August 2014.
- ^ "10 of the Best Celebrity Ice Bucket Challenges". Metro. Retrieved 20 August 2014.
- ^ "The 10 best celebrity takes on the ice bucket challenge". Guardian. Retrieved 20 August 2014.
- ^ Alexander, Ella. "Ice Bucket Challenge: Lady Gaga, Justin Bieber and Oprah – the most entertaining reactions so".
{{cite web}}
: Missing or empty|url=
(help)
Further reading
- "ALS Hope Foundation". Archived from the original on 12 May 2008. Retrieved 21 June 2008.
Dedicated to the care and cure of people with Lou Gehrig's Disease. (from site page us.php)
{{cite web}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help) - "Lou Gehrig: The Official Web Site". CMG Worldwide. Archived from the original on 9 May 2008. Retrieved 21 June 2008.
The Official Web site of Lou Gehrig is an informational Web site intended to honor the life, the legend and the career of Lou Gehrig. (from site page siteinfo/index.htm)
{{cite web}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help) - Patrick Aebischer; Ann C. Kato (November 2007). "Playing defense against Lou Gehrig's Disease" (Paper). Scientific American. Verlagsgruppe Georg von Holtzbrinck. pp. 86–93. Retrieved 21 June 2008.
Researchers have proposed potential therapies for a paralyzing disorder once thought to be untreatable (sub-title)