Mobile phone
A mobile phone is a portable electronic device which behaves as a normal telephone whilst being able to move over a wide area (compare cordless phone which acts as a telephone only within a limited range). Mobile phones allow connections to be made to the telephone network, normally by directly dialling the other party's number on an inbuilt keypad. Most current mobile phones use a combination of radio wave transmission and conventional telephone circuit switching, though packet switching is already in use for some parts of the mobile phone network, especially for services such as Internet access and WAP.
Some of the world's largest mobile phone manufacturers include Alcatel, Audiovox, Kyocera (formerly the handset division of Qualcomm), LG, Motorola, Nokia, Panasonic (Matsushita Electric), Philips, Samsung, Sagem, Sanyo, Siemens, SK Teletech, and Sony Ericsson.
There are also specialist communication systems related to, but distinct from mobile phones, such as satellite phones and Professional Mobile Radio.
Worldwide deployment
Mobile phones have a long and varied history that stretches back to the 1950s, with hand-held devices being available since 1983. Due to their low establishment costs and rapid deployment, mobile phone networks have since spread rapidly throughout the world, outstripping the growth of fixed telephony. Such networks can often be economic, even with a small customer base, as mobile network costs are mostly call volume related, while fixed-line telephony has a much higher subscriber related cost component.
In most of Europe, wealthier parts of Asia, and Australasia, mobile phones are now virtually universal, with the majority (in some countries and age groups up to 100 percent) of the adult, teenage, and even child population owning one. They are less common in the United States — while widely used, market penetration is lower than elsewhere in the developed world (around 66 percent of the U.S. population as of 2003). Reasons advanced for this include incomplete coverage, a mixture of incompatible technical standards (the GSM standard was designed for Europe-wide interoperability, and all European nations and some Asian nations chose it as their sole standard for this reason, while in Japan and South Korea another single standard, CDMA, standard was selected; in the United States and Canada there was no such standardization), relatively high minimum monthly service charges (around $30), and the availability of relatively low-cost fixed-line networks (around $30 for unlimited local calling). Prepaid or pay as you go services, common elsewhere, are far less common in the U.S., and are much more expensive than comparable services in other countries. Furthermore, text messaging was not a standard feature in North America until recently, and unlike in most other countries, the ability to use international roaming is still rare. The shortage of telephone numbers in the North American Numbering Plan (NANP), and the lack of non-regional special telephone numbers for mobile services, means that the pricing system used elsewhere (calls cost more to make to a mobile, but are free to receive) cannot be used, and as a result users pay to receive calls, discouraging cellphone use. The same technical issues affect mobile telephony in Canada, as it uses the same mix of incompatible standards as does the U.S., and is also part of the NANP.
Mobile phone culture
In less than twenty years, mobile telephones have gone from being rare and expensive pieces of equipment used by businesses to a pervasive low-cost personal item. In many affluent countries, mobile phones now outnumber land-line telephones, with most adults and many children now owning mobile phones and is not uncommon for young adults to own simply a cell phone instead of a land-line for their residence, even in the U.S. where mobile phone use is less prevalent than other industrialized countries. Mobile phone penetration is increasing around the world; this is particularly true of developing countries, where there is little existing fixed-line infrastructure.
With high levels of mobile telephone penetration, a mobile phone culture has evolved, where the mobile phone becomes a key social tool, and people rely on their mobile phone addressbook to keep in touch with their friends. Many people keep in touch using SMS, and a whole culture of "texting" has developed from this.
The mobile phone itself has become a totemic and fashion object, with users decorating, customizing, and accessorizing their mobile phones to reflect their personality. Likewise, customized ringtones have been developed,
The capabilities of mobile phones are now being expanded further, to become smartphones which can adopt the roles of Internet browser, game console, personal music player, and personal digital assistant.
Mobile etiquette has become an important issue with mobiles ringing at funerals, weddings, movies and plays. Users often speak at increased volume, with the effect of nearby people hearing personal conversations that they don't necessarily want to hear; it has become common practice for places like libraries and movie theatres to ban the use of cell phones, even to the point of installing jamming equipment to prevent them. (In areas where public safety radio networks use frequencies near the cellular range, such jammers have been known to disrupt emergency operations. Such equipment, though cheap and readily available, is therefore illegal under most countries' communications regulations.)
Mobile phone features
See main article: Mobile phone features
Mobile phones are often packed with features that offer users far more than just the capability to text message and make voice calls.
Health controversy
Main article: Mobile phone radiation and health
As with many new technologies, concerns have arisen about the effects on health from using a mobile telephone. There is little scientific evidence for an increase in certain types of rare tumors in long-time, heavy users. More recently a pan-European study provided significant evidence of DNA damage under certain conditions. So far, however, the World Health Organization Task Force on EMF effects on health has no definitive conclusion on the veracity of these allegations. (see also Electromagnetic radiation hazard). It is generally thought, however, that RF is incapable of producing any more than heating effects, as it is considered non-ionizing radiation, in other words that it lacks the energy to disrupt molecular bonds such as occurs in genetic mutations.
Another controversial but perhaps more lethal health concern is the correlation with automobile accidents. Some countries, provinces and states are considering banning hand mobile phone use whilst driving or require that a "hands-free" system be used. Many European countries and New York already require a "hands-free" device for mobile phone use in vehicles, and other U.S. states and municipalities are following suit.
As technology progresses and data demands have increased on the mobile network, the latest in scares is the 3G higher bandwidth towers. The network has sparked many health concerns and community outrage. Examples of such can be seen from headlines around the world; locals in the UK pulling down 3G masts, authorities in Denmark lobbying against the Government's rollout of 3G Networks to stop until a dispute is made, Australia — Sydney Leichhardt protests banners were demonstrated outside housing and the local school to stop the 3G mast on the roof of a supermarket. The spurt of protest appears to be the common reason for human fear, the unknown. There have been very little communications between governments and communities providing information about the introduction of 3G upgrades. The ACA (Australian Communications Authority) and ARPANSA (Australian Radiation Protection and Nuclear Safety Agency) recently announced that the 3G towers actually cause less radiation then the already present 2G network. An average radiation power output of 3watt. No governmental fact sheet is available and it is questionable that perhaps the current towers do release more radiation, however, the propagation of more towers inevitably adds to a more irradiated area.
Security concerns
Earlier mobile phones were fairly simple and the major security concern was "cloning", a variant of identity theft which is much more difficult with newer, digital systems. Many users fail to realize that a cell phone is literally a basic walkie-talkie style radio, with some computers helping along the way. Radio scanners dating to about 1996 or '97 typically can receive the old analog cell phones as easy as one can listen to an FM radio. However, over the years technology has made cell phones in the gigahertz range, well above most conventional scanners. In addition, many (most) cell phones on the market today are backed by many digital type encryption systems. There are also new means of digital communications, such as text messaging and e-mail. As of 2004, even basic phones can send and receive text messages which makes them vulnerable to attack by worms and viruses. Advanced phones capable of e-mail can be susceptible to viruses that can multiply by sending messages through a phone's address book. Of more important concern, a virus may allow unauthorized users to access a phone to find passwords or corporate data stored on the device. Moreover, they can be used to commandeer the phone to make calls or send messages at the owner's expense. Unlike computers that are restricted to only a few widespread operating systems, cellular phones use a variety of systems that require separate programs to be designed in order to disable each one. While reducing overall compatibilty from an application design standpoint, this has the beneficial effect of making it harder to design a mass attack. However, the rise of cellular phone operating system programming platforms shared by many manufacturers such as Java, Microsoft operating systems, Linux, or Symbian OS, may in the future change this status quo.
Bluetooth is a wireless communication feature now found in many higher-end phones, and the virus Cabir hijacked this function, sending Bluetooth phones on a search-and-destroy mission to infect other Bluetooth phones. In early November 2004, several web sites began offering a specific piece of software promising ringtones and screensavers for certain phones. Those who downloaded the software found that it turned each icon on the phone's screen into a skull-and-crossbones and disabled their phones, so they could no longer send or receive text messages or access contact lists or calendars. The virus has since been dubbed "Skulls" by security experts. The Commwarrior.A virus was identified in March 2005, and it attempts to replicate itself through MMS to others on the phone's contact list. Like Cabir, Commwarrior.A also tries to communicate via Bluetooth wireless connections with other devices, which can eventually lead to draining the battery. The virus requires user intervention for propagation however. Bluetooth telephones are also subject to bluejacking, which is the generally benign transmission of messages from anonymous Bluetooth users. In 2004, rumors spread of using Bluetooth to arrange casual sex hookups; this activity, widely publicized in both print and online media as toothing, was revealed to be a hoax in 2005.
Future prospects
There is a great deal of active research and development into mobile phone technology that is currently underway. Some of the improvements that are being worked on are:
- One difficulty in adapting mobile phones to new uses is form factor. For example, ebooks may well become a distinct device, because of conflicting form-factor requirements — ebooks require large screens, while phones need to be smaller. However, this may be solved using folding e-paper or built-in projectors.
- One function that will be useful in phones is translation function. Currently it is only available in stand-alone devices, such as Ectaco translators.
- Mobile phones will include various speech technologies as they are being developed. Many phones already have rudimentary speech recognition in a form of voice dialling. Of particular interest will be real-time voice translation (that must include speech recognition, machine translation and speech synthesis). However, more natural speech recognition and translation in these devices requires a drastic improvement in the state of technology: the phone's processor must be faster by several orders of magnitude with the phone requiring far more internal memory, or new ways of processing speech data must be found. Natural language processing requires inordinately powerful hardware.
- New technologies are being explored that will utilize the Extended Internet and enable mobile phones to treat a barcode as a URL tag. Phones equipped with barcode reader-enabled cameras will be able to snap photos of barcodes and direct the user to corresponding sites on the Internet. This same principle could be applied to the ability of cell phones to direct a user to web sites through the reading of RFID tags. Examples of companies that are currently developing this technology are Neomedia (via Paperclick), Airclic, and Scanbuy.
- Developments in miniaturised hard disks and flash drives to solve the storage space issue, therefore opening a window for phones to become portable music libraries and players similar to the iPod.
- The emergence of integration capabilities with other unlicensed access technologies such as a WiMAX and WLAN, as well as allowing handover between traditional operator networks supporting GSM, CDMA and UMTS to unlicensed mobile networks.
- Further improvements in battery life will be required. Colour screens and additional functions put increasing demands on the device's power source, and battery developments may not proceed sufficiently fast to compensate. However, different display technologies, such as OLED displays, e-paper or retinal displays, smarter communication hardware (directional antennae, multi-mode and peer-to-peer phones) may reduce power requirements, while new power technologies such as fuel cells may provide better energy capacity.
- Speculative improvements in the future may be inspired by an English team led by James Auger and Jimmy Loizeau who in 2002, developed an implant designed to be inserted into a tooth during dental surgery. This device consists of a radio receiver and transducer, which transmits the sound via bone conduction through the jawbone into the ear. Sound is transmitted via radio waves from another device (ostensibly a mobile phone) and received by the implant. The implant is currently powered externally, given that no current power source is small enough to fit inside the tooth with it. In addition, the implant was only designed to receive signals, not transmit them. Directly tapping into the inner ear or the auditory nerve is already technologically feasible and will become practical as surgical methods advance.
Terminology
Mobile phone terms
- Brick
- A large-sized early handheld mobile phone, such as the Motorola International 3200, nearly the size of a VHS video cassette, with the keypad and microphone on the narrow side.
- Candybar
- A housing shape that has no hinges and resembles an oblong candybar.
- Cell phone or cellular telephone
- Term used currently in the United States (and in other countries as well during the 1980s) to refer to most mobile phones. It technically applies specifically to mobile phones which use a cellular network. In developing mobile phone technology, American electrical engineers saw the main technical problem as achieving a smooth handoff from one radio antenna to the next. After they gave the name "cell" to the zone covered by each antenna, it was a natural choice for them to apply the term "cellular" to both the technology and the phones that ran on it.
- Clamshell
- A phone that opens up to reveal the keypad, microphone, and earpiece; these are typically more compact than other designs. Often called "flip phones".
- Handy
- Pronounced "Hendi", this is a pseudo-anglicism, derived from the term Handy Talkie for a handheld military radio, that is used in Austria and Germany for a mobile phone (rare alternative spelling: Händi). Similarly another pseudo-English term Hand phone is used in East and South Asian countries like South Korea, Malaysia and Singapore.
- Mobile phone
- A term covering cellular phones, satellite phones and any phones giving wide ranging mobility, used in most English-speaking countries except the United States.
- Mobile
- Short form of the above, a term in everyday usage in some English speaking countries such as the UK.
- Satellite phone
- A mobile phone which communicates with a satellite rather than a land-based network.
- Wireless phone
- This is a term which is generally used to refer to a mobile phone although it could legitimately cover almost any phone which does not use a wire.
- 3G phone
- A mobile phone which uses a 3G network, with greater bandwidth allowing faster data downloads and face to face video calling.
Related systems which are not mobile phones
- Cordless Phone (Portable Phone)
- Cordless phones are standard telephones with radio handsets. Unlike mobile phones, cordless phones use private base stations that are not shared between subscribers. The base station is connected to a land-line.
- Radio Phone
- This is an term which covers radios which could connect into the telephone network. These phones may not be mobile, for example, they may require a mains power supply.
- Professional Mobile Radio
- Professional mobile radio systems are very similar to mobile phone systems and attempts have even been made to use TETRA, the international digital PMR standard, to implement public mobile networks, but normally PMR systems are sufficiently separate from the phone network to not really be considered phones but rather radios.
Terms in other languages
Mobile phones are known as:
- cell phones or cells in Canada, Pakistan, South Africa, United States
- cellphones or cells in the Philippines (A modification of the word, celfone, is used by the general public when using the word for texting)
- celulares (singular form celular) in Brazil, Chile, Mexico, Puerto Rico and other spanish speaking countries as the spanish word for Cellular
- dzhiesem (джиесем) (from GSM) in Bulgaria, refers only to GSM mobile phones
- Farsími (Official for all mobile phone systems), Gemsi (means young sheep, referring to GSM), GSM-sími (For phones using the GSM System), or NMT-sími (For phones using the Nordic Mobile Telephone-system) in Iceland
- fònaichean làimhe (meaning hand phone; singular form fòn làimhe) or fònaichean phoca (meaning pocket phone; singular form fòn phoca) in Scottish Gaelic
- guthán soghluaiste or fón póca in Irish Gaelic
- GSMs in Belgium.
- hand phones or handphones in many Asian countries such as South Korea
- Handys in Germany and Austria
- telefon-hamráh or hamráh (تلفن همراه, literally companion phone) in Iran
- jawwal (mobile) in Saudi Arabia
- Keitai (携帯,portable, short for keitai denwa,携帯電話, portable telephone) in Japan; semantic development is very close to words like mobile
- khelyawi (cellular) in Lebanon
- kinitó (κινητό), short for kinitó tiléfono (κινητό τηλέφωνο), which means mobile phone in Greece and Cyprus
- komórki (singular form komórka) or telefon komórkowy, meaning cells/cellular phone in Poland
- mahmool (محمول) in Arabic
- matkapuhelimet (literally travel-phones, singular form matkapuhelin) or kännykät (singular form kännykkä, very close in meaning to the German Handy) in Finland; actually trademarked by Nokia in 1987 but fallen into generic use and would probably not be upheld any more if contested in a court of law
- Meu Teu in Thailand
- mobieltjes in the Netherlands
- mobifon (мобифон), a contraction of mobilen telefon (мобилен телефон) in Bulgaria, which came into usage with the introduction of 1G mobile phones. As GSM mobile phones became more widely used, some started calling them dzhiesem as to distinguish them from 1G phones. The remaining 1G phones are still refered to as mobifon, while GSM phones are refered to by most as dzhiesem, although it is looked down upon by some.
- mobil in Slovakia
- mòbils in Andorra
- mobiles in Australia, India, Ireland, New Zealand, UK
- mobilní telefony (singular form mobilní telefon), or simply mobily (mobil) in Czech Republic
- mobilny telefon (= mobile phone), or mobilnik for short. Older names are sotovy telefon (= cell phone) and trubka (= handset) in Russia
- mobiltelefon or a mobil in Denmark, Hungary, Norway, Sweden (sometimes nalle in Sweden, meaning teddy bear translated to English, originally referring to the term yuppie-nalle since until the late 1980s only rich yuppies could afford them and they showed them off in a way that looked as they were carrying a yuppie teddy bear, nowadays only nalle is used representing that people always carry them around and feel insecure if they misplace them, like a child missing their teddy bear)
- /pelefon/ (literally wonder-phone), as derived from the first such operator, or /najad/ (mobile) in Israel
- móviles (móvil) in Spanish and mòbils (mòbil) in Catalan in Spain
- Natel ("Nationales Autotelefon") in Switzerland
- Ponsel (telepon selular, cellular phones), or HP (shortened from Hand Phone, but pronounced ha-pe, not like HP in English) in Indonesia
- poŝtelefonoj ("pocket phones", pronounced poshtelefonoy) by users of Esperanto
- portable (literally portable) in France
- sau kei (hand machine) in Hong Kong*
- shǒu jī (手機 hand machine * Same term for Hong Kong) or xíng dòng dǐan hùa (行動電話 mobile phone) in Mainland China and Taiwan
- Telefonino (meaning small phone), or Cellulare (short form for Telefono cellulare) in Italy
- /telefon selolari/ (cellular phone) in formal hebrew
- telefon mobil (pl. telefoane mobile), but the short form is more common: mobil (mobile) in Romania
- telemóveis (singular form telemóvel) in Portugal
- telefoonka gacanta (literally "hand's phone") in Somalia
See also
- Mobile phone generations: 0G, 1G, 2G, 2.5G, 2.75G, 3G and 4G
- History of mobile phones
- Smartphone
- Digital camera integration.
- Japanese cell phone culture
- Largest mobile phone companies
- List of mobile phones running Linux
- Satellite: Iridium, Inmarsat
- Location based service and GSM localization.
- GPS integration.
- MIDlet
- Push to talk
- Over The Air Programmable
- Mobile Payment Services Association
- Mobile phones on aircraft
- Fixed-line telephony
- Telecommunication
- Messages: SMS, MMS
- Wire and Wireless Connectivity: Bluetooth, bluechat, bluedating, wifi, USB.
- Mobile power: battery, car lighter, solar energy
- Marine and mobile radio telephony
- Dropped call
- Microbrowser
- E-waste
- moblog - mobile weblog
- Wireless Village - mobile phone instant messaging protocol
External links
- Wireless Glossary
- Cell Phone Glossary
- Mobile Phone Reviews
- USA Mobile and Cell Phone FAQs.
- Cell Phone Safety
- How Cell Phones Work
- Linux and mobile phones
- Mobile Imaging and Printing Consortium (MIPC).
- Wikipedia on WAP enabled cellular phones
- Wireless Local Number Portability - WLNP
- Mobile Banking
- repair and upgrade instructions for mobile (cell) phones
- GSM Helpdesk Netherlands (information and support)