Automated teller machine

From Wikipedia, the free encyclopedia
  (Redirected from Automatic Teller Machine)
Jump to: navigation, search
"Cash machine" redirects here. For the Hard-Fi song, see Cash Machine.
An NCR Personas 75-Series interior, multi-function ATM in the United States
Smaller indoor ATMs dispense money inside convenience stores and other busy areas, such as this off-premises Wincor Nixdorf mono-function ATM in Sweden.

An automated teller machine or automatic teller machine[1][2][3] (ATM, American, Australian, Singaporean, Indian, Maldivian, and Hiberno-English), also known as an automated banking machine (ABM, Canadian English), cash machine, cashpoint, cashline, or colloquially hole in the wall (Australian, British, South African, and Sri Lankan English), is an electronic telecommunications device that enables the customers of a financial institution to perform financial transactions without the need for a human cashier, clerk or bank teller.

On most modern ATMs, the customer is identified by inserting a plastic ATM card with a magnetic stripe or a plastic smart card with a chip that contains a unique card number and some security information such as an expiration date or CVVC (CVV). Authentication is provided by the customer entering a personal identification number (PIN).

Using an ATM, customers can access their bank deposit or credit accounts in order to make a variety of transactions such as cash withdrawals, check balances, or credit mobile phones. If the currency being withdrawn from the ATM is different from that in which the bank account is denominated the money will be converted at an official exchange rate. Thus, ATMs often provide the best possible exchange rates for foreign travellers, and are widely used for this purpose.[4]

History[edit]

An old Nixdorf ATM

The idea of self-service in retail banking developed through independent and simultaneous efforts in Japan, Sweden, the United Kingdom and the United States. In the US patent record, Luther George Simjian has been credited with developing a "prior art device".[5] Specifically his 132nd patent (US3079603) was first filed on 30 June 1960 (and granted 26 February 1963). The roll-out of this machine, called Bankograph, was delayed by a couple of years, due in part to Simjian's Reflectone Electronics Inc. being acquired by Universal Match Corporation.[6] An experimental Bankograph was installed in New York City in 1961 by the City Bank of New York, but removed after six months due to the lack of customer acceptance. The Bankograph was an automated envelope deposit machine (accepting coins, cash and cheques) and did not have cash dispensing features.[7]

In simultaneous and independent efforts, engineers in Japan, Sweden, and Britain developed their own cash machines during the early 1960s.[8] The first of these that was put into use was by Barclays Bank in Enfield Town in North London, United Kingdom,[9] on 27 June 1967. This machine was the first in the world and was used by English comedy actor Reg Varney. This instance of the invention is credited to John Shepherd-Barron of printing firm De La Rue,[10] who was awarded an OBE in the 2005 New Year Honours.[11] This design used paper cheques issued by a teller or cashier, marked with carbon-14 for machine readability and security, which in a latter model were matched with a personal identification number.[10][12]

ATM of Sberbank in Tolyatti, Russia

The Barclays-De La Rue machine (called De La Rue Automatic Cash System or DACS)[13] beat the Swedish saving banks' and a company called Metior's machine (a device called Bankomat) by a mere nine days and Westminster Bank’s-Smith Industries-Chubb system (called Chubb MD2) by a month.[14] The online version of the Swedish machine is listed to been operational on 6 May 1968, while claiming to be the first online cash machine in the world (ahead of a similar claim by IBM and Lloyds Bank in 1971).[15] The collaboration of a small start-up called Speytec and Midland Bank developed a third machine which was marketed after 1969 in Europe and the USA by the Burroughs Corporation. The patent for this device (GB1329964) was filed on September 1969 (and granted in 1973) by John David Edwards, Leonard Perkins, John Henry Donald, Peter Lee Chappell, Sean Benjamin Newcombe & Malcom David Roe.

Both the DACS and MD2 accepted only a single-use token or voucher which was retained by the machine while the Speytec worked with a card with a magnetic strip at the back. They used principles including Carbon-14 and low-coercivity magnetism in order to make fraud more difficult. The idea of a PIN stored on the card was developed by a British engineer working on the MD2 named James Goodfellow in 1965 (patent GB1197183 filed on 2 May 1966 with Anthony Davies). The essence of this system was that it enabled the verification of the customer with the debited account without human intervention. This patent is also the earliest instance of a complete “currency dispenser system” in the patent record. This patent was filed on 5 March 1968 in the USA (US 3543904) and granted on 1 December 1970. It had a profound influence on the industry as a whole. Not only did future entrants into the cash dispenser market such as NCR Corporation and IBM licence Goodfellow’s PIN system, but a number of later patents reference this patent as “Prior Art Device”.[16]

In January 9, 1969 ABC newspaper (Madrid edition) there's an article about the new Bancomat, a teller machine installed in downtown Madrid, Spain, by Banesto, dispensing 1000 peseta bills (1 to 5 max). Each user had to introduce a security personal key using a combination of the ten numeric buttons.[17] In March of the same year an ad with the instructions to use the Bancomat was published in the same Newspaper [18] Bancomat was the first ATM installed in Spain, one of the first in Europe (actually the third), and in the whole world.

1969 ABC news report on the introduction of ATMs in Sydney, Australia. People could only receive $25 at a time and the bank card was sent back to the user at a later date.

Docutel United States 1969[edit]

After looking first hand at the experiences in Europe, in 1968 the networked ATM was pioneered in the US, in Dallas, Texas, by Donald Wetzel, who was a department head at an automated baggage-handling company called Docutel. Recognised by the United States Patent Office for having invented the ATM network are Fred J. Gentile and Jack Wu Chang, under US Patent # 3,833,885. On September 2, 1969, Chemical Bank installed the first ATM in the U.S. at its branch in Rockville Centre, New York. The first ATMs were designed to dispense a fixed amount of cash when a user inserted a specially coded card.[19] A Chemical Bank advertisement boasted "On Sept. 2 our bank will open at 9:00 and never close again."[20] Chemical's ATM, initially known as a Docuteller was designed by Donald Wetzel and his company Docutel. Chemical executives were initially hesitant about the electronic banking transition given the high cost of the early machines. Additionally, executives were concerned that customers would resist having machines handling their money.[21] In 1995, the Smithsonian National Museum of American History recognised Docutel and Wetzel as the inventors of the networked ATM.[22]

The first modern ATM was an IBM 2984 and came into use at Lloyd Bank, Brentwood High Street, Essex, England in December 1972. The IBM 2984 was designed at the request of Lloyds Bank. The 2984 Cash Issuing Terminal was the first true ATM, similar in function to today's machines and named a by Lloyds Bank: Cashpoint; Cashpoint is still a registered trademark of Lloyds TSB in the UK. All were online and issued a variable amount which was immediately deducted from the account. A small number of 2984s were supplied to a US bank. A couple of well known historical models of ATMs include the IBM 3614, IBM 3624 and 473x series, Diebold 10xx and TABS 9000 series, NCR 1780 and earlier NCR 770 series.

The newest ATM at Royal Bank of Scotland allows customers to withdraw cash up to £100 without a card by inputting a six-digit code requested through their smartphones.[23]

Location[edit]

An ATM Encrypting PIN Pad (EPP) with German markings
ATM in Vatican with menu in Latin language

ATMs are placed not only near or inside the premises of banks, but also in locations such as shopping centers/malls, airports, grocery stores, petrol/gas stations, restaurants, or anywhere frequented by large numbers of people. There are two types of ATM installations: on- and off-premises. On-premises ATMs are typically more advanced, multi-function machines that complement a bank branch's capabilities, and are thus more expensive. Off-premises machines are deployed by financial institutions and Independent Sales Organisations (ISOs) where there is a simple need for cash, so they are generally cheaper single function devices. In Canada, ATMs (also known there as ABMs) not operated by a financial institution are known as "white-label ABMs".

In the U.S., Canada and some Gulf countries, banks often have drive-thru lanes providing access to ATMs using an automobile.

Many ATMs have a sign above them, indicating the name of the bank or organisation owning the ATM and possibly including the list of ATM networks to which that machine is connected.

ATMs can also be found in train stations and metro stations. In recent times, countries like India and some countries in Africa are installing ATM's in rural areas as well, which are solar powered. These ATM's also do not require air conditioning.

Financial networks[edit]

An ATM in the Netherlands. The logos of a number of interbank networks this ATM is connected to are shown

Most ATMs are connected to interbank networks, enabling people to withdraw and deposit money from machines not belonging to the bank where they have their accounts or in the countries where their accounts are held (enabling cash withdrawals in local currency). Some examples of interbank networks include NYCE, PULSE, PLUS, Cirrus, AFFN, Interac, Interswitch, STAR, LINK, MegaLink and BancNet.

ATMs rely on authorisation of a financial transaction by the card issuer or other authorising institution on a communications network. This is often performed through an ISO 8583 messaging system.

Many banks charge ATM usage fees. In some cases, these fees are charged solely to users who are not customers of the bank where the ATM is installed; in other cases, they apply to all users.

In order to allow a more diverse range of devices to attach to their networks, some interbank networks have passed rules expanding the definition of an ATM to be a terminal that either has the vault within its footprint or utilises the vault or cash drawer within the merchant establishment, which allows for the use of a scrip cash dispenser.

A Diebold 1063ix with a dial-up modem visible at the base

ATMs typically connect directly to their host or ATM Controller on either ADSL or dial-up modem over a telephone line or directly on a leased line. Leased lines are preferable to plain old telephone service (POTS) lines because they require less time to establish a connection. Less-trafficked machines will usually rely on a dial-up modem on a POTS line rather than using a leased line, since a leased line may be comparatively more expensive to operate compared to a POTS line. That dilemma may be solved as high-speed Internet VPN connections become more ubiquitous. Common lower-level layer communication protocols used by ATMs to communicate back to the bank include SNA over SDLC, TC500 over Async, X.25, and TCP/IP over Ethernet.

In addition to methods employed for transaction security and secrecy, all communications traffic between the ATM and the Transaction Processor may also be encrypted using methods such as SSL.[24]

Global use[edit]

ATMs at the railway station in Poznań

There are no hard international or government-compiled numbers totaling the complete number of ATMs in use worldwide. Estimates developed by ATMIA place the number of ATMs in use currently at over 2.2 million, or approximately 1 ATM per 3000 people in the world.[25]

To simplify the analysis of ATM usage around the world, financial institutions generally divide the world into seven regions, due to the penetration rates, usage statistics, and features deployed. Four regions (USA, Canada, Europe, and Japan) have high numbers of ATMs per million people.[26][27] Despite the large number of ATMs, there is additional demand for machines in the Asia/Pacific area as well as in Latin America.[28][29] ATMs have yet to reach high numbers in the Near East and Africa.[30]

One of the world's most northerly installed ATMs is located at Longyearbyen, Svalbard, Norway.

The world's most southerly installed ATM is located at McMurdo Station, located in New Zealand's Ross Dependency, in Antarctica.[31]

According to international statistics, the highest installed ATM in the world is located at Nathu La Pass, in India, installed by the Indian Axis Bank at 4023 metres (13200 ft).[32] According to the Mainland Chinese media and CPC statistics, the highest installed ATM in the world is located in Nagchu County, Tibet, China, at 4500 metres, allegedly installed by the Agricultural Bank of China.[33][unreliable source?][34][unreliable source?]

Israel has the world's lowest installed ATM at Ein Bokek at the Dead Sea, installed independently by a grocery store at 421 metres below sea level.[35]

While ATMs are ubiquitous on modern cruise ships, ATMs can also be found on some US Navy ships.[36]

Welcome message displayed on the world's most northerly ATM located in the post office at Longyearbyen

Hardware[edit]

A block diagram of an ATM

An ATM is typically made up of the following devices:

  • CPU (to control the user interface and transaction devices)
  • Magnetic or chip card reader (to identify the customer)
  • PIN pad EEP4 (similar in layout to a touch tone or calculator keypad), manufactured as part of a secure enclosure
  • Secure cryptoprocessor, generally within a secure enclosure
  • Display (used by the customer for performing the transaction)
  • Function key buttons (usually close to the display) or a touchscreen (used to select the various aspects of the transaction)
  • Record printer (to provide the customer with a record of the transaction)
  • Vault (to store the parts of the machinery requiring restricted access)
  • Housing (for aesthetics and to attach signage to)
  • Sensors and indicators

Due to heavier computing demands and the falling price of personal computer-like architectures, ATMs have moved away from custom hardware architectures using microcontrollers or application-specific integrated circuits and have adopted the hardware architecture of a personal computer, such as USB connections for peripherals, Ethernet and IP communications, and use personal computer operating systems.

Business owners often lease ATM terminals from ATM service providers, however based on the economies of scale, the price of equipment has dropped to the point where many business owners are simply paying for ATMs using a credit card.

New ADA voice and text-to-speech guidelines imposed in 2010, but required by March 2012[37] have forced many ATM owners to either upgrade non-compliant machines or dispose them if they are not up-gradable, and purchase new compliant equipment. This has created an avenue for hackers and thieves to obtain ATM hardware at junkyards from improperly disposed decommissioned ATMs.[38]

Two Loomis employees refilling an ATM at the Downtown Seattle REI

The vault of an ATM is within the footprint of the device itself and is where items of value are kept. Scrip cash dispensers do not incorporate a vault.

Mechanisms found inside the vault may include:

  • Dispensing mechanism (to provide cash or other items of value)
  • Deposit mechanism including a check processing module and bulk note acceptor (to allow the customer to make deposits)
  • Security sensors (magnetic, thermal, seismic, gas)
  • Locks (to ensure controlled access to the contents of the vault)
  • Journaling systems; many are electronic (a sealed flash memory device based on in-house standards) or a solid-state device (an actual printer) which accrues all records of activity including access timestamps, number of notes dispensed, etc. This is considered sensitive data and is secured in similar fashion to the cash as it is a similar liability.

ATM vaults are supplied by manufacturers in several grades. Factors influencing vault grade selection include cost, weight, regulatory requirements, ATM type, operator risk avoidance practices and internal volume requirements.[39] Industry standard vault configurations include Underwriters Laboratories UL-291 "Business Hours" and Level 1 Safes,[40] RAL TL-30 derivatives,[41] and CEN EN 1143-1 - CEN III and CEN IV.[42][43]

ATM manufacturers recommend that an ATM vault be attached to the floor to prevent theft,[44] though there is a record of a theft conducted by tunnelling into an ATM floor.[citation needed]

Software[edit]

With the migration to commodity Personal Computer hardware, standard commercial "off-the-shelf" operating systems, and programming environments can be used inside of ATMs. Typical platforms previously used in ATM development include RMX or OS/2.

Today the vast majority of ATMs worldwide use a Microsoft Windows operating system, primarily Windows XP Professional or Windows XP Embedded.[citation needed] A small number of deployments may still be running older versions of Windows OS such as Windows NT, Windows CE, or Windows 2000.

There is a computer industry security view that general public desktop operating systems have greater risks as operating systems for cash dispensing machines than other types of operating systems like (secure) real-time operating systems (RTOS). RISKS Digest has many articles about cash machine operating system vulnerabilities.[45]

Linux is also finding some reception in the ATM marketplace. An example of this is Banrisul, the largest bank in the south of Brazil, which has replaced the MS-DOS operating systems in its ATMs with Linux. Banco do Brasil is also migrating ATMs to Linux. Indian-based Vortex Engineering is Manufacturing ATM's which operates only with Linux. Common application layer transaction protocols, such as Diebold 91x (911 or 912) and NCR NDC or NDC+ provide emulation of older generations of hardware on newer platforms with incremental extensions made over time to address new capabilities, although companies like NCR continuously improve these protocols issuing newer versions (e.g. NCR's AANDC v3.x.y, where x.y are subversions). Most major ATM manufacturers provide software packages that implement these protocols. Newer protocols such as IFX have yet to find wide acceptance by transaction processors.[46]

With the move to a more standardised software base, financial institutions have been increasingly interested in the ability to pick and choose the application programs that drive their equipment. WOSA/XFS, now known as CEN XFS (or simply XFS), provides a common API for accessing and manipulating the various devices of an ATM. J/XFS is a Java implementation of the CEN XFS API.

While the perceived benefit of XFS is similar to the Java's "Write once, run anywhere" mantra, often different ATM hardware vendors have different interpretations of the XFS standard. The result of these differences in interpretation means that ATM applications typically use a middleware to even out the differences between various platforms.

With the onset of Windows operating systems and XFS on ATM's, the software applications have the ability to become more intelligent. This has created a new breed of ATM applications commonly referred to as programmable applications. These types of applications allows for an entirely new host of applications in which the ATM terminal can do more than only communicate with the ATM switch. It is now empowered to connected to other content servers and video banking systems.

Notable ATM software that operates on XFS platforms include Triton PRISM, Diebold Agilis EmPower, NCR APTRA Edge, Absolute Systems AbsoluteINTERACT, KAL Kalignite Software Platform, Phoenix Interactive VISTAatm, Wincor Nixdorf ProTopas and Euronet EFTS.

With the move of ATMs to industry-standard computing environments, concern has risen about the integrity of the ATM's software stack.[47]

Security[edit]

Security, as it relates to ATMs, has several dimensions. ATMs also provide a practical demonstration of a number of security systems and concepts operating together and how various security concerns are dealt with.

Physical[edit]

A Wincor Nixdorf Procash 2100xe Frontload that was opened with an angle grinder
Automated Teller Machine In Dezfull in southwest of Iran

Early ATM security focused on making the ATMs invulnerable to physical attack; they were effectively safes with dispenser mechanisms. A number of attacks on ATMs resulted, with thieves attempting to steal entire ATMs by ram-raiding.[48] Since late 1990s, criminal groups operating in Japan improved ram-raiding by stealing and using a truck loaded with heavy construction machinery to effectively demolish or uproot an entire ATM and any housing to steal its cash.[49]

Another attack method, plofkraak, is to seal all openings of the ATM with silicone and fill the vault with a combustible gas or to place an explosive inside, attached, or near the ATM. This gas or explosive is ignited and the vault is opened or distorted by the force of the resulting explosion and the criminals can break in.[50] This type of theft has occurred in the Netherlands, Belgium, France, Denmark, Germany and Australia.[51][52] This type of attacks can be prevented by a number of gas explosion prevention devices also known as gas suppression system. These systems use explosive gas detection sensor to detect explosive gas and to neutralise it by releasing a special explosion suppression chemical which changes the composition of the explosive gas and renders it ineffective.

Several attacks in the UK (at least one of which was successful) have emulated the traditional WW2 escape from POW camps by digging a concealed tunnel under the ATM and cutting through the reinforced base to remove the money.[53]

Modern ATM physical security, per other modern money-handling security, concentrates on denying the use of the money inside the machine to a thief, by using different types of Intelligent Banknote Neutralisation Systems.

A common method is to simply rob the staff filling the machine with money. To avoid this, the schedule for filling them is kept secret, varying and random. The money is often kept in cassettes, which will dye the money if incorrectly opened.

Transactional secrecy and integrity[edit]

A Triton brand ATM with a dip style card reader and a triple DES keypad

The security of ATM transactions relies mostly on the integrity of the secure cryptoprocessor: the ATM often uses general commodity components that sometimes are not considered to be "trusted systems".

Encryption of personal information, required by law in many jurisdictions, is used to prevent fraud. Sensitive data in ATM transactions are usually encrypted with DES, but transaction processors now usually require the use of Triple DES.[54] Remote Key Loading techniques may be used to ensure the secrecy of the initialisation of the encryption keys in the ATM. Message Authentication Code (MAC) or Partial MAC may also be used to ensure messages have not been tampered with while in transit between the ATM and the financial network. In some countries a system has been developed that if the ATM card holder is told to withdraw the cash forcefully by the thief then if he entered his card password starting from the last digit to the first digit then the alarm will sound in the nearest police station[citation needed].

Customer identity integrity[edit]

A BTMU ATM with a palm scanner (to the right of the screen)

There have also been a number of incidents of fraud by Man-in-the-middle attacks, where criminals have attached fake keypads or card readers to existing machines. These have then been used to record customers' PINs and bank card information in order to gain unauthorised access to their accounts. Various ATM manufacturers have put in place countermeasures to protect the equipment they manufacture from these threats.[55][56]

Alternative methods to verify cardholder identities have been tested and deployed in some countries, such as finger and palm vein patterns,[57] iris, and facial recognition technologies. Cheaper mass-produced equipment has been developed and is being installed in machines globally that detect the presence of foreign objects on the front of ATMs, current tests have shown 99% detection success for all types of skimming devices.[58]

Device operation integrity[edit]

ATMs that are exposed to the outside must be vandal and weather resistant

Openings on the customer-side of ATMs are often covered by mechanical shutters to prevent tampering with the mechanisms when they are not in use. Alarm sensors are placed inside the ATM and in ATM servicing areas to alert their operators when doors have been opened by unauthorised personnel.

Rules are usually set by the government or ATM operating body that dictate what happens when integrity systems fail. Depending on the jurisdiction, a bank may or may not be liable when an attempt is made to dispense a customer's money from an ATM and the money either gets outside of the ATM's vault, or was exposed in a non-secure fashion, or they are unable to determine the state of the money after a failed transaction.[59] Customers often commented that it is difficult to recover money lost in this way, but this is often complicated by the policies regarding suspicious activities typical of the criminal element.[60]

Customer security[edit]

Dunbar Armored ATM Techs watching over ATMs that have been installed in a van

In some countries, multiple security cameras and security guards are a common feature.[61] In the United States, The New York State Comptroller's Office has advised the New York State Department of Banking to have more thorough safety inspections of ATMs in high crime areas.[62]

Consultants of ATM operators assert that the issue of customer security should have more focus by the banking industry;[63] it has been suggested that efforts are now more concentrated on the preventive measure of deterrent legislation than on the problem of ongoing forced withdrawals.[64]

At least as far back as July 30, 1986, consultants of the industry have advised for the adoption of an emergency PIN system for ATMs, where the user is able to send a silent alarm in response to a threat.[65] Legislative efforts to require an emergency PIN system have appeared in Illinois,[66] Kansas[67] and Georgia,[68] but none have succeeded yet. In January 2009, Senate Bill 1355 was proposed in the Illinois Senate that revisits the issue of the reverse emergency PIN system.[69] The bill is again supported by the police and denied by the banking lobby.[70]

In 1998 three towns outside the Cleveland, Ohio, in response to an ATM crime wave, adopted ATM Consumer Security Legislation requiring that an emergency telephone number switch be installed at all outside ATMs within their jurisdiction. In the wake of an ATM Murder in Sharon Hill, Pennsylvania, The City Council of Sharon Hill passed an ATM Consumer Security Bill as well. As of July 2009, ATM Consumer Security Legislation is currently pending in New York, New Jersey, and Washington D.C.

In China and elsewhere, many efforts to promote security have been made. On-premises ATMs are often located inside the bank's lobby which may be accessible 24 hours a day. These lobbies have extensive security camera coverage, a courtesy telephone for consulting with the bank staff, and a security guard on the premises. Bank lobbies that are not guarded 24 hours a day may also have secure doors that can only be opened from outside by swiping the bank card against a wall-mounted scanner, allowing the bank to identify which card enters the building. Most ATMs will also display on-screen safety warnings and may also be fitted with convex mirrors above the display allowing the user to see what is happening behind them.

As of 2013, the only claim available about the extent of ATM connected homicides is that they range from 500 to 1000 nationwide, covering only cases where the victim had an ATM card and the card was used by the killer after the known time of death.[71]

Uses[edit]

Two NCR Personas 84 ATMs at a bank in Jersey dispensing two types of pound sterling banknotes: Bank of England on the left, and States of Jersey on the right

Although ATMs were originally developed as just cash dispensers, they have evolved to include many other bank-related functions:

  • Paying routine bills, fees, and taxes (utilities, phone bills, social security, legal fees, taxes, etc.)
  • Printing bank statements
  • Updating passbooks
  • Cash advances
  • Cheque Processing Module
  • Paying (in full or partially) the credit balance on a card linked to a specific current account.
  • Transferring money between linked accounts (such as transferring between checking and savings accounts)
  • Deposit currency recognition, acceptance, and recycling[72][73]

In some countries, especially those which benefit from a fully integrated cross-bank ATM network (e.g.: Multibanco in Portugal), ATMs include many functions which are not directly related to the management of one's own bank account, such as:

Gold vending ATM in New York City

Increasingly banks are seeking to use the ATM as a sales device to deliver pre approved loans and targeted advertising using products such as ITM (the Intelligent Teller Machine) from Aptra Relate from NCR.[76] ATMs can also act as an advertising channel for other companies.[77]*

A South Korean ATM with mobile bank port and bar code reader

However several different technologies on ATMs have not yet reached worldwide acceptance, such as:

  • Videoconferencing with human tellers, known as video tellers[78]
  • Biometrics, where authorisation of transactions is based on the scanning of a customer's fingerprint, iris, face, etc.[79][80][81]
  • Cheque/Cash Acceptance, where the ATM accepts and recognise cheques and/or currency without using envelopes[82] Expected to grow in importance in the US through Check 21 legislation.
  • Bar code scanning[83]
  • On-demand printing of "items of value" (such as movie tickets, traveler's cheques, etc.)
  • Dispensing additional media (such as phone cards)
  • Co-ordination of ATMs with mobile phones[84]
  • Integration with non-banking equipment[85][86]
  • Games and promotional features[87]
  • CRM at the ATM

E.G. In Canada, ATMs are called guichets automatiques in French and sometimes "Bank Machines" in English. The Interac shared cash network does not allow for the selling of goods from ATMs due to specific security requirements for PIN entry when buying goods.[88] CIBC machines in Canada, are able to top-up the minutes on certain pay as you go phones.

Reliability[edit]

An ATM running Microsoft Windows that has crashed due to a peripheral component failure

Before an ATM is placed in a public place, it typically has undergone extensive testing with both test money and the backend computer systems that allow it to perform transactions. Banking customers also have come to expect high reliability in their ATMs,[89] which provides incentives to ATM providers to minimise machine and network failures. Financial consequences of incorrect machine operation also provide high degrees of incentive to minimise malfunctions.[90]

ATMs and the supporting electronic financial networks are generally very reliable, with industry benchmarks typically producing 98.25% customer availability for ATMs[91] and up to 99.999% availability for host systems that manage the networks of ATMs. If ATM networks do go out of service, customers could be left without the ability to make transactions until the beginning of their bank's next time of opening hours.

This said, not all errors are to the detriment of customers; there have been cases of machines giving out money without debiting the account, or giving out higher value notes as a result of incorrect denomination of banknote being loaded in the money cassettes.[92] The result of receiving too much money may be influenced by the card holder agreement in place between the customer and the bank.[93][94]

Errors that can occur may be mechanical (such as card transport mechanisms; keypads; hard disk failures; envelope deposit mechanisms); software (such as operating system; device driver; application); communications; or purely down to operator error.

To aid in reliability, some ATMs print each transaction to a roll paper journal that is stored inside the ATM, which allows both the users of the ATMs and the related financial institutions to settle things based on the records in the journal in case there is a dispute. In some cases, transactions are posted to an electronic journal to remove the cost of supplying journal paper to the ATM and for more convenient searching of data.

Improper money checking can cause the possibility of a customer receiving counterfeit banknotes from an ATM. While bank personnel are generally trained better at spotting and removing counterfeit cash,[95][96] the resulting ATM money supplies used by banks provide no guarantee for proper banknotes, as the Federal Criminal Police Office of Germany has confirmed that there are regularly incidents of false banknotes having been dispensed through bank ATMs.[97] Some ATMs may be stocked and wholly owned by outside companies, which can further complicate this problem. Bill validation technology can be used by ATM providers to help ensure the authenticity of the cash before it is stocked in an ATM; ATMs that have cash recycling capabilities include this capability.[98]

Fraud[edit]

As with any device containing objects of value, ATMs and the systems they depend on to function are the targets of fraud. Fraud against ATMs and people's attempts to use them takes several forms.

The first known instance of a fake ATM was installed at a shopping mall in Manchester, Connecticut in 1993. By modifying the inner workings of a Fujitsu model 7020 ATM, a criminal gang known as The Bucklands Boys were able to steal information from cards inserted into the machine by customers.[99]

WAVY-TV reported an incident in Virginia Beach in September 2006 where a hacker who had probably obtained a factory-default administrator password for a gas station's white label ATM caused the unit to assume it was loaded with US$5 bills instead of $20s, enabling himself—and many subsequent customers—to walk away with four times the money they wanted to withdraw.[100] This type of scam was featured on the TV series The Real Hustle.

ATM behavior can change during what is called "stand-in" time, where the bank's cash dispensing network is unable to access databases that contain account information (possibly for database maintenance). In order to give customers access to cash, customers may be allowed to withdraw cash up to a certain amount that may be less than their usual daily withdrawal limit, but may still exceed the amount of available money in their accounts, which could result in fraud if the customers intentionally withdraw more money than what they had in their accounts.[101]

Card fraud[edit]

ATM lineup

In an attempt to prevent criminals from shoulder surfing the customer's personal identification number (PIN), some banks draw privacy areas on the floor.

For a low-tech form of fraud, the easiest is to simply steal a customer's card along with its PIN. A later variant of this approach is to trap the card inside of the ATM's card reader with a device often referred to as a Lebanese loop. When the customer gets frustrated by not getting the card back and walks away from the machine, the criminal is able to remove the card and withdraw cash from the customer's account, using the card and its PIN.

This type of ATM fraud has spread globally. Although somewhat replaced in terms of volume by ATM skimming incidents, a re-emergence of card trapping has been noticed in regions such as Europe, where EMV chip and PIN cards have increased in circulation.[102]

Another simple form of fraud involves attempting to get the customer's bank to issue a new card and its PIN and stealing them from their mail.[103]

By contrast, a newer high-tech method of operating, sometimes called card skimming or card cloning, involves the installation of a magnetic card reader over the real ATM's card slot and the use of a wireless surveillance camera or a modified digital camera or a false PIN keypad to observe the user's PIN. Card data is then cloned into a duplicate card and the criminal attempts a standard cash withdrawal. The availability of low-cost commodity wireless cameras, keypads, card readers, and card writers has made it a relatively simple form of fraud, with comparatively low risk to the fraudsters.[104]

In an attempt to stop these practices, countermeasures against card cloning have been developed by the banking industry, in particular by the use of smart cards which cannot easily be copied or spoofed by unauthenticated devices, and by attempting to make the outside of their ATMs tamper evident. Older chip-card security systems include the French Carte Bleue, Visa Cash, Mondex, Blue from American Express[105] and EMV '96 or EMV 3.11. The most actively developed form of smart card security in the industry today is known as EMV 2000 or EMV 4.x.

EMV is widely used in the UK (Chip and PIN) and other parts of Europe, but when it is not available in a specific area, ATMs must fall back to using the easy–to–copy magnetic strip to perform transactions. This fallback behaviour can be exploited.[106] However the fall-back option has been removed on the ATMs of some UK banks, meaning if the chip is not read, the transaction will be declined.

Card cloning and skimming can be detected by the implementation of magnetic card reader heads and firmware that can read a signature embedded in all magnetic strips during the card production process. This signature, known as a "MagnePrint" or "BluPrint", can be used in conjunction with common two-factor authentication schemes used in ATM, debit/retail point-of-sale and prepaid card applications.

Some ATMs may put up warning messages to customers to be vigilant of possible tampering.

The concept and various methods of copying the contents of an ATM card's magnetic strip onto a duplicate card to access other people's financial information was well known in the hacking communities by late 1990.[107]

In 1996, Andrew Stone, a computer security consultant from Hampshire in the UK, was convicted of stealing more than £1 million by pointing high-definition video cameras at ATMs from a considerable distance, and by recording the card numbers, expiry dates, etc. from the embossed detail on the ATM cards along with video footage of the PINs being entered. After getting all the information from the videotapes, he was able to produce clone cards which not only allowed him to withdraw the full daily limit for each account, but also allowed him to sidestep withdrawal limits by using multiple copied cards. In court, it was shown that he could withdraw as much as £10,000 per hour by using this method. Stone was sentenced to five years and six months in prison.[108]

In February 2009, a group of criminals used counterfeit ATM cards to steal $9 million from 130 ATMs in 49 cities around the world, all within a period of 30 minutes.[109]

Related devices[edit]

A talking ATM is a type of ATM that provides audible instructions so that people who cannot read an ATM screen can independently use the machine, therefore effectively eliminating the need for assistance from an external, potentially malevolent source. All audible information is delivered privately through a standard headphone jack on the face of the machine. Alternatively, some banks such as the Nordea and Swedbank use a built-in external speaker which may be invoked by pressing the talk button on the keypad.[110] Information is delivered to the customer either through pre-recorded sound files or via text-to-speech speech synthesis.

A postal interactive kiosk may also share many of the same components as an ATM (including a vault), but only dispenses items related to postage.[111][112]

A scrip cash dispenser may share many of the same components as an ATM, but lacks the ability to dispense physical cash and consequently requires no vault. Instead, the customer requests a withdrawal transaction from the machine, which prints a receipt. The customer then takes this receipt to a nearby sales clerk, who then exchanges it for cash from the till.[113]

A teller assist unit (TAU) may also share many of the same components as an ATM (including a vault), but they are distinct in that they are designed to be operated solely by trained personnel and not by the general public, they do not integrate directly into interbank networks, and are usually controlled by a computer that is not directly integrated into the overall construction of the unit.

In popular culture[edit]

One of the banking innovations that Arthur Hailey mentioned in his 1975 bestselling novel The Moneychangers is Docutel, an automated teller machine,(Hailey & 1975 308)[114] based on real technology that was issued a patent in 1974 in the United States.

In the novel, Jill Peacock, a journalist, interviewed First Mercantile American Bank executive VP Alexander Vandervoort in a suburban shopping plaza where the bank had installed the first two stainless-steel Docutel automatic tellers. Vandervoort, whose clothes looked like they were from the "fashion section of Esquire", was not at all like the classical solemn, cautious banker in a double-breasted, dark blue suit. Peacock compared him to the new ATMs which embodied modern banking.[114]

See also[edit]

bills from a cash machine robbery made unusable with red paint

References[edit]

  1. ^ Merriam-Webster Dictionary Automatic Teller Machine.
  2. ^ Maintain Automatic Teller Machine (ATM) services (Release 1).
  3. ^ Cambridge Dictionary Automatic Teller Machine.
  4. ^ Schlichter, Sarah (2007-02-05). "Using ATM's abroad - Travel - Travel Tips - msnbc.com". MSNBC. Retrieved 2011-02-11. 
  5. ^ Bershidsky, Leonid. (2013-03-27) How the ATM Revolutionized the Banking Business. Bloomberg. Retrieved on 2013-09-27.
  6. ^ 'Universal Match Maps Acquisition’, The New York Times, 22 March 1961
  7. ^ ‘Machine Accepts Cash Deposits’, The New York Times, 12 April 1961
  8. ^ From punchcard to prestaging: 50 years of ATM innovation. ATM Marketplace (2013-07-31). Retrieved on 2013-09-27.
  9. ^ "Enfield's cash gift to the world". BBC London. 27 June 2007. 
  10. ^ a b Milligan, Brian (25 June 2007). "The man who invented the cash machine". BBC News. Retrieved 26 April 2010. 
  11. ^ "ATM inventor honoured". BBC News. 31 December 2004. Archived from the original on 8 June 2010. Retrieved 26 April 2010. 
  12. ^ "ATM inventor John Shepherd-Barron dies at age of 84 on 20th May 2010". The LA Times, May 19, 2010. 19 May 2010. 
  13. ^ Mary Bellis. The ATM of John Shepherd Barron. About.com. Retrieved 2011-04-29.
  14. ^ B. Batiz-Lazo. "The emergence and evolution of ATM networks in the UK, c. 1967-2000". Business History, 2009 (51:1). Taylor and Francis, 2009. 
  15. ^ B. Batiz-Lazo, T. Karlsson and B. Thodenius. "The origins of the cashless society: cash dispensers, direct to account payments and the development of on-line real-time networks, c. 1965-1985". Essays in Economic and Business History, 2014 (32). The Economic and Business History Society, 2014. 
  16. ^ B. Batiz-Lazo and R. J. K. Reid. "Evidence from the patent record on the development of cash dispensing technology". History of Telecommunications Conference, 2008. Histelcon 2008. IEEE. 
  17. ^ Marino Gomez-Santos. "Bancomat (In Spanish)". ABC, January 9th 1969. 
  18. ^ "Bancomat Banesto (commercial ad with instructions for use in Spanish)". ABC March 18th 1969. 
  19. ^ 1969: the year everything changed - Google Books. Books.google.com. Retrieved 2011-02-11. 
  20. ^ Popular Mechanics - Google Books. Books.google.com. Retrieved 2011-02-11. 
  21. ^ "Interview with Mr. Don Wetzel". Americanhistory.si.edu. Archived from the original on 20 February 2011. Retrieved 2011-02-11. 
  22. ^ "Automatic teller machine". The History of Computing Project. Thocp.net. 17 April 2006. Archived from the original on 20 February 2011. Retrieved 2011-02-11. 
  23. ^ "ATMs to operate without a card". BBC News. June 12, 2012. 
  24. ^ [1][dead link]
  25. ^ "ATM Industry Association Global ATM Clock". Atmia.com. Retrieved 2011-09-15. 
  26. ^ http://www.interac.org/en_n3_31_abmstats.html
  27. ^ "Statistics on payment and settlement systems in selected countries - Figures for 2004". Bis.org. 2006-03-31. Archived from the original on 17 January 2011. Retrieved 2011-02-11. 
  28. ^ "Central bank payment system information". Bis.org. 2001-02-05. Archived from the original on 16 January 2011. Retrieved 2011-02-11. 
  29. ^ "EIU.com". EIU.com. Retrieved 2014-02-19. 
  30. ^ http://www.bis.org/events/cbcd06e.pdf
  31. ^ http://antarcticsun.usap.gov/oldissues96-97/astdec15.htm
  32. ^ John Hingkung (2013-02-06). "World’s Highest ATM in Sikkim | Sevendiary.com | Discover Northeast India - Culture, Lifestyle and Travel". Sevendiary.com. Retrieved 2014-02-19. 
  33. ^ "ABC Nagqu Branch cares about rural Tibetans". En.tibet.cn. 2007-12-28. Retrieved 2011-02-11. [unreliable source?]
  34. ^ [2][dead link][unreliable source?]
  35. ^ "ים המוות מתעורר לחיים; נרשמה עלייה של 8% בלינות באיזור בשנת 2006 - צרכנות". TheMarker. Retrieved 2011-02-11. 
  36. ^ Overview: Navy Cash/Marine Cash: Programs and Systems: Financial Management Service. Fms.treas.gov. Retrieved on 2013-08-02.
  37. ^ "Summary of New 2010 Americans with Disabilities Act (ADA) ATM Standards". firstdata.com. Retrieved 2014-03-07. 
  38. ^ "How to Properly Dispose of Decommissioned ATM". ATMDepot.com. Retrieved 2014-03-07. 
  39. ^ "ATM Cash Machine Frequently Asked Questions". Atmdepot.com. Retrieved 2011-02-11. 
  40. ^ "Scope for UL 291". Ulstandardsinfonet.ul.com. 2004-12-21. Archived from the original on 5 January 2011. Retrieved 2011-02-11. 
  41. ^ [3][dead link]
  42. ^ "CEN On-line catalogue - ICS: 13.310 Protection against crime" Comité Européen de Normalisation
  43. ^ "BSI: Standards, Training, Testing, Assessment & Certification". Bsonline.bsi-global.com. Retrieved 2011-02-11. 
  44. ^ "Triton Systems | ATM manufacturer". Tritonatm.com. 2010-11-17. Retrieved 2011-02-11. 
  45. ^ http://catless.ncl.ac.uk/php/risks/search.php?query=cash+machine
  46. ^ "Messaging standard to give multiple channels a common language". selfserviceworld.com. Retrieved 2011-02-11. 
  47. ^ "Technology News: Security: Windows Cash-Machine Worm Generates Concern". Technewsworld.com. Retrieved 2011-02-11. 
  48. ^ "An end to ram raids?". ATM Marketplace. Retrieved 2011-02-11. 
  49. ^ [4][dead link]
  50. ^ "ATM bombings up 3000%". News24. 2008-07-12. Retrieved 2011-04-07. 
  51. ^ http://www.theregister.co.uk/2006/03/14/exploding_atm_attack/
  52. ^ "Attacks on banks devised in Europe - National". smh.com.au. 2008-11-25. Retrieved 2011-02-11. 
  53. ^ "Thieves dig 100ft tunnel to steal cash in Levenshulme". BBC. 2012-01-14. Retrieved 2012-01-02. 
  54. ^ [5][dead link]
  55. ^ "The No. 1 ATM security concern". ATM Marketplace. Retrieved 2011-02-11. 
  56. ^ "Diebold ATM Fraud" (PDF). Retrieved 2011-02-11. 
  57. ^ [6][dead link]
  58. ^ [7][dead link]
  59. ^ http://www.kuluttajavirasto.fi/user_nf/default_mag.asp?id=12263&lmf=11440&mode=readdoc&tmf=11440
  60. ^ "Title1". Moneycentral.msn.com. Retrieved 2011-02-11. 
  61. ^ "NYSBD - Text of the ATM Safety Act". Banking.state.ny.us. 1997-06-01. Retrieved 2011-02-11. 
  62. ^ "DiNapoli Calls for Better Oversight of Bank ATMs". Osc.state.ny.us. 2007-10-04. Retrieved 2011-02-11. 
  63. ^ [8][dead link]
  64. ^ [9][dead link]
  65. ^ Representative Mario Biaggi, Congressional Record, July 30, 1986, Page 18232 et seq.
  66. ^ "ATM Report". Obre.state.il.us. Retrieved 2011-02-11. 
  67. ^ Credit Union tech-talk news and technology resource. Cunews.com. Retrieved on 2013-08-02.
  68. ^ "sb379_SB_379_PF_2.html". Legis.state.ga.us. Retrieved 2011-02-11. 
  69. ^ "Illinois General Assembly - Bill Status for SB1355". Ilga.gov. Retrieved 2011-02-11. 
  70. ^ Kravetz, Andy (2009-02-18). "ATM software aimed at reversing crime - Peoria, IL". pjstar.com. Retrieved 2011-02-11. 
  71. ^ Could Reverse PIN Save Lives at ATM?. Wctv.tv. Retrieved on 2013-08-02.
  72. ^ "Rising interest rates, gas prices hit vault-cash providers". selfserviceworld.com. Retrieved 2011-02-11. 
  73. ^ "NCR and Fujitsu Develop Cash Deposit and Bill Recycling Module for ATMs : Fujitsu Global". Fujitsu.com. Retrieved 2011-02-11. 
  74. ^ Lynn, Matthew, "What will replace the dollar as global currency?: Gold? Renminbi? Maybe commodities?", MarketWatch, July 7, 2011 12:00 a.m. EDT. Retrieved 2011-07-07.
  75. ^ Harvey, Rachel (2006-01-10). "Asia-Pacific | Indonesians make ATM sacrifices". BBC News. Retrieved 2011-02-11. 
  76. ^ "Wincor Nixdorf Germany" (in German). Wincor-nixdorf.com. Retrieved 2011-02-11. 
  77. ^ "ATM:ad First For Comic Relief". creativematch. 2005-03-10. Retrieved 2011-02-11. 
  78. ^ Fernandes, Deirdre (5 September 2013). "Boston customers test new video ATMs". The Boston Globe. Retrieved 13 October 2013. 
  79. ^ "Japan Post to go with fingerprints for ATMs | The Japan Times Online". Search.japantimes.co.jp. 2006-08-06. Retrieved 2011-02-11. 
  80. ^ ""Place Your Hand on the Scanner" | Science and Technology | Trends in Japan". Web Japan. 2005-05-10. Retrieved 2011-02-11. 
  81. ^ Mastrull, Diane (1996-11-11). "Sensar has its eye on the prize with $42 million Japanese deal | Philadelphia Business Journal". Bizjournals.com. Retrieved 2011-02-11. 
  82. ^ "BAI Banking Strategies Magazine - Articles Online". Bai.org. 2011-02-01. Retrieved 2011-02-11. 
  83. ^ "The Check is NOT in the Mail". Accurapid.com. Retrieved 2011-02-11. 
  84. ^ "Japanese bank to allow cellphone ATM access". Engadget. Retrieved 2011-02-11. 
  85. ^ "Industrial Automated Gas Pumping Station and ATM MCF547x ColdFire® Solutions By Freescale". Freescale.com. Retrieved 2011-02-11. 
  86. ^ "NRT Technology Corporation - Gaming and casino solutions: QuickJack". Nrtpos.com. Retrieved 2011-02-11. 
  87. ^ "Business | Bank puts the 'fun' into 'funds'". BBC News. 2005-07-20. Retrieved 2011-02-11. 
  88. ^ http://www.interac.org/en_n3_14_consumersfaq.html
  89. ^ "Barking Up the Wrong Tree – Factors Influencing Customer Satisfaction in Retail Banking in the UK - Page 5". Managementjournals.com. Retrieved 2011-02-11. 
  90. ^ Rebecca Allison (2003-01-16). "ATM gives out free cash and lands family in court | UK news". London: The Guardian. Retrieved 2011-02-11. 
  91. ^ [10][dead link]
  92. ^ "Double money in cash point error". BBC News. 2004-04-28. 
  93. ^ http://www.rbcroyalbank.com/cards/documentation/ch_agreements/ch_agree_client.html
  94. ^ "Europe | Mad rush to faulty ATM in France". BBC News. 2005-12-23. Retrieved 2011-02-11. 
  95. ^ [11][dead link]
  96. ^ "Materials- Bank Notes- Bank of Canada". Bankofcanada.ca. Retrieved 2011-02-11. 
  97. ^ "Falschgeld: Blüten aus dem Geldautomat? - Wirtschaft". Stern.De. 2004-05-05. Retrieved 2011-02-11. 
  98. ^ "Wincor Nixdorf Germany" (in German). Wincor-nixdorf.com. Retrieved 2011-02-11. 
  99. ^ Patton, Phil. "1.05: The Bucklands Boys and Other Tales of the ATM". Wired.com. Retrieved 2011-02-11. 
  100. ^ "Video". Cnn.com. 2005-06-06. Retrieved 2011-02-11. 
  101. ^ "Kennison v Daire [1986] HCA 4; (1986) 160 CLR 129 (20 February 1986)". Austlii.edu.au. 1986-02-20. Retrieved 2011-02-11. 
  102. ^ "ATM Security Issues & ATM Fraud Issues by Geography | ATMSecurity.com ATM Security news ATM Security issues ATM fraud info ATM". Atmsecurity.com. 2009-03-04. Retrieved 2011-02-11. 
  103. ^ http://venus.soci.niu.edu/~cudigest/phracks/phrack-08
  104. ^ http://www.snopes.com/crime/warnings/atmcamera.asp
  105. ^ "What the Hell Do Smart Cards Do?". Fast Company. 2002-02-28. Retrieved 2011-02-11. 
  106. ^ "Tamil Nadu / Chennai News : Four more held in fake credit card racket case". Chennai, India: The Hindu. 2006-05-19. Retrieved 2011-02-11. 
  107. ^ Fredric L. Rice, Organised Crime Civilian Response. "Phrack Classic Volume Three, Issue 32, File #1 of XX Phrack Classic Newsletter Issue XXXII". Skepticfiles.org. Retrieved 2011-02-11. 
  108. ^ Stephen Castell. "Seeking after the truth in computer evidence: any proof of ATM fraud? — ITNOW". Itnow.oxfordjournals.org. Retrieved 2011-02-11. 
  109. ^ Previous post Next post (2009-02-03). "Global ATM Caper Nets Hackers $9 Million in One Day | Threat Level". Wired.com. Retrieved 2011-02-11. 
  110. ^ pepsi says: (2011-01-25). "Why is there braille on drive-up ATM machines?". Zidbits. Retrieved 2011-02-11. 
  111. ^ "Postal Service Mailing Kiosks Now In Every State". Usps.com. 2004-12-30. Retrieved 2011-02-11. 
  112. ^ Automated Postal Centers. Lunewsviews.com. Retrieved on 2013-08-02.
  113. ^ "About Script ATMs: How Do Cashless ATMs Work? - What is Scrip, or Cashless Atm Machines?". Atmscrip.com. Retrieved 2011-02-11. 
  114. ^ a b Hailey, Arthur (February 1975). The Moneychangers. Doubleday. p. 472. ISBN 0-385-00896-1. 

Further reading[edit]

  • Brain, Marshall Marshall Brain's More How Stuff Works, John Wiley and Sons Ltd, New York, October 2002, ISBN 0-7645-6711-X
  • Donley, Richard Everything has its price, Fireside Books /Simon & Schuster, New Jersey, March 1995, ISBN 0-671-89559-1
  • Guile, Bruce R., Quinn, James Brian Managing Innovation Cases from the Services Industries, National Academy Press, Washington (D.C.), January 1988, ISBN 0-309-03926-6
  • Hillier, David Money Transmission and the Payments Market, Financial World Publishing, Kent UK, January 2002, ISBN 0-85297-643-7
  • IESNA Committee Lighting for Automatic Teller Machines, Illuminating Engineering Society of North America, January 1997, ISBN 0-87995-122-2
  • Ikenson, Ben Patents: Ingenious Inventions How They Work and How They Came to Be, Gina Black Dog & Leventhal Publishers, Inc., April 2004, ISBN 1-57912-367-8
  • Mcall, Susan Resolution of Banking Disputes, Sweet & Maxwell, Ltd., December 1990, ISBN 0-85121-644-7
  • Peterson, Kirk Automated Teller Machine as a National Bank under the Federal Law, William S. Hein & Co., Inc., August 1987, ISBN 0-89941-587-3
  • Schneier, Bruce (January 2004). Secrets and Lies: Digital Security in a Networked World. John Wiley & Sons. ISBN 0-471-45380-3. 
  • Zotti, Ed Triumph of the Straight Dope, Random House, February 1999, ISBN 0-345-42008-X
  • The Fraudsters - How Con Artists Steal Your Money (ISBN 978-1-903582-82-4)by Eamon Dillon, published September 2008 by Merlin Publishing

External links[edit]