Buick V6 engine

From Wikipedia, the free encyclopedia
Jump to: navigation, search
"LN3" redirects here. For the high-speed railway line in France, see LGV Nord.
Buick V6
3800II L36.JPG
Overview
Manufacturer
Also called
  • 3800
  • Fireball
  • Dauntless
Production 1961-2008
Combustion chamber
Configuration 90° V6
Cylinder block alloy Cast iron
Cylinder head alloy Cast iron
Valvetrain Overhead valve
Combustion
Fuel type Gasoline
Oil system Wet sump
Cooling system Water-cooled
Chronology
Successor

The Buick V6, initially marketed as Fireball at its introduction in 1962, was a large V6 engine used by General Motors. The block is made of cast iron and all use two-valve-per-cylinder iron heads, actuated by pushrods.

The 3800 was on the Ward's 10 Best Engines of the 20th century list, made Ward's yearly 10 Best list multiple times, and is one of the most-produced engines in history. To date, over 25 million have been produced.

In 1967, GM sold the design to Kaiser-Jeep. The muscle car era had taken hold, and GM no longer felt the need to produce a V6, considered in North America an unusual engine configuration at the time. The energy crisis a decade later prompted the company to buy the design back from American Motors (AMC), who had by that point bought Kaiser-Jeep, and the descendants of the early 231 continue to be the most-common GM V6 as it developed into a very durable and reliable design.

Though the pre-3800 RWD V6 uses the BOP bellhousing pattern that it inherited from its V8 ancestor, an oddity of both the FWD and RWD 3800 V6 is that although it is a 90° V6, it uses the GM 60° V6 bell housing. For use in the RWD applications, the bellhousings on both the manual and automatic transmissions are altered slightly.

This engine has the cylinders numbered 1-3-5 on the LEFT -hand bank (FRONT bank for FWD applications) and 2-4-6 on the right-hand bank, the number 1 cylinder being the furthest from the flywheel end. The firing order is 1-6-5-4-3-2.

The engine was produced at the Flint North plant in Flint, Michigan, with engine blocks and cylinder heads cast at the Grey Iron plant (now the GM Saginaw Metal Casting Operations plant) in Saginaw, Michigan.

Fireball V6[edit]

The first engine in this family was introduced in 1961 for the 1962 model year Buick Special with Buick's 198 cu in (3.2 L) engine, the first V6 in an American car. Because it was derived from Buick's 215 cu in (3.5 L) aluminum V8, it has a 90° bank between cylinders and an uneven firing pattern due to the crankshaft having only three crank pins set at 120° apart, with opposing cylinders (1-2, 3-4 and 5-6) sharing a crank pin in, as do many V8 engines. The uneven firing pattern was often perceived as roughness, leading a former American Motors executive to crow "It was rougher than a cob."

In 1977, Buick redesigned the crankshaft to a "split-pin" configuration to create an "even-firing" version. The crank pins associated with the opposing cylinders were offset from each other by 30°. The relatively small offset did not require flying arms to be incorporated, however a 3.0 mm thick flange was built in between the offset crank pins to prevent the connecting rod big-ends from "walking" off the crank pin bearing journal and interfering with the adjacent big end. The 3.0 mm thick flange effectively caused the connecting rods on the left-hand bank of cylinders (forward bank for FWD applications) to move 3.0 mm forward relative to the right-hand bank, but the engine block remained unchanged compared to the odd-fire engine. Since the cylinders centre-lines were no longer centralised over the crank pin bearing journals, the connecting rods were re-designed with the big-ends offset from the piston pin ends by 1.5 mm. The engine in this configuration became known to have "off-centre bore spacing".

The off-centre design continued up until the 1988 LN3 version of the engine, when the left-hand bank of cylinders was moved forward relative to the right-hand bank. Although the actual bore spacing between cylinders on the same bank remained unchanged at 107.7 mm (4.240"), the LN3 and later engines became known to have "on-centre bore spacing".

198[edit]

Buick Division, concerned about high manufacturing costs of their innovative aluminum 215 V8, sought to develop a cheaper, cast-iron engine based on the same tooling. They settled on an unusual 90° V6 layout that was essentially the architecture of the '215' less two cylinders. In initial form, it had a bore of 3.625 inches (92.08 mm) and stroke of 3.1875 inches (80.96 mm), for an overall displacement of 198 cu in (3.2 L). It weighed about 35 lb (15.9 kg) more than the aluminum engine, but was far cheaper to produce. Dubbed the Fireball V6, it became the standard engine in the 1962 Buick Special. In their test that year, Road & Track was impressed with Buick's "practical" new V6, saying it "sounds and performs exactly like the aluminum V8 in most respects."

225[edit]

The bore was increased to 3.75 in (95.3 mm), and stroke increased to 3.4 in (86.4 mm), increasing displacement to 225 cu in (3.7 L). Since the engine was similar to the popular small-block Buick V8 — now with a cast-iron block and displacement of 300 cubic inches, the engine was made cheaply at the same factory with much of the same tooling. This engine was used in Buick's intermediate-sized Special and Skylark models from 1964 to 1967 and Oldsmobile's mid-sized F-85/Cutlass models for 1964 and 1965.

1964-1965 models featured a 1-barrel Rochester MonoJet, producing 155 hp. In 1966-1967, the 1-barrel was replaced with a 2-barrel Rochester 2GV, giving the engine a 5 horsepower boost to 160 hp.

The V6 was dropped after the 1967 model year in favor of a conventional 250 cubic-inch inline-6 engine built by the Chevrolet division, and the tooling was sold to Kaiser-Jeep.

Dauntless[edit]

In 1965, Kaiser-Jeep began using the Buick 225 in Jeep CJs. It was known as the Dauntless 225 and used a much heavier flywheel than the Buick version to dampen vibrations resulting from the engine's firing pattern. Buick sold the tooling for this engine to Kaiser in 1967, as the demand for the engine was waning steadily in an era of V8s and muscle cars. When American Motors (AMC) bought Jeep, they replaced the V6 with AMC Straight-6 engines.

Applications:

231[edit]

The 1973 oil crisis prompted GM to look for more economical engines than the V8s of 350, 400 and 454/455 cubic inches that powered most General Motors cars and trucks during that time. At that time, the only "small" engines generally offered by GM were built by the Chevrolet division including the 140 cubic-inch OHC aluminum four-cylinder engine used in the subcompact Chevy Vega and a 250 cubic-inch inline six-cylinder used in smaller Chevy, Buick, Oldsmobile and Pontiac models, whose design roots dated back to the 1962 Chevy II (Nova).

One quick idea was tried by Buick engineers — taking an old Fireball V6 picked up at a junkyard and installing it into a 1974 Buick Apollo. The solution worked so well that GM wanted AMC to put the engine back into production. However, AMC's cost per unit was deemed as too high. Instead of buying completed engines, GM made an offer to buy back the tooling and manufacturing line from AMC in April, 1974, and began building the engines on August 12.[1] With production back within GM, Buick re-introduced the V6 that fall in certain 1975 models — a move made possible by the fact that foundations for the old V6 machinery were still intact at Buick's engine assembly plant in Flint, Michigan, so it was easy to put the old tooling back in place and begin production at least two years ahead of the normal schedule that would have been required to create new tooling. The bore was enlarged to 3.8 in (96.5 mm), identical to the Buick 350 and Olds 307 V8s, yielding 231 cu in (3.8 L) displacement. 78,349 231s were installed in Buicks for 1975.[2]

Due to difficulties with the new fuel economy and emissions standards, the engine produced just 110 hp (82 kW).

This engine was used in the following vehicles:

LD5[edit]

In 1978, GM began to market the 231 as the 3.8 liter as metric engine sizes became common in the United States. The RPO Code was LD5, though California-emissions versions were called LC6. Starting in 1979, the engine was used in the front-wheel drive Buick Riviera, though still with a longitudinal mounting. Larger valves and better intake and exhaust boosted the power output for 1979.

A turbocharged version was introduced as the pace car at the 1976 Indianapolis 500, and a production turbo arrived in 1978. The turbo 3.8 received sequential fuel injection and a distributorless wasted spark ignition system in 1984. In 1986 an air-to-air Garrett intercooler was added and the RPO Code became LC2. The LC2 engine has a bore of 3.80" and a stroke of 3.40". The respective horsepower ratings for 1986 & 1987 were 235 hp (175 kW) & 245 hp (183 kW). The limited production GNX benefitted from additional factory modifications such as a ceramic turbocharger, more efficient Garrett intercooler, low restriction exhaust system and revised programming which resulted in a 276 hp (206 kW) factory rating.

The turbo 3.8 liter was used in the following vehicles:

The turbocharged 1987 Buick Regal Grand National GNX was called America's quickest automobile, and the model continues to be collected and appreciated today.

LC9[edit]

A smaller version of this engine was produced in 1978 and 1979 for the Century and Regal and Chevrolet Monza. The bore was reduced to 3.5 in (89 mm), resulting in an engine of 196 cu in (3.2 L) piston displacement. The RPO code was LC9. Initially this engine produced 90 horsepower (67 kW), but in 1979 it received the same improvements in the cylinder heads as did the LD5, and therefore power increased to 105 horsepower (78 kW).

LC4[edit]

In response to rising gas prices, a larger 252 cu in (4.1 L) version of the 3.8 L LD5 V6 was produced from 1980 through 1984 and marketed as an alternative to a V8. The bore was enlarged to 3.965 in (100.71 mm), yielding an output of 125 horsepower (93 kW) and 205 lb·ft (278 N·m). This engine was used in many large rear-wheel drive Buicks, and in some models from each of GM's other divisions, including Cadillac which offered the "big" Buick V6 in several models from 1980 to 1982 as a credit option to the troublesome V8-6-4 engine used in 1981 and early versions of the aluminum-block Cadillac HT-4100 V8 introduced in 1982. It was also the standard powerplant in the front-drive Riviera and Olds Toronado from 1981 to 1984. Additionally, the 4.1 block was used unsuccessfully at Indianapolis for racing. Its only weakness was the intake valve pushrod seals. This was the first GM V-6 to feature a 4-barrel carburetor.

Year Horsepower Torque Fuel System Compression Ratio VIN Code
1980–1984 125 hp (93 kW) at 4,000 rpm 205 lb·ft (278 N·m) at 2,000 rpm 4-BBL 8.0:1 4

Applications

LK9[edit]

A small 3.0 L (181 in³) version of the Buick V6 was produced for GM's 1980s front-wheel drive cars. Introduced in 1982, it was a lower deck version of the 3.8 designed for transverse application in the new GM A platform cars such as the Buick Century and Oldsmobile Cutlass Ciera. It shared the same bore size as its larger sibling, but featured a smaller stroke of 2.66 in (67.56 mm). It used a Rochester E2ME 2-bbl carburetor and the VIN code for the engine is E.

Year Horsepower Torque Compression Ratio
1982–1983 110 hp (82 kW) at 4,800 rpm 145 lb·ft (197 N·m) at 2,000 rpm 8.45:1
1984–1985 145 lb·ft (197 N·m) at 2,600 rpm 8.4:1

Applications:

LN7[edit]

The LN7 is a multiport fuel injected version of the LK9. It was introduced for 1985 and used the VIN code: L. It was replaced in 1989 with the 3.3.

Horsepower Torque Compression Ratio
125 hp (93 kW) at 4,900 rpm 150 lb·ft (203 N·m) at 2,400 rpm 9.0:1

Applications:

3.8 FWD LG2/LG3[edit]

In mid-1984, the 3.8 liter LD5 engine was modified for transverse-mounting in smaller, FWD vehicles, and equipped with multi point fuel injection (MPFI). 1984-1985 models used a distributor and a distributorless wasted spark ignition system was added for all engines produced in 1986 and later. In 1986, it received sequential fuel injection (SFI) and it was initially produced in two forms, the LG2 with flat lifters (tappets), and the LG3 with a roller camshaft and lifters. The latter was offered in various models through 1988. From 1986, the 3.8 had a revised, crankshaft-driven oil pump which eliminated a longstanding problem with pump housing wear and loss of prime. Power produced by this engine was:

  • VIN code B: flat lifters (tappets)
    • 140 hp (104 kW) at 4,400 rpm, 200 lb·ft (271 N·m) at 2,000 rpm
  • VIN code 3: roller lifters (tappets)
    • 125 hp (93 kW) at 4,400 rpm, 195 lb·ft (264 N·m) at 2,000 rpm (1984–1985 MPFI)
    • 150 hp (112 kW) at 4,400 rpm, 200 lb·ft (271 N·m) at 2,200 rpm (1986–1988 SFI) (LG3)

Applications

  • 1984-1988 Buick Century
  • 1986 Buick Riviera (LG2)
  • 1987 Buick Riviera (LG3)
  • 1986-1987 Buick LeSabre
  • 1984-1988 Oldsmobile Cutlass Ciera
  • 1986-1987 Oldsmobile Delta 88
  • 1985-1986 Oldsmobile Ninety Eight

3800 V6[edit]

Pre-Series I[edit]

LN3 Naturally Aspirated[edit]

An LN3 installed in a 1989 Pontiac Bonneville. This engine produced 165 hp (123 kW) and 210 lb·ft (285 N·m) of torque.

Introduced in 1988, the 3800 LN3 would later be loosely considered the Pre-Series I, although the older 3.8 SFI (LG3) was still available that year in some models. Designated initially by VIN code C, the multiport fuel injected 3800 LN3 was a major redesign, featuring changes such as a balance shaft, on-center bore spacing, use of a 3x/18x crank-trigger system, and other improvements. This generation continued in use in several GM products into the 1990s. It produced 165 hp (123 kW) and 210 lb·ft (285 N·m).

The LN3 is very closely related to the Series I L27 and Series I L67 Supercharged. In fact, supercharger-related hardware can be fitted to an LN3 without changing the cylinder heads (ECM reprogramming required). The L27 has a two piece, upper plenum intake and lower intake, the LN3 is all one piece.

Applications:

3300 (LG7)[edit]

A smaller 3.3 L 3300 was introduced in 1989 and produced through 1993. It is effectively a lower-deck version of the 3800, with a smaller 3.7 in (93.98 mm) bore and 3.16 in (80.26 mm) stroke for 3,340 cc (204 cu in).[3] Like the 3800, it used a cast iron block and heads, push rods, and hydraulic lifters. Unlike the 3800, however, it used a batch-fire injection system rather than sequential injection, as evidenced by the lack of a cam position sensor. It also did not have a balance shaft. Power output was 160 hp (119 kW) at 5,200 rpm and 185 lb·ft (251 N·m) at 2,000 rpm with a 5,500 rpm redline.

Applications:

Series I[edit]

L27 Naturally Aspirated[edit]

A 3800 Series I L27 Naturally Aspirated engine installed transversely in a 1995 Buick Regal.

The LN3 was replaced by the 3,791 cc (3.8 L; 231.3 cu in) L27 in 1991-1992 and produced 170 horsepower (130 kW) from 1992 onward, this engine was referred to as the Series I 3800, or 3800 TPI (Tuned Port Injection). In Australia, the LN3 was also replaced by the L27 by Holden who used the engine in their series 2 (1991) VN Commodore range. However, the Australian L27 retained the LN3's one piece upper intake and lower plenum. Power was still boosted to 127 kW (170 hp) for the Holden L27, before being boosted to 130 kW (177 PS; 174 hp) in the revised VR Commodore in 1993. The L36 made its debut in 1995.

Applications:

A supercharged 3800 (transverse mount) installed in a Buick Riviera for 1995, the last year of Series I L67 production. Power is 225 hp (168 kW)/260 lb·ft (353 N·m) for this version.

L67 Supercharged[edit]

The Series I Supercharged engine went through many internal changes and the horsepower changed rapidly between the time it was introduced and the time that the Series II L36 was introduced. The M62 supercharger was manufactured by Eaton, exclusively for the GM 3800 engine. HP was rated at 205 for 1991-1993 engines (models vary), and 225 for 1994-1995 engines. Some of the additional horsepower for 1994-95 engines was gained by using epoxy (not teflon as commonly believed) coated supercharger rotors to improve efficiency, and a larger supercharger inlet and throttle body. The 1994-1995 utilized a 2.85-inch (72.4 mm) pulley versus the 2.55-inch (64.8 mm) pulley used on the 91-93 supercharger.

Applications:

1991–1995:

1992–1995:

1995 Only:

Series II[edit]

Introduced in 1995, the Series II is quite a different engine. Although the stroke for the 3.8 L engine remained at 3.4 in (86 mm), and the bore remained at 3.8 in (97 mm), the engine architecture was vastly changed. The deck height is shorter than the Series I, reducing weight and total engine package size. This required that the piston connecting rods be shortened 1 in (25.4 mm), and the crankshaft was also redesigned. A new intake manifold improved breathing while a redesigned cylinder head featured larger valves and a higher compression ratio. The result was 205 hp (153 kW) and 230 lb·ft (312 N·m), better fuel economy, and 26 lb (12 kg) lighter overall weight (to 392 lb (178 kg)). This 3800 weighs only 22 lb (10.0 kg) more than the all-aluminum High Feature V6 that currently dominates GM's six-cylinder applications, despite being an all cast-iron design.

The new intake manifold greatly improved airflow. To meet emissions standards, an EGR tube was placed in the intake manifold to reduce combustion temperatures. The 3800 Series II was on the Ward's 10 Best Engines list for 1995 through 1997.

GM recalled 1.5 million vehicles with this engine on April 14, 2009 due to risk of fire from engine oil leaking under the valve cover gaskets onto hot exhaust manifolds. The fire could spread to the nearby plastic spark plug wire retainers on the valve cover and then to the rest of the engine compartment. GM fitted the affected vehicles with redesigned spark plug wire retainers.[4] These engines were noted for having problems with the plastic upper intake manifold cracking around the EGR passage. The engine would then hydrolock. The lower intake gaskets and upper intake manifolds were revised, correcting all these issues.

L36 Naturally Aspirated[edit]

A variation of the L36 engine in a 1998 Holden VT Commodore
Another variation of the L36 engine in a 1995 Oldsmobile 88

This engine was used in the following vehicles:

L67 Supercharged[edit]

A 3800 Series II L67 Supercharged V6 engine in a 1998 Buick Regal GS.

The L67 is the supercharged version of the 3800 Series II L36 and appeared in 1996, one year after the normally aspirated version. It uses the Eaton Generation III M90 supercharger with a 3.8" pulley, a larger throttle body, fuel injectors, cylinder heads, and lower intake manifold than the L36 uses. Both engines share the same engine blocks, but compression is reduced from 9.4:1 in the L36 to 8.5:1 for the L67. Power is up to 240 hp (180 kW) and 280 lb·ft (380 N·m) of torque. Despite being an all iron engine, it is surprisingly light weighing only 392 lb (178 kg). Final drive ratios are reduced in most applications, for better fuel economy and more use of the engine's torque in the low range. Like most 3800 V6s, the engine is well known for its reliability and low maintenance costs. The engine is a popular choice for aftermarket modification thanks to its very strong internals and impressive power gains from basic upgrades. The engine was built in Flint, Michigan and was certified LEV in 2001.

This engine was used in the following cars:

Series III[edit]

The Series III motors include many changes. The upper intake manifold is now aluminum on the naturally aspirated models. Intake ports are mildy improved, 1.83" intake valves (instead of 1.80" as on Series II) and 1.52" exhaust valves were introduced in 2003 engines, just before switching to Series III. Electronic throttle control is added to all versions, as is returnless fuel injection. Stronger powdered metal sinter forged connecting rods are used in 2004+ supercharged, and 2005+ naturally aspirated engines, instead of the cast iron style from Series II engines. Emissions are also reduced. In 2005, it was the first gasoline engine in the industry to attain SULEV (Super Ultra Low Emissions Vehicle) emissions certification.

Also note that Series III engines are the base for any 3800 produced for the 2004 year and up. This means the same block, heads, & connecting rods apply to any remaining Series II engines made after 2004 also. The difference is that Series III engines received the new superchargers (Generation 5 - Eaton M90 - if equipped), intake manifolds, fuel systems, and electronics.

L26 Naturally Aspirated[edit]

L26 engine in a Pontiac Grand Prix

The L26 is the Series III version of the 3800. It is still a 3.8 L (231 cu in) design. Compression remains at 9.4:1 as with previous L36's, but the aluminum upper intake (2004+) and stronger connecting rods (2005+) are the primary physical changes. The powdered metal connecting rods were meant to be introduced in 2004 along with the L32's, but the GM plant in Bay City, Michigan that supplies the Flint, Michigan plant could not achieve the desired production dates in time for that engine year.

This engine was used in the following vehicles:

L32 Supercharged[edit]

The L32 is a supercharged Series III. Introduced in 2004, the main differences between the L67 and the L32 is the L32's electronic throttle control, slightly improved cylinder head design, and updated Eaton supercharger, the Generation 5 M90. Power output is up to 260 hp (194 kW) in the Grand Prix GTP.

As with the L67, premium fuel (91 octane or higher) is required but, the PCM can compensate for the octane difference, although acceleration will be affected by this. The use of less than 87 octane fuel can and does cause detonation that eventually leads to engine damage and failure.

Applications:

Special Editions[edit]

Buick 3300 Indy CART / USAC turbo V6
1985 Buick Wildcat 24-valve V6
1983 Buick Indy 500 Pace Car twin turbo V6

Discontinuation[edit]

Production of the 3800 V6 engine officially ended on Friday, August 22, 2008 when plant 36 was closed. There was a closing ceremony and speakers who extolled the virtues of the engine. Originally GM had set this date for January 1, 1999; however, due to the vast number of complaints from both investors and customers because of the popularity and reliability of the engine, the date was extended. At the end of production, the LZ4 3500 OHV V6 replaced the naturally aspirated 3800 applications, and the LY7 3.6L DOHC V6 replaced the supercharged 3800 applications.[citation needed]

See also[edit]

References[edit]

  1. ^ Ward's Automotive Yearbook 1975. Ward's Communications, Inc. 1975. 
  2. ^ Ward's Automotive Yearbook 1976. Ward's Communications, Inc. 1976. 
  3. ^ Büschi, Hans-Ulrich, ed. (5 March 1992). Automobil Revue 1992 (in German/French) 87. Berne, Switzerland: Hallwag AG. p. 433. ISBN 3-444-00539-3. 
  4. ^ Kim, Soyoung (April 14, 2009). "GM recalls 1.5 million cars due to fire risk". reuters.com. Retrieved 2009-04-14. 

External links[edit]