Jump to content

Oxidation state: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
remove Oxygen section, as information is already in oxygen#compounds and not really germane here
Line 1: Line 1:
<!DOCTYPE html>
{{distinguish|Oxidation number}}
<html prefix="mw: http://mediawiki.org/rdf/"><head prefix="schema: http://schema.org/"><meta charset="UTF-8"><meta property="mw:articleNamespace" content="0"><meta property="schema:CreativeWork/version" content="559865564"><meta property="schema:CreativeWork/version/parent" content="559862678"><meta property="schema:CreativeWork/dateModified" content="2013-06-14T12:05:57.000Z"><meta property="schema:CreativeWork/contributor/username" content="//en.wikipedia.org/wiki/User:This, that and the other"><meta property="schema:CreativeWork/contributor" content="//en.wikipedia.org/wiki/Special:UserById/4168824"><meta property="mw:revisionSHA1" content="31391174e8cb82001b06400a645945c761ea0b4a"><meta property="schema:CreativeWork/comment" content="/* Elements with multiple oxidation states */ overhaul"><title>Oxidation state</title><base href="//en.wikipedia.org/wiki/Oxidation_state"></head><body><div class="dablink" data-parsoid='{"src":"{{distinguish|Oxidation number}}","dsr":[0,32,null,null]}' about="#mwt1" typeof="mw:Transclusion" data-mw='{"target":{"wt":"distinguish","href":"./Template:Distinguish"},"params":{"1":{"wt":"Oxidation number"}}}'>Not to be confused with <a rel="mw:WikiLink" href="./Oxidation_number" data-parsoid='{"a":{"href":"./Oxidation_number"},"sa":{"href":":Oxidation number"},"stx":"simple"}'>Oxidation number</a>.</div>
{{mergefrom|Oxidation number|date=May 2013}}
<table class="metadata plainlinks ambox ambox-move" style="" about="#mwt2" data-parsoid='{"src":"{{mergefrom|Oxidation number|date=May 2013}}","dsr":[33,77,null,null]}' typeof="mw:Transclusion" data-mw='{"target":{"wt":"mergefrom","href":"./Template:Mergefrom"},"params":{"1":{"wt":"Oxidation number"},"date":{"wt":"May 2013"}}}'>
<tbody data-parsoid="{}"><tr data-parsoid='{"stx":"html"}'><td class="mbox-image" data-parsoid='{"stx":"html"}'><div style="width: 52px;" data-parsoid='{"stx":"html"}'><span typeof="mw:Image" data-parsoid='{"optList":[{"ck":"width","ak":"50px"},{"ck":"alt","ak":"alt="},{"ck":"link","ak":"link="}],"cacheKey":"[[Image:Mergefrom.svg|50px|alt=|link=]]","img":{"h":20,"w":50,"wdset":true}}'><span data-parsoid="{}"><img resource="./File:Mergefrom.svg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Mergefrom.svg/50px-Mergefrom.svg.png" height="20" width="50" data-parsoid='{"a":{"resource":"./File:Mergefrom.svg"},"sa":{"resource":"Image:Mergefrom.svg"}}'></span></span></div></td><td class="mbox-text" style="" data-parsoid='{"stx":"html"}'><span class="mbox-text-span" data-parsoid='{"stx":"html"}'>It has been suggested that <i data-parsoid="{}"><a rel="mw:WikiLink" href="./Oxidation_number" data-parsoid='{"a":{"href":"./Oxidation_number"},"sa":{"href":"::Oxidation number"},"stx":"piped"}'>Oxidation number</a></i> be <a rel="mw:WikiLink" href="./Wikipedia:Merging" data-parsoid='{"a":{"href":"./Wikipedia:Merging"},"sa":{"href":"Wikipedia:Merging"},"stx":"piped"}'>merged</a> into this article. (<a rel="mw:WikiLink" href="./Talk:Oxidation_state" data-parsoid='{"a":{"href":"./Talk:Oxidation_state"},"sa":{"href":"Talk:Oxidation state"},"stx":"piped"}'>Discuss</a>)<small data-parsoid='{"stx":"html"}'><i data-parsoid="{}"> Proposed since May 2013.</i></small><span class="hide-when-compact" data-parsoid='{"stx":"html"}'> </span><span class="hide-when-compact" data-parsoid='{"stx":"html"}'> </span></span></td></tr></tbody></table><link rel="mw:WikiLink/Category" href="./Category:Articles_to_be_merged_from_May_2013" data-parsoid='{"a":{"href":"./Category:Articles_to_be_merged_from_May_2013"},"sa":{"href":"Category:Articles to be merged from May 2013"},"stx":"simple"}' about="#mwt2"><link rel="mw:WikiLink/Category" href="./Category:All_articles_to_be_merged" data-parsoid='{"a":{"href":"./Category:All_articles_to_be_merged"},"sa":{"href":"Category:All articles to be merged"},"stx":"simple"}' about="#mwt2">


<p data-parsoid='{"dsr":[79,928,0,0]}'>The <b data-parsoid='{"dsr":[83,104,3,3]}'>oxidation state</b> is an indicator of the degree of <a rel="mw:WikiLink" href="./Oxidation" data-parsoid='{"a":{"href":"./Oxidation"},"sa":{"href":"oxidation"},"stx":"simple","dsr":[138,151,2,2]}'>oxidation</a> of an <a rel="mw:WikiLink" href="./Atom" data-parsoid='{"a":{"href":"./Atom"},"sa":{"href":"atom"},"stx":"simple","dsr":[158,166,2,2]}'>atom</a> in a <a rel="mw:WikiLink" href="./Chemical_compound" data-parsoid='{"a":{"href":"./Chemical_compound"},"sa":{"href":"chemical compound"},"stx":"simple","dsr":[172,193,2,2]}'>chemical compound</a>. The formal oxidation state is the <i data-parsoid='{"dsr":[230,246,2,2]}'>hypothetical</i> <a rel="mw:WikiLink" href="./Electrical_charge" data-parsoid='{"a":{"href":"./Electrical_charge"},"sa":{"href":"Electrical charge"},"stx":"piped","dsr":[247,275,20,2]}'>charge</a> that an atom would have if all bonds to atoms of different elements were 100% <a rel="mw:WikiLink" href="./Ionic_bond" data-parsoid='{"a":{"href":"./Ionic_bond"},"sa":{"href":"Ionic bond"},"stx":"piped","dsr":[354,374,13,2]}'>ionic</a>. Oxidation states are typically represented by <a rel="mw:WikiLink" href="./Integer" data-parsoid='{"a":{"href":"./Integer"},"sa":{"href":"integer"},"stx":"simple","dsr":[422,434,2,3],"tail":"s"}'>integers</a>, which can be positive, negative, or zero. In some cases, the average oxidation state of an element is a fraction, such as 8/3 for iron in <a rel="mw:WikiLink" href="./Magnetite" data-parsoid='{"a":{"href":"./Magnetite"},"sa":{"href":"magnetite"},"stx":"simple","dsr":[574,587,2,2]}'>magnetite</a> (<span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|Fe|3|O|4}}","dsr":[589,606,null,null]}' about="#mwt3" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"Fe"},"2":{"wt":"3"},"3":{"wt":"O"},"4":{"wt":"4"}}}'>Fe<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>3</span>O<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>4</span></span>). The highest known oxidation state is +8 in the tetroxides of <a rel="mw:WikiLink" href="./Ruthenium_tetroxide" data-parsoid='{"a":{"href":"./Ruthenium_tetroxide"},"sa":{"href":"ruthenium tetroxide"},"stx":"piped","dsr":[670,703,22,2]}'>ruthenium</a>, <a rel="mw:WikiLink" href="./Xenon_tetroxide" data-parsoid='{"a":{"href":"./Xenon_tetroxide"},"sa":{"href":"xenon tetroxide"},"stx":"piped","dsr":[705,730,18,2]}'>xenon</a>, <a rel="mw:WikiLink" href="./Osmium_tetroxide" data-parsoid='{"a":{"href":"./Osmium_tetroxide"},"sa":{"href":"osmium tetroxide"},"stx":"piped","dsr":[732,759,19,2]}'>osmium</a>, <a rel="mw:WikiLink" href="./Iridium" data-parsoid='{"a":{"href":"./Iridium"},"sa":{"href":"iridium"},"stx":"simple","dsr":[761,772,2,2]}'>iridium</a>, and <a rel="mw:WikiLink" href="./Hassium" data-parsoid='{"a":{"href":"./Hassium"},"sa":{"href":"hassium"},"stx":"simple","dsr":[778,789,2,2]}'>hassium</a>, and some complexes involving <a rel="mw:WikiLink" href="./Plutonium" data-parsoid='{"a":{"href":"./Plutonium"},"sa":{"href":"plutonium"},"stx":"simple","dsr":[820,833,2,2]}'>plutonium</a>, while the lowest known oxidation state is <span typeof="mw:Entity" data-parsoid='{"src":"&amp;minus;","srcContent":"−","dsr":[877,884,null,null]}'>−</span>4 for some elements in the <a rel="mw:WikiLink" href="./Carbon_group" data-parsoid='{"a":{"href":"./Carbon_group"},"sa":{"href":"carbon group"},"stx":"simple","dsr":[911,927,2,2]}'>carbon group</a>.</p>
The '''oxidation state''' is an indicator of the degree of [[oxidation]] of an [[atom]] in a [[chemical compound]]. The formal oxidation state is the ''hypothetical'' [[Electrical charge|charge]] that an atom would have if all bonds to atoms of different elements were 100% [[Ionic bond|ionic]]. Oxidation states are typically represented by [[integer]]s, which can be positive, negative, or zero. In some cases, the average oxidation state of an element is a fraction, such as 8/3 for iron in [[magnetite]] ({{chem|Fe|3|O|4}}). The highest known oxidation state is +8 in the tetroxides of [[ruthenium tetroxide|ruthenium]], [[xenon tetroxide|xenon]], [[osmium tetroxide|osmium]], [[iridium]], and [[hassium]], and some complexes involving [[plutonium]], while the lowest known oxidation state is &minus;4 for some elements in the [[carbon group]].


The increase in oxidation state of an atom through a chemical reaction is known as an oxidation; a decrease in oxidation state is known as a [[redox|reduction]]. Such reactions involve the formal transfer of electrons, a net gain in electrons being a reduction and a net loss of electrons being an oxidation. For pure elements, the oxidation state is zero.
<p data-parsoid='{"dsr":[930,1286,0,0]}'>The increase in oxidation state of an atom through a chemical reaction is known as an oxidation; a decrease in oxidation state is known as a <a rel="mw:WikiLink" href="./Redox" data-parsoid='{"a":{"href":"./Redox"},"sa":{"href":"redox"},"stx":"piped","dsr":[1071,1090,8,2]}'>reduction</a>. Such reactions involve the formal transfer of electrons, a net gain in electrons being a reduction and a net loss of electrons being an oxidation. For pure elements, the oxidation state is zero.</p>


<p data-parsoid='{"dsr":[1288,1537,0,0]}'>The definition of the oxidation state listed by <a rel="mw:WikiLink" href="./IUPAC" data-parsoid='{"a":{"href":"./IUPAC"},"sa":{"href":"IUPAC"},"stx":"simple","dsr":[1336,1345,2,2]}'>IUPAC</a> is as follows:<span about="#mwt5" class="reference" data-mw='{"name":"ref","body":{"html":"<a rel=\"mw:WikiLink\" href=\"./IUPAC\" data-parsoid=\"{&amp;quot;a&amp;quot;:{&amp;quot;href&amp;quot;:&amp;quot;./IUPAC&amp;quot;},&amp;quot;sa&amp;quot;:{&amp;quot;href&amp;quot;:&amp;quot;IUPAC&amp;quot;},&amp;quot;stx&amp;quot;:&amp;quot;simple&amp;quot;,&amp;quot;dsr&amp;quot;:[1379,1388,2,2]}\">IUPAC</a> <i data-parsoid=\"{&amp;quot;dsr&amp;quot;:[1389,1406,2,2]}\"><a rel=\"mw:WikiLink\" href=\"./Gold_Book\" data-parsoid=\"{&amp;quot;a&amp;quot;:{&amp;quot;href&amp;quot;:&amp;quot;./Gold_Book&amp;quot;},&amp;quot;sa&amp;quot;:{&amp;quot;href&amp;quot;:&amp;quot;Gold Book&amp;quot;},&amp;quot;stx&amp;quot;:&amp;quot;simple&amp;quot;,&amp;quot;dsr&amp;quot;:[1391,1404,2,2]}\">Gold Book</a></i> definition: <a rel=\"mw:ExtLink\" href=\"http://goldbook.iupac.org/O04365.html\" data-parsoid=\"{&amp;quot;targetOff&amp;quot;:1458,&amp;quot;dsr&amp;quot;:[1419,1478,39,1]}\"><i data-parsoid=\"{&amp;quot;dsr&amp;quot;:[1458,1477,2,2]}\">oxidation state</i></a> <span typeof=\"mw:Entity\" data-parsoid=\"{&amp;quot;src&amp;quot;:&amp;quot;&amp;amp;nbsp;&amp;quot;,&amp;quot;srcContent&amp;quot;:&amp;quot;&amp;nbsp;&amp;quot;,&amp;quot;dsr&amp;quot;:[1479,1485,null,null]}\">&amp;nbsp;</span><a rel=\"mw:ExtLink\" href=\"http://www.iupac.org/goldbook/O04365.pdf\" data-parsoid=\"{&amp;quot;targetOff&amp;quot;:1527,&amp;quot;dsr&amp;quot;:[1485,1531,42,1]}\">PDF</a>"},"attrs":{"name":"goldbook"}}' id="cite_ref-goldbook-1-0" rel="dc:references" typeof="mw:Extension/ref" data-parsoid="{&quot;src&quot;:&quot;<ref name=goldbook>[[IUPAC]] ''[[Gold Book]]'' definition: [http://goldbook.iupac.org/O04365.html ''oxidation state''] &amp;nbsp;[http://www.iupac.org/goldbook/O04365.pdf PDF]</ref>&quot;,&quot;dsr&quot;:[1360,1537,19,6]}"><a href="#cite_note-goldbook-1">[1]</a></span></p>
The definition of the oxidation state listed by [[IUPAC]] is as follows:<ref name=goldbook>[[IUPAC]] ''[[Gold Book]]'' definition: [http://goldbook.iupac.org/O04365.html ''oxidation state''] &nbsp;[http://www.iupac.org/goldbook/O04365.pdf PDF]</ref>
<blockquote class="toccolours" style="float:none; padding: 10px 15px 10px 15px; display:table;" data-parsoid='{"src":"{{quotation|[Oxidation state] is defined as the charge an atom might be imagined to have when electrons are counted according to an agreed-upon set of rules:\n# the oxidation state of a [[free element]] (uncombined element) is zero\n# for a simple (monoatomic) ion, the oxidation state is equal to the net charge on the ion \n# hydrogen has an oxidation state of 1 and oxygen has an oxidation state of &amp;minus;2 when they are present in most compounds. (Exceptions to this are that hydrogen has an oxidation state of &amp;minus;1 in [[hydride]]s of active metals, e.g. [[Lithium hydride|LiH]], and oxygen has an oxidation state of &amp;minus;1 in [[peroxide]]s, e.g. [[hydrogen peroxide|H<sub>2</sub>O<sub>2</sub>]]\n# the algebraic sum of oxidation states of all atoms in a neutral molecule must be zero, while in ions the algebraic sum of the oxidation states of the constituent atoms must be equal to the charge on the ion.}}","dsr":[1538,2453,null,null]}' about="#mwt6" typeof="mw:Transclusion" data-mw='{"target":{"wt":"quotation","href":"./Template:Quotation"},"params":{"1":{"wt":"[Oxidation state] is defined as the charge an atom might be imagined to have when electrons are counted according to an agreed-upon set of rules:\n# the oxidation state of a [[free element]] (uncombined element) is zero\n# for a simple (monoatomic) ion, the oxidation state is equal to the net charge on the ion \n# hydrogen has an oxidation state of 1 and oxygen has an oxidation state of &amp;minus;2 when they are present in most compounds. (Exceptions to this are that hydrogen has an oxidation state of &amp;minus;1 in [[hydride]]s of active metals, e.g. [[Lithium hydride|LiH]], and oxygen has an oxidation state of &amp;minus;1 in [[peroxide]]s, e.g. [[hydrogen peroxide|H<sub>2</sub>O<sub>2</sub>]]\n# the algebraic sum of oxidation states of all atoms in a neutral molecule must be zero, while in ions the algebraic sum of the oxidation states of the constituent atoms must be equal to the charge on the ion."}}}'> [Oxidation state] is defined as the charge an atom might be imagined to have when electrons are counted according to an agreed-upon set of rules:
{{quotation|[Oxidation state] is defined as the charge an atom might be imagined to have when electrons are counted according to an agreed-upon set of rules:
# the oxidation state of a [[free element]] (uncombined element) is zero
<ol data-parsoid="{}"><li data-parsoid="{}"> the oxidation state of a <a rel="mw:WikiLink" href="./Free_element" data-parsoid='{"a":{"href":"./Free_element"},"sa":{"href":"free element"},"stx":"simple"}'>free element</a> (uncombined element) is zero</li>
# for a simple (monoatomic) ion, the oxidation state is equal to the net charge on the ion
<li data-parsoid="{}"> for a simple (monoatomic) ion, the oxidation state is equal to the net charge on the ion </li>
# hydrogen has an oxidation state of 1 and oxygen has an oxidation state of &minus;2 when they are present in most compounds. (Exceptions to this are that hydrogen has an oxidation state of &minus;1 in [[hydride]]s of active metals, e.g. [[Lithium hydride|LiH]], and oxygen has an oxidation state of &minus;1 in [[peroxide]]s, e.g. [[hydrogen peroxide|H<sub>2</sub>O<sub>2</sub>]]
<li data-parsoid="{}"> hydrogen has an oxidation state of 1 and oxygen has an oxidation state of <span typeof="mw:Entity" data-parsoid='{"src":"&amp;minus;","srcContent":"−"}'>−</span>2 when they are present in most compounds. (Exceptions to this are that hydrogen has an oxidation state of <span typeof="mw:Entity" data-parsoid='{"src":"&amp;minus;","srcContent":"−"}'>−</span>1 in <a rel="mw:WikiLink" href="./Hydride" data-parsoid='{"a":{"href":"./Hydride"},"sa":{"href":"hydride"},"stx":"simple","tail":"s"}'>hydrides</a> of active metals, e.g. <a rel="mw:WikiLink" href="./Lithium_hydride" data-parsoid='{"a":{"href":"./Lithium_hydride"},"sa":{"href":"Lithium hydride"},"stx":"piped"}'>LiH</a>, and oxygen has an oxidation state of <span typeof="mw:Entity" data-parsoid='{"src":"&amp;minus;","srcContent":"−"}'>−</span>1 in <a rel="mw:WikiLink" href="./Peroxide" data-parsoid='{"a":{"href":"./Peroxide"},"sa":{"href":"peroxide"},"stx":"simple","tail":"s"}'>peroxides</a>, e.g. <a rel="mw:WikiLink" href="./Hydrogen_peroxide" data-parsoid='{"a":{"href":"./Hydrogen_peroxide"},"sa":{"href":"hydrogen peroxide"},"stx":"piped"}'>H<sub data-parsoid='{"stx":"html"}'>2</sub>O<sub data-parsoid='{"stx":"html"}'>2</sub></a></li>
# the algebraic sum of oxidation states of all atoms in a neutral molecule must be zero, while in ions the algebraic sum of the oxidation states of the constituent atoms must be equal to the charge on the ion.}}
<li data-parsoid="{}"> the algebraic sum of oxidation states of all atoms in a neutral molecule must be zero, while in ions the algebraic sum of the oxidation states of the constituent atoms must be equal to the charge on the ion.</li></ol>


</blockquote>
==Some general rules for determining oxidation states without use of Lewis structures==
Here are general rules for simple compounds without structural formulae:<ref name=goldbook/>


<h2 data-parsoid='{"dsr":[2455,2542,2,2]}'>Some general rules for determining oxidation states without use of Lewis structures</h2>
# Any pure element (even if it forms diatomic molecules like chlorine, Cl<sub>2</sub>) has an '''o'''xidation '''s'''tate (OS) of zero. Examples of this are Cu or O<sub>2</sub>.
<p data-parsoid='{"dsr":[2543,2635,0,0]}'>Here are general rules for simple compounds without structural formulae:<span about="#mwt8" class="reference" data-mw='{"name":"ref","attrs":{"name":"goldbook"}}' id="cite_ref-goldbook-1-1" rel="dc:references" typeof="mw:Extension/ref" data-parsoid='{"src":"<ref name=goldbook/>","dsr":[2615,2635,20,0]}'><a href="#cite_note-goldbook-1">[1]</a></span></p>
# For monatomic ions, the OS is the same as the charge of the ion. For example, S<sup>2−</sup> has an OS of −2, whereas Li<sup>+</sup> has an OS of +1.
# The sum of OSs for all atoms in a molecule or polyatomic ion is equal to the charge of the molecule or ion, so that the OS of one element can be calculated from the OS of the other elements. For example, in {{chem|SO|3|2-}} ([[sulfite]] ion), the total charge of the ion is −2, and each oxygen is assumed to have its usual oxidation state of −2. The sum of OSs is then OS(S) + 3(−2) = OS(S) − 6 = −2, so that OS(S) = +4.


<ol data-parsoid='{"dsr":[2637,3391,0,0]}'><li data-parsoid='{"dsr":[2637,2815,1,0]}'> Any pure element (even if it forms diatomic molecules like chlorine, Cl<sub data-parsoid='{"stx":"html","dsr":[2710,2722,5,6]}'>2</sub>) has an <b data-parsoid='{"dsr":[2731,2738,3,3]}'>o</b>xidation <b data-parsoid='{"dsr":[2747,2754,3,3]}'>s</b>tate (OS) of zero. Examples of this are Cu or O<sub data-parsoid='{"stx":"html","dsr":[2802,2814,5,6]}'>2</sub>.</li>
This means that the [[sum]] of oxidation states of all atoms in a neutral [[molecule]] must be zero. Likewise, in polyatomic ions, the sum of the oxidation states of the constituent atoms must be equal to the charge on the ion. This fact, combined with the fact that some elements almost always have certain oxidation states (due to their very high electropositivity or electronegativity), allows one to compute the oxidation states for the remaining atoms (such as transition metals) in simple compounds.
<li data-parsoid='{"dsr":[2816,2968,1,0]}'> For monatomic ions, the OS is the same as the charge of the ion. For example, S<sup data-parsoid='{"stx":"html","dsr":[2898,2911,5,6]}'>2−</sup> has an OS of −2, whereas Li<sup data-parsoid='{"stx":"html","dsr":[2939,2951,5,6]}'>+</sup> has an OS of +1.</li>
<li data-parsoid='{"dsr":[2969,3391,1,0]}'> The sum of OSs for all atoms in a molecule or polyatomic ion is equal to the charge of the molecule or ion, so that the OS of one element can be calculated from the OS of the other elements. For example, in <span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|SO|3|2-}}","dsr":[3178,3194,null,null]}' about="#mwt9" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"SO"},"2":{"wt":"3"},"3":{"wt":"2-"}}}'>SO<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'>2−<br data-parsoid='{"stx":"html","selfClose":true}'>3</span></span> (<a rel="mw:WikiLink" href="./Sulfite" data-parsoid='{"a":{"href":"./Sulfite"},"sa":{"href":"sulfite"},"stx":"simple","dsr":[3196,3207,2,2]}'>sulfite</a> ion), the total charge of the ion is −2, and each oxygen is assumed to have its usual oxidation state of −2. The sum of OSs is then OS(S) + 3(−2) = OS(S) − 6 = −2, so that OS(S) = +4.</li></ol>


<p data-parsoid='{"dsr":[3393,3899,0,0]}'>This means that the <a rel="mw:WikiLink" href="./Sum" data-parsoid='{"a":{"href":"./Sum"},"sa":{"href":"sum"},"stx":"simple","dsr":[3413,3420,2,2]}'>sum</a> of oxidation states of all atoms in a neutral <a rel="mw:WikiLink" href="./Molecule" data-parsoid='{"a":{"href":"./Molecule"},"sa":{"href":"molecule"},"stx":"simple","dsr":[3467,3479,2,2]}'>molecule</a> must be zero. Likewise, in polyatomic ions, the sum of the oxidation states of the constituent atoms must be equal to the charge on the ion. This fact, combined with the fact that some elements almost always have certain oxidation states (due to their very high electropositivity or electronegativity), allows one to compute the oxidation states for the remaining atoms (such as transition metals) in simple compounds. </p>
The following rules can be used for initially assigning oxidation states for certain elements, in simple compounds:


<p data-parsoid='{"dsr":[3901,4016,0,0]}'>The following rules can be used for initially assigning oxidation states for certain elements, in simple compounds:</p>
*[[Fluorine]] has an oxidation state of &minus;1 when bonded to any other element, since it has the highest [[electronegativity]] of all reactive elements.
*[[Halogen]]s other than fluorine have an oxidation state of −1 except when they are bonded to oxygen, nitrogen, or another (more electronegative) halogen. For example, the oxidation state of chlorine in [[chlorine monofluoride]] (ClF) is +1. However, in [[bromine chloride]] (BrCl), the oxidation state of Cl is −1.
*[[Hydrogen]] has an [[oxidation]] state of +1 except when bonded to more electropositive elements such as [[sodium]], [[aluminium]], and [[boron]], as in [[sodium hydride|NaH]], [[sodium borohydride|{{chem|NaBH|4}}]], [[lithium aluminium hydride|{{chem|LiAlH|4}}]], where each H has an oxidation state of −1.
*In compounds, [[oxygen]] typically has an oxidation state of −2, though there are exceptions that are listed [[Oxidation state#Elements with multiple oxidation states|below]], such as [[peroxide]]s (e.g. hydrogen peroxide H<sub>2</sub>O<sub>2</sub>), where oxygen has an OS of −1.
*[[Alkali metal]]s have an oxidation state of +1 in virtually all of their compounds (exception, see [[alkalide]]).
*[[Alkaline earth metal]]s have an oxidation state of +2 in virtually all of their compounds.


<ul data-parsoid='{"dsr":[4018,5292,0,0]}'><li data-parsoid='{"dsr":[4018,4173,1,0]}'><a rel="mw:WikiLink" href="./Fluorine" data-parsoid='{"a":{"href":"./Fluorine"},"sa":{"href":"Fluorine"},"stx":"simple","dsr":[4019,4031,2,2]}'>Fluorine</a> has an oxidation state of <span typeof="mw:Entity" data-parsoid='{"src":"&amp;minus;","srcContent":"−","dsr":[4058,4065,null,null]}'>−</span>1 when bonded to any other element, since it has the highest <a rel="mw:WikiLink" href="./Electronegativity" data-parsoid='{"a":{"href":"./Electronegativity"},"sa":{"href":"electronegativity"},"stx":"simple","dsr":[4126,4147,2,2]}'>electronegativity</a> of all reactive elements.</li>
'''Example for a complex salt''': In {{chem|Cr(OH)|3}}, oxygen has an oxidation state of −2 (no fluorine or O–O bonds present), and hydrogen has a state of +1 (bonded to oxygen). So, each of the three [[hydroxide]] groups has an oxidation state of −2 + 1 = −1. As the compound is neutral, [[chromium]] has an oxidation state of +3.
<li data-parsoid='{"dsr":[4174,4490,1,0]}'><a rel="mw:WikiLink" href="./Halogen" data-parsoid='{"a":{"href":"./Halogen"},"sa":{"href":"Halogen"},"stx":"simple","dsr":[4175,4187,2,3],"tail":"s"}'>Halogens</a> other than fluorine have an oxidation state of −1 except when they are bonded to oxygen, nitrogen, or another (more electronegative) halogen. For example, the oxidation state of chlorine in <a rel="mw:WikiLink" href="./Chlorine_monofluoride" data-parsoid='{"a":{"href":"./Chlorine_monofluoride"},"sa":{"href":"chlorine monofluoride"},"stx":"simple","dsr":[4378,4403,2,2]}'>chlorine monofluoride</a> (ClF) is +1. However, in <a rel="mw:WikiLink" href="./Bromine_chloride" data-parsoid='{"a":{"href":"./Bromine_chloride"},"sa":{"href":"bromine chloride"},"stx":"simple","dsr":[4429,4449,2,2]}'>bromine chloride</a> (BrCl), the oxidation state of Cl is −1.</li>
<li data-parsoid='{"dsr":[4491,4800,1,0]}'><a rel="mw:WikiLink" href="./Hydrogen" data-parsoid='{"a":{"href":"./Hydrogen"},"sa":{"href":"Hydrogen"},"stx":"simple","dsr":[4492,4504,2,2]}'>Hydrogen</a> has an <a rel="mw:WikiLink" href="./Oxidation" data-parsoid='{"a":{"href":"./Oxidation"},"sa":{"href":"oxidation"},"stx":"simple","dsr":[4512,4525,2,2]}'>oxidation</a> state of +1 except when bonded to more electropositive elements such as <a rel="mw:WikiLink" href="./Sodium" data-parsoid='{"a":{"href":"./Sodium"},"sa":{"href":"sodium"},"stx":"simple","dsr":[4598,4608,2,2]}'>sodium</a>, <a rel="mw:WikiLink" href="./Aluminium" data-parsoid='{"a":{"href":"./Aluminium"},"sa":{"href":"aluminium"},"stx":"simple","dsr":[4610,4623,2,2]}'>aluminium</a>, and <a rel="mw:WikiLink" href="./Boron" data-parsoid='{"a":{"href":"./Boron"},"sa":{"href":"boron"},"stx":"simple","dsr":[4629,4638,2,2]}'>boron</a>, as in <a rel="mw:WikiLink" href="./Sodium_hydride" data-parsoid='{"a":{"href":"./Sodium_hydride"},"sa":{"href":"sodium hydride"},"stx":"piped","dsr":[4646,4668,17,2]}'>NaH</a>, <a rel="mw:WikiLink" href="./Sodium_borohydride" data-parsoid='{"a":{"href":"./Sodium_borohydride"},"sa":{"href":"sodium borohydride"},"stx":"piped","dsr":[4670,4708,21,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|NaBH|4}}","dsr":[4691,4706,null,null]}' about="#mwt10" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"NaBH"},"2":{"wt":"4"}}}'>NaBH<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>4</span></span></a>, <a rel="mw:WikiLink" href="./Lithium_aluminium_hydride" data-parsoid='{"a":{"href":"./Lithium_aluminium_hydride"},"sa":{"href":"lithium aluminium hydride"},"stx":"piped","dsr":[4710,4756,28,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|LiAlH|4}}","dsr":[4738,4754,null,null]}' about="#mwt11" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"LiAlH"},"2":{"wt":"4"}}}'>LiAlH<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>4</span></span></a>, where each H has an oxidation state of −1.</li>
<li data-parsoid='{"dsr":[4801,5082,1,0]}'>In compounds, <a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"oxygen"},"stx":"simple","dsr":[4816,4826,2,2]}'>oxygen</a> typically has an oxidation state of −2, though there are exceptions that are listed <a rel="mw:WikiLink" href="./Oxidation_state#Elements_with_multiple_oxidation_states" data-parsoid='{"a":{"href":"./Oxidation_state#Elements_with_multiple_oxidation_states"},"sa":{"href":"Oxidation state#Elements with multiple oxidation states"},"stx":"piped","dsr":[4911,4976,58,2]}'>below</a>, such as <a rel="mw:WikiLink" href="./Peroxide" data-parsoid='{"a":{"href":"./Peroxide"},"sa":{"href":"peroxide"},"stx":"simple","dsr":[4986,4999,2,3],"tail":"s"}'>peroxides</a> (e.g. hydrogen peroxide H<sub data-parsoid='{"stx":"html","dsr":[5025,5037,5,6]}'>2</sub>O<sub data-parsoid='{"stx":"html","dsr":[5038,5050,5,6]}'>2</sub>), where oxygen has an OS of −1.</li>
<li data-parsoid='{"dsr":[5083,5198,1,0]}'><a rel="mw:WikiLink" href="./Alkali_metal" data-parsoid='{"a":{"href":"./Alkali_metal"},"sa":{"href":"Alkali metal"},"stx":"simple","dsr":[5084,5101,2,3],"tail":"s"}'>Alkali metals</a> have an oxidation state of +1 in virtually all of their compounds (exception, see <a rel="mw:WikiLink" href="./Alkalide" data-parsoid='{"a":{"href":"./Alkalide"},"sa":{"href":"alkalide"},"stx":"simple","dsr":[5184,5196,2,2]}'>alkalide</a>).</li>
<li data-parsoid='{"dsr":[5199,5292,1,0]}'><a rel="mw:WikiLink" href="./Alkaline_earth_metal" data-parsoid='{"a":{"href":"./Alkaline_earth_metal"},"sa":{"href":"Alkaline earth metal"},"stx":"simple","dsr":[5200,5225,2,3],"tail":"s"}'>Alkaline earth metals</a> have an oxidation state of +2 in virtually all of their compounds.</li></ul>


<p data-parsoid='{"dsr":[5294,5625,0,0]}'><b data-parsoid='{"dsr":[5294,5326,3,3]}'>Example for a complex salt</b>: In <span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|Cr(OH)|3}}","dsr":[5331,5348,null,null]}' about="#mwt12" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"Cr(OH)"},"2":{"wt":"3"}}}'>Cr(OH)<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>3</span></span>, oxygen has an oxidation state of −2 (no fluorine or O–O bonds present), and hydrogen has a state of +1 (bonded to oxygen). So, each of the three <a rel="mw:WikiLink" href="./Hydroxide" data-parsoid='{"a":{"href":"./Hydroxide"},"sa":{"href":"hydroxide"},"stx":"simple","dsr":[5495,5508,2,2]}'>hydroxide</a> groups has an oxidation state of −2 + 1 = −1. As the compound is neutral, <a rel="mw:WikiLink" href="./Chromium" data-parsoid='{"a":{"href":"./Chromium"},"sa":{"href":"chromium"},"stx":"simple","dsr":[5583,5595,2,2]}'>chromium</a> has an oxidation state of +3.</p>
===Oxidation state and formal charge===
{{Main|Formal charge#Formal charge compared to oxidation state}}
The oxidation state of an atom is often different from the [[formal charge]] often included in Lewis structures (when it is non-zero). The oxidation state is calculated by assuming that each chemical bond (except between identical atoms) is ionic so that both electrons are assigned to the more electronegative bonded atom. In contrast, the formal charge is calculated by assuming that each bonds is covalent so that one electron is assigned to each bonded atom. For example, in ammonium ion (NH<sub>4</sub><sup>+</sup>) the oxidation state of nitrogen is -3, as all eight valence electrons are assigned to the nitrogen atom which is more electronegative than hydrogen. However the formal charge is +1, calculated by assigning only four valence electrons (one per bond) to nitrogen. For comparison, the nitrogen in ammonia (NH<sub>3</sub>) has oxidation state -3 also but a formal charge of zero. On [[protonation]] of ammonia the formal charge on nitrogen changes, but its oxidation state does not.


<h3 data-parsoid='{"dsr":[5627,5666,3,3]}'>Oxidation state and formal charge</h3>
==Calculation of formal oxidation states with a Lewis structure==
<div class="rellink relarticle mainarticle" data-parsoid='{"src":"{{Main|Formal charge#Formal charge compared to oxidation state}}","dsr":[5667,5731,null,null]}' about="#mwt13" typeof="mw:Transclusion" data-mw='{"target":{"wt":"Main","href":"./Template:Main"},"params":{"1":{"wt":"Formal charge#Formal charge compared to oxidation state"}}}'>Main article: <a rel="mw:WikiLink" href="./Formal_charge#Formal_charge_compared_to_oxidation_state" data-parsoid='{"a":{"href":"./Formal_charge#Formal_charge_compared_to_oxidation_state"},"sa":{"href":"Formal charge#Formal charge compared to oxidation state"},"stx":"piped"}'>Formal charge#Formal charge compared to oxidation state</a></div>
<p data-parsoid='{"dsr":[5732,6731,0,0]}'>The oxidation state of an atom is often different from the <a rel="mw:WikiLink" href="./Formal_charge" data-parsoid='{"a":{"href":"./Formal_charge"},"sa":{"href":"formal charge"},"stx":"simple","dsr":[5791,5808,2,2]}'>formal charge</a> often included in Lewis structures (when it is non-zero). The oxidation state is calculated by assuming that each chemical bond (except between identical atoms) is ionic so that both electrons are assigned to the more electronegative bonded atom. In contrast, the formal charge is calculated by assuming that each bonds is covalent so that one electron is assigned to each bonded atom. For example, in ammonium ion (NH<sub data-parsoid='{"stx":"html","dsr":[6227,6239,5,6]}'>4</sub><sup data-parsoid='{"stx":"html","dsr":[6239,6251,5,6]}'>+</sup>) the oxidation state of nitrogen is -3, as all eight valence electrons are assigned to the nitrogen atom which is more electronegative than hydrogen. However the formal charge is +1, calculated by assigning only four valence electrons (one per bond) to nitrogen. For comparison, the nitrogen in ammonia (NH<sub data-parsoid='{"stx":"html","dsr":[6558,6570,5,6]}'>3</sub>) has oxidation state -3 also but a formal charge of zero. On <a rel="mw:WikiLink" href="./Protonation" data-parsoid='{"a":{"href":"./Protonation"},"sa":{"href":"protonation"},"stx":"simple","dsr":[6632,6647,2,2]}'>protonation</a> of ammonia the formal charge on nitrogen changes, but its oxidation state does not.</p>


<h2 data-parsoid='{"dsr":[6733,6798,2,2]}'>Calculation of formal oxidation states with a Lewis structure</h2>
There are two common ways of computing the oxidation state of an atom in a compound. The first is the simple algebraic sum technique above, used in compounds that do not require a [[Lewis structure]]. The second is used for molecules when one has a [[Lewis structure]].


<p data-parsoid='{"dsr":[6800,7069,0,0]}'>There are two common ways of computing the oxidation state of an atom in a compound. The first is the simple algebraic sum technique above, used in compounds that do not require a <a rel="mw:WikiLink" href="./Lewis_structure" data-parsoid='{"a":{"href":"./Lewis_structure"},"sa":{"href":"Lewis structure"},"stx":"simple","dsr":[6980,6999,2,2]}'>Lewis structure</a>. The second is used for molecules when one has a <a rel="mw:WikiLink" href="./Lewis_structure" data-parsoid='{"a":{"href":"./Lewis_structure"},"sa":{"href":"Lewis structure"},"stx":"simple","dsr":[7049,7068,2,2]}'>Lewis structure</a>.</p>
It should be remembered that the oxidation state of an atom does not represent the "real" charge on that atom: This is particularly true of high oxidation states, where the [[ionization energy]] required to produce a multiply positive ion are far greater than the energies available in chemical reactions. The assignment of electrons between atoms in calculating an oxidation state is purely a formalism, but is a useful one for the understanding of many chemical reactions.


<p data-parsoid='{"dsr":[7071,7545,0,0]}'>It should be remembered that the oxidation state of an atom does not represent the "real" charge on that atom: This is particularly true of high oxidation states, where the <a rel="mw:WikiLink" href="./Ionization_energy" data-parsoid='{"a":{"href":"./Ionization_energy"},"sa":{"href":"ionization energy"},"stx":"simple","dsr":[7244,7265,2,2]}'>ionization energy</a> required to produce a multiply positive ion are far greater than the energies available in chemical reactions. The assignment of electrons between atoms in calculating an oxidation state is purely a formalism, but is a useful one for the understanding of many chemical reactions.</p>
For more about issues with calculating atomic charges, see [[partial charge]].


<p data-parsoid='{"dsr":[7547,7625,0,0]}'>For more about issues with calculating atomic charges, see <a rel="mw:WikiLink" href="./Partial_charge" data-parsoid='{"a":{"href":"./Partial_charge"},"sa":{"href":"partial charge"},"stx":"simple","dsr":[7606,7624,2,2]}'>partial charge</a>.</p>
===The Lewis structure===


<h3 data-parsoid='{"dsr":[7627,7652,3,3]}'>The Lewis structure</h3>
When a [[Lewis structure]] of a molecule is available, the oxidation states may be assigned by computing the difference between the number of [[valence electron]]s that a neutral atom of that element would have and the number of electrons that "belong" to it in the Lewis structure. For purposes of computing oxidation states, electrons in a bond between atoms of different elements belong to the more [[electronegative]] atom; electrons in a bond between atoms of the same element are split equally, and electrons in a [[lone pair]] belong only to the atom with the lone pair.


<p data-parsoid='{"dsr":[7654,8231,0,0]}'>When a <a rel="mw:WikiLink" href="./Lewis_structure" data-parsoid='{"a":{"href":"./Lewis_structure"},"sa":{"href":"Lewis structure"},"stx":"simple","dsr":[7661,7680,2,2]}'>Lewis structure</a> of a molecule is available, the oxidation states may be assigned by computing the difference between the number of <a rel="mw:WikiLink" href="./Valence_electron" data-parsoid='{"a":{"href":"./Valence_electron"},"sa":{"href":"valence electron"},"stx":"simple","dsr":[7796,7817,2,3],"tail":"s"}'>valence electrons</a> that a neutral atom of that element would have and the number of electrons that "belong" to it in the Lewis structure. For purposes of computing oxidation states, electrons in a bond between atoms of different elements belong to the more <a rel="mw:WikiLink" href="./Electronegative" data-parsoid='{"a":{"href":"./Electronegative"},"sa":{"href":"electronegative"},"stx":"simple","dsr":[8056,8075,2,2]}'>electronegative</a> atom; electrons in a bond between atoms of the same element are split equally, and electrons in a <a rel="mw:WikiLink" href="./Lone_pair" data-parsoid='{"a":{"href":"./Lone_pair"},"sa":{"href":"lone pair"},"stx":"simple","dsr":[8174,8187,2,2]}'>lone pair</a> belong only to the atom with the lone pair.</p>
For example, consider [[acetic acid]]:


<p data-parsoid='{"dsr":[8233,8271,0,0]}'>For example, consider <a rel="mw:WikiLink" href="./Acetic_acid" data-parsoid='{"a":{"href":"./Acetic_acid"},"sa":{"href":"acetic acid"},"stx":"simple","dsr":[8255,8270,2,2]}'>acetic acid</a>:</p>
[[Image:Acetic acid structures4.png|400px]]


<p data-parsoid='{"dsr":[8273,8316,0,0]}'><span typeof="mw:Image" data-parsoid='{"optList":[{"ck":"width","ak":"400px"}],"cacheKey":"[[Image:Acetic acid structures4.png|400px]]","img":{"h":235,"w":748,"wdset":true},"dsr":[8273,8316,null,null]}'><a href="./File:Acetic_acid_structures4.png" data-parsoid='{"a":{"href":"./File:Acetic_acid_structures4.png"}}'><img resource="./File:Acetic_acid_structures4.png" src="http://upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Acetic_acid_structures4.png/400px-Acetic_acid_structures4.png" height="126" width="400" data-parsoid='{"a":{"resource":"./File:Acetic_acid_structures4.png"},"sa":{"resource":"Image:Acetic acid structures4.png"}}'></a></span></p>
The [[methyl]] group carbon atom has 6 valence electrons from its bonds to the hydrogen atoms because carbon is more electronegative than hydrogen. Also, 1 electron is gained from its bond with the other carbon atom because the electron pair in the [[carbon-carbon bond|C–C bond]] is split equally, giving a total of 7 electrons. A neutral carbon atom would have 4 valence electrons, because carbon is in [[group 14]] of the periodic table. The difference, 4 – 7 = –3, is the oxidation state of that carbon atom. That is, if it is assumed that all the bonds were 100% ionic (which in fact they are not), the carbon would be described as C<sup>3-</sup>.


<p data-parsoid='{"dsr":[8318,8971,0,0]}'>The <a rel="mw:WikiLink" href="./Methyl" data-parsoid='{"a":{"href":"./Methyl"},"sa":{"href":"methyl"},"stx":"simple","dsr":[8322,8332,2,2]}'>methyl</a> group carbon atom has 6 valence electrons from its bonds to the hydrogen atoms because carbon is more electronegative than hydrogen. Also, 1 electron is gained from its bond with the other carbon atom because the electron pair in the <a rel="mw:WikiLink" href="./Carbon-carbon_bond" data-parsoid='{"a":{"href":"./Carbon-carbon_bond"},"sa":{"href":"carbon-carbon bond"},"stx":"piped","dsr":[8567,8598,21,2]}'>C–C bond</a> is split equally, giving a total of 7 electrons. A neutral carbon atom would have 4 valence electrons, because carbon is in <a rel="mw:WikiLink" href="./Group_14" data-parsoid='{"a":{"href":"./Group_14"},"sa":{"href":"group 14"},"stx":"simple","dsr":[8723,8735,2,2]}'>group 14</a> of the periodic table. The difference, 4 – 7 = –3, is the oxidation state of that carbon atom. That is, if it is assumed that all the bonds were 100% ionic (which in fact they are not), the carbon would be described as C<sup data-parsoid='{"stx":"html","dsr":[8957,8970,5,6]}'>3-</sup>.</p>
Following the same rules, the [[carboxylic acid]] carbon atom has an oxidation state of +3 (it only gets one valence electron from the C–C bond; the oxygen atoms get all the other electrons because oxygen is more electronegative than carbon). The oxygen atoms both have an oxidation state of –2; they get 8 electrons each (4 from the lone pairs and 4 from the bonds), while a neutral oxygen atom would have 6. The hydrogen atoms all have oxidation state +1, because they surrender their electron to the more electronegative atoms to which they are bonded.


<p data-parsoid='{"dsr":[8973,9528,0,0]}'>Following the same rules, the <a rel="mw:WikiLink" href="./Carboxylic_acid" data-parsoid='{"a":{"href":"./Carboxylic_acid"},"sa":{"href":"carboxylic acid"},"stx":"simple","dsr":[9003,9022,2,2]}'>carboxylic acid</a> carbon atom has an oxidation state of +3 (it only gets one valence electron from the C–C bond; the oxygen atoms get all the other electrons because oxygen is more electronegative than carbon). The oxygen atoms both have an oxidation state of –2; they get 8 electrons each (4 from the lone pairs and 4 from the bonds), while a neutral oxygen atom would have 6. The hydrogen atoms all have oxidation state +1, because they surrender their electron to the more electronegative atoms to which they are bonded.</p>
===Inequivalent atoms of an element===
[[Image:Thiosulfate-ion-2D-dimensions.png|thumb|right|150px|Structure of the thiosulfate anion]] An example of a molecule with inequivalent atoms of the same element is the [[thiosulfate]] ion (S<sub>2</sub>O<sub>3</sub><sup>2&minus;</sup>), for which the algebraic sum rule yields the average value +2 for sulfur, where the two ionizing electrons are assigned to the terminal sulfur atom. However, the use of a Lewis structure and electron counting shows that the two sulfur atoms are different. The central sulfur is assigned only one valence electron from the S-S bond and no valence electrons from the S-O bonds, compared to six valence electrons for a free sulfur atom, so the oxidation state of the central sulfur is +5. The terminal sulfur atom is assigned the other electron from the S-S bond plus three lone pairs for a total of seven valence electrons, so its oxidation state is −1.


<h3 data-parsoid='{"dsr":[9530,9568,3,3]}'>Inequivalent atoms of an element</h3>
===Redox reactions===
<figure class="mw-halign-right" typeof="mw:Image/Thumb" data-parsoid='{"optList":[{"ck":"thumbnail","ak":"thumb"},{"ck":"right","ak":"right"},{"ck":"width","ak":"150px"},{"ck":"caption","ak":"Structure of the thiosulfate anion"}],"cacheKey":"[[Image:Thiosulfate-ion-2D-dimensions.png|thumb|right|150px|Structure of the thiosulfate anion]]","img":{"h":894,"w":1100,"wdset":true},"dsr":[9569,9665,2,2]}'><a href="./File:Thiosulfate-ion-2D-dimensions.png" data-parsoid='{"a":{"href":"./File:Thiosulfate-ion-2D-dimensions.png"},"dsr":[9571,null,null,null]}'><img resource="./File:Thiosulfate-ion-2D-dimensions.png" src="http://upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Thiosulfate-ion-2D-dimensions.png/150px-Thiosulfate-ion-2D-dimensions.png" height="122" width="150" data-parsoid='{"a":{"resource":"./File:Thiosulfate-ion-2D-dimensions.png"},"sa":{"resource":"Image:Thiosulfate-ion-2D-dimensions.png"}}'></a><figcaption class="mw-figcaption" data-parsoid='{"dsr":[null,9663,null,null]}'>Structure of the thiosulfate anion</figcaption></figure> An example of a molecule with inequivalent atoms of the same element is the <a rel="mw:WikiLink" href="./Thiosulfate" data-parsoid='{"a":{"href":"./Thiosulfate"},"sa":{"href":"thiosulfate"},"stx":"simple","dsr":[9742,9757,2,2]}'>thiosulfate</a> ion (S<sub data-parsoid='{"stx":"html","dsr":[9764,9776,5,6]}'>2</sub>O<sub data-parsoid='{"stx":"html","dsr":[9777,9789,5,6]}'>3</sub><sup data-parsoid='{"stx":"html","dsr":[9789,9808,5,6]}'>2<span typeof="mw:Entity" data-parsoid='{"src":"&amp;minus;","srcContent":"−","dsr":[9795,9802,null,null]}'>−</span></sup>), for which the algebraic sum rule yields the average value +2 for sulfur, where the two ionizing electrons are assigned to the terminal sulfur atom. However, the use of a Lewis structure and electron counting shows that the two sulfur atoms are different. The central sulfur is assigned only one valence electron from the S-S bond and no valence electrons from the S-O bonds, compared to six valence electrons for a free sulfur atom, so the oxidation state of the central sulfur is +5. The terminal sulfur atom is assigned the other electron from the S-S bond plus three lone pairs for a total of seven valence electrons, so its oxidation state is −1.
Oxidation states can be useful for balancing chemical equations for oxidation-reduction (or [[redox]]) reactions, because the changes in the oxidized atoms have to be balanced by the changes in the reduced atoms. For example, in the reaction of [[acetaldehyde]] with the [[Tollens' reagent]] to acetic acid (shown below), the carbonyl carbon atom changes its oxidation state from +1 to +3 (oxidation). This oxidation is balanced by reducing two equivalents of [[silver]] from Ag<sup>+</sup> to Ag<sup>0</sup>.
:[[Image:Redox Tollens Oxidationszahlen C.svg|600px|Change in oxidation state in Tollens reaction]]


<h3 data-parsoid='{"dsr":[10463,10484,3,3]}'>Redox reactions</h3>
In such structural diagrams for organic chemistry, oxidation states are represented by Roman numerals to distinguish them from [[formal charge]]s (calculated with all bonds covalent).
<p data-parsoid='{"dsr":[10485,10994,0,0]}'>Oxidation states can be useful for balancing chemical equations for oxidation-reduction (or <a rel="mw:WikiLink" href="./Redox" data-parsoid='{"a":{"href":"./Redox"},"sa":{"href":"redox"},"stx":"simple","dsr":[10577,10586,2,2]}'>redox</a>) reactions, because the changes in the oxidized atoms have to be balanced by the changes in the reduced atoms. For example, in the reaction of <a rel="mw:WikiLink" href="./Acetaldehyde" data-parsoid='{"a":{"href":"./Acetaldehyde"},"sa":{"href":"acetaldehyde"},"stx":"simple","dsr":[10730,10746,2,2]}'>acetaldehyde</a> with the <a rel="mw:WikiLink" href="./Tollens'_reagent" data-parsoid='{"a":{"href":"./Tollens&#39;_reagent"},"sa":{"href":"Tollens&#39; reagent"},"stx":"simple","dsr":[10756,10776,2,2]}'>Tollens' reagent</a> to acetic acid (shown below), the carbonyl carbon atom changes its oxidation state from +1 to +3 (oxidation). This oxidation is balanced by reducing two equivalents of <a rel="mw:WikiLink" href="./Silver" data-parsoid='{"a":{"href":"./Silver"},"sa":{"href":"silver"},"stx":"simple","dsr":[10945,10955,2,2]}'>silver</a> from Ag<sup data-parsoid='{"stx":"html","dsr":[10963,10975,5,6]}'>+</sup> to Ag<sup data-parsoid='{"stx":"html","dsr":[10981,10993,5,6]}'>0</sup>.</p>
<dl data-parsoid='{"dsr":[10995,11094,0,0]}'><dd data-parsoid='{"dsr":[10995,11094,1,0]}'><span typeof="mw:Image" data-mw='{"caption":"Change in oxidation state in Tollens reaction"}' data-parsoid='{"optList":[{"ck":"width","ak":"600px"},{"ck":"caption","ak":"Change in oxidation state in Tollens reaction"}],"cacheKey":"[[Image:Redox Tollens Oxidationszahlen C.svg|600px|Change in oxidation state in Tollens reaction]]","img":{"h":300,"w":590,"wdset":true},"dsr":[10996,11094,null,null]}'><a href="./File:Redox_Tollens_Oxidationszahlen_C.svg" data-parsoid='{"a":{"href":"./File:Redox_Tollens_Oxidationszahlen_C.svg"}}'><img resource="./File:Redox_Tollens_Oxidationszahlen_C.svg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/b/be/Redox_Tollens_Oxidationszahlen_C.svg/600px-Redox_Tollens_Oxidationszahlen_C.svg.png" height="305" width="600" data-parsoid='{"a":{"resource":"./File:Redox_Tollens_Oxidationszahlen_C.svg"},"sa":{"resource":"Image:Redox Tollens Oxidationszahlen C.svg"}}'></a></span></dd></dl>


<p data-parsoid='{"dsr":[11096,11279,0,0]}'>In such structural diagrams for organic chemistry, oxidation states are represented by Roman numerals to distinguish them from <a rel="mw:WikiLink" href="./Formal_charge" data-parsoid='{"a":{"href":"./Formal_charge"},"sa":{"href":"formal charge"},"stx":"simple","dsr":[11223,11241,2,3],"tail":"s"}'>formal charges</a> (calculated with all bonds covalent).</p>
==Elements with multiple oxidation states==
Most elements have more than one possible oxidation state.


Carbon has nine integer oxidation states:
<h2 data-parsoid='{"dsr":[11281,11324,2,2]}'>Elements with multiple oxidation states</h2>
<p data-parsoid='{"dsr":[11325,11384,0,0]}'>Most elements have more than one possible oxidation state. </p>
{| class="wikitable"
|+ Integer oxidation states of carbon
|-
! Oxidation state !! Example compound
|-
| –4 || [[methane|{{chem|CH|4}}]]
|-
| –3 || [[ethane|{{chem|C|2|H|6}}]]
|-
| –2 || [[chloromethane|{{chem|CH|3|Cl}}]]
|-
| –1 || [[acetylene|{{chem|C|2|H|2}}]]
|-
| 0 || [[dichloromethane|{{chem|CH|2|Cl|2}}]]
|-
| +1 || [[1,1,2,2-Tetrachloroethane|{{chem|CHCl|2|}}—{{chem|CHCl|2|}}]]
|-
| +2 || [[chloroform|{{chem|CHCl|3}}]]
|-
| +3 || [[hexachloroethane|{{chem|C|2|Cl|6}}]]
|-
| +4 || [[carbon tetrachloride|{{chem|CCl|4}}]]
|}


===Fractional oxidation states===
<p data-parsoid='{"dsr":[11386,11427,0,0]}'>Carbon has nine integer oxidation states:</p>
<table class="wikitable" data-parsoid='{"dsr":[11428,11961,20,2]}'>
<caption data-parsoid='{"dsr":[11449,11486,2,null]}'> Integer oxidation states of carbon</caption>
<tbody data-parsoid='{"dsr":[11487,11959,0,0]}'><tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[11487,11527,2,0]}'>
<th data-parsoid='{"autoInsertedEnd":true,"dsr":[11490,11508,1,0]}'> Oxidation state </th><th data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[11508,11527,2,0]}'> Example compound</th></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[11528,11564,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[11531,11536,1,0]}'> –4 </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[11536,11564,2,0]}'> <a rel="mw:WikiLink" href="./Methane" data-parsoid='{"a":{"href":"./Methane"},"sa":{"href":"methane"},"stx":"piped","dsr":[11539,11564,10,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|CH|4}}","dsr":[11549,11562,null,null]}' about="#mwt14" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"CH"},"2":{"wt":"4"}}}'>CH<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>4</span></span></a></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[11565,11603,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[11568,11573,1,0]}'> –3 </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[11573,11603,2,0]}'> <a rel="mw:WikiLink" href="./Ethane" data-parsoid='{"a":{"href":"./Ethane"},"sa":{"href":"ethane"},"stx":"piped","dsr":[11576,11603,9,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|C|2|H|6}}","dsr":[11585,11601,null,null]}' about="#mwt15" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"C"},"2":{"wt":"2"},"3":{"wt":"H"},"4":{"wt":"6"}}}'>C<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span>H<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>6</span></span></a></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[11604,11649,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[11607,11612,1,0]}'> –2 </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[11612,11649,2,0]}'> <a rel="mw:WikiLink" href="./Chloromethane" data-parsoid='{"a":{"href":"./Chloromethane"},"sa":{"href":"chloromethane"},"stx":"piped","dsr":[11615,11649,16,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|CH|3|Cl}}","dsr":[11631,11647,null,null]}' about="#mwt16" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"CH"},"2":{"wt":"3"},"3":{"wt":"Cl"}}}'>CH<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>3</span>Cl</span></a></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[11650,11691,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[11653,11658,1,0]}'> –1 </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[11658,11691,2,0]}'> <a rel="mw:WikiLink" href="./Acetylene" data-parsoid='{"a":{"href":"./Acetylene"},"sa":{"href":"acetylene"},"stx":"piped","dsr":[11661,11691,12,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|C|2|H|2}}","dsr":[11673,11689,null,null]}' about="#mwt17" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"C"},"2":{"wt":"2"},"3":{"wt":"H"},"4":{"wt":"2"}}}'>C<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span>H<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span></span></a></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[11692,11740,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[11695,11699,1,0]}'> 0 </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[11699,11740,2,0]}'> <a rel="mw:WikiLink" href="./Dichloromethane" data-parsoid='{"a":{"href":"./Dichloromethane"},"sa":{"href":"dichloromethane"},"stx":"piped","dsr":[11702,11740,18,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|CH|2|Cl|2}}","dsr":[11720,11738,null,null]}' about="#mwt18" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"CH"},"2":{"wt":"2"},"3":{"wt":"Cl"},"4":{"wt":"2"}}}'>CH<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span>Cl<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span></span></a></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[11741,11815,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[11744,11749,1,0]}'> +1 </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[11749,11815,2,0]}'> <a rel="mw:WikiLink" href="./1,1,2,2-Tetrachloroethane" data-parsoid='{"a":{"href":"./1,1,2,2-Tetrachloroethane"},"sa":{"href":"1,1,2,2-Tetrachloroethane"},"stx":"piped","dsr":[11752,11815,28,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|CHCl|2|}}","dsr":[11780,11796,null,null]}' about="#mwt19" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"CHCl"},"2":{"wt":"2"},"3":{"wt":""}}}'>CHCl<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span></span>—<span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|CHCl|2|}}","dsr":[11797,11813,null,null]}' about="#mwt20" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"CHCl"},"2":{"wt":"2"},"3":{"wt":""}}}'>CHCl<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span></span></a></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[11816,11857,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[11819,11824,1,0]}'> +2 </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[11824,11857,2,0]}'> <a rel="mw:WikiLink" href="./Chloroform" data-parsoid='{"a":{"href":"./Chloroform"},"sa":{"href":"chloroform"},"stx":"piped","dsr":[11827,11857,13,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|CHCl|3}}","dsr":[11840,11855,null,null]}' about="#mwt21" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"CHCl"},"2":{"wt":"3"}}}'>CHCl<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>3</span></span></a></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[11858,11907,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[11861,11866,1,0]}'> +3 </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[11866,11907,2,0]}'> <a rel="mw:WikiLink" href="./Hexachloroethane" data-parsoid='{"a":{"href":"./Hexachloroethane"},"sa":{"href":"hexachloroethane"},"stx":"piped","dsr":[11869,11907,19,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|C|2|Cl|6}}","dsr":[11888,11905,null,null]}' about="#mwt22" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"C"},"2":{"wt":"2"},"3":{"wt":"Cl"},"4":{"wt":"6"}}}'>C<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span>Cl<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>6</span></span></a></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[11908,11958,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[11911,11916,1,0]}'> +4 </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[11916,11958,2,0]}'> <a rel="mw:WikiLink" href="./Carbon_tetrachloride" data-parsoid='{"a":{"href":"./Carbon_tetrachloride"},"sa":{"href":"carbon tetrachloride"},"stx":"piped","dsr":[11919,11958,23,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|CCl|4}}","dsr":[11942,11956,null,null]}' about="#mwt23" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"CCl"},"2":{"wt":"4"}}}'>CCl<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>4</span></span></a></td></tr>
</tbody></table>


<h3 data-parsoid='{"dsr":[11963,11996,3,3]}'>Fractional oxidation states</h3>
Fractional oxidation states are often used to represent the average oxidation states of several atoms in a structure. For example, in {{chem|KO|2}}, the diatomic [[superoxide]] ion has an overall charge of &minus;1, so each of its two oxygen atoms is assigned an oxidation state of &minus;½, This ion is described as a [[resonance (chemistry)|resonance]] hybrid of two Lewis structures, where each oxygen has oxidation state 0 in one structure and &minus;1 in the other.


<p data-parsoid='{"dsr":[11998,12469,0,0]}'>Fractional oxidation states are often used to represent the average oxidation states of several atoms in a structure. For example, in <span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|KO|2}}","dsr":[12132,12145,null,null]}' about="#mwt24" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"KO"},"2":{"wt":"2"}}}'>KO<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span></span>, the diatomic <a rel="mw:WikiLink" href="./Superoxide" data-parsoid='{"a":{"href":"./Superoxide"},"sa":{"href":"superoxide"},"stx":"simple","dsr":[12160,12174,2,2]}'>superoxide</a> ion has an overall charge of <span typeof="mw:Entity" data-parsoid='{"src":"&amp;minus;","srcContent":"−","dsr":[12204,12211,null,null]}'>−</span>1, so each of its two oxygen atoms is assigned an oxidation state of <span typeof="mw:Entity" data-parsoid='{"src":"&amp;minus;","srcContent":"−","dsr":[12280,12287,null,null]}'>−</span>½, This ion is described as a <a rel="mw:WikiLink" href="./Resonance_(chemistry)" data-parsoid='{"a":{"href":"./Resonance_(chemistry)"},"sa":{"href":"resonance (chemistry)"},"stx":"piped","dsr":[12317,12352,24,2]}'>resonance</a> hybrid of two Lewis structures, where each oxygen has oxidation state 0 in one structure and <span typeof="mw:Entity" data-parsoid='{"src":"&amp;minus;","srcContent":"−","dsr":[12446,12453,null,null]}'>−</span>1 in the other. </p>
For the [[cyclopentadienyl]] ion {{chem|C|5|H|5}}<sup>−</sup>, the oxidation state of C is (&minus;1) + (&minus;{{frac|1|5}}) = &minus;{{frac|6|5}}. The &minus;1 occurs because each C is bonded to one hydrogen (a less electronegative element), and the &minus;{{frac|1|5}} because the total ionic charge is divided among five equivalent C.


<p data-parsoid='{"dsr":[12471,12809,0,0]}'>For the <a rel="mw:WikiLink" href="./Cyclopentadienyl" data-parsoid='{"a":{"href":"./Cyclopentadienyl"},"sa":{"href":"cyclopentadienyl"},"stx":"simple","dsr":[12479,12499,2,2]}'>cyclopentadienyl</a> ion <span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|C|5|H|5}}","dsr":[12504,12520,null,null]}' about="#mwt25" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"C"},"2":{"wt":"5"},"3":{"wt":"H"},"4":{"wt":"5"}}}'>C<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>5</span>H<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>5</span></span><sup data-parsoid='{"stx":"html","dsr":[12520,12532,5,6]}'>−</sup>, the oxidation state of C is (<span typeof="mw:Entity" data-parsoid='{"src":"&amp;minus;","srcContent":"−","dsr":[12563,12570,null,null]}'>−</span>1) + (<span typeof="mw:Entity" data-parsoid='{"src":"&amp;minus;","srcContent":"−","dsr":[12576,12583,null,null]}'>−</span><span class="frac nowrap" data-parsoid='{"src":"{{frac|1|5}}","dsr":[12583,12595,null,null]}' about="#mwt26" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"1"},"2":{"wt":"5"}}}'><sup data-parsoid='{"stx":"html"}'>1</sup><span typeof="mw:Entity" data-parsoid='{"src":"&amp;frasl;","srcContent":"⁄"}'>⁄</span><sub data-parsoid='{"stx":"html"}'>5</sub></span>) = <span typeof="mw:Entity" data-parsoid='{"src":"&amp;minus;","srcContent":"−","dsr":[12599,12606,null,null]}'>−</span><span class="frac nowrap" data-parsoid='{"src":"{{frac|6|5}}","dsr":[12606,12618,null,null]}' about="#mwt27" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"6"},"2":{"wt":"5"}}}'><sup data-parsoid='{"stx":"html"}'>6</sup><span typeof="mw:Entity" data-parsoid='{"src":"&amp;frasl;","srcContent":"⁄"}'>⁄</span><sub data-parsoid='{"stx":"html"}'>5</sub></span>. The <span typeof="mw:Entity" data-parsoid='{"src":"&amp;minus;","srcContent":"−","dsr":[12624,12631,null,null]}'>−</span>1 occurs because each C is bonded to one hydrogen (a less electronegative element), and the <span typeof="mw:Entity" data-parsoid='{"src":"&amp;minus;","srcContent":"−","dsr":[12723,12730,null,null]}'>−</span><span class="frac nowrap" data-parsoid='{"src":"{{frac|1|5}}","dsr":[12730,12742,null,null]}' about="#mwt28" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"1"},"2":{"wt":"5"}}}'><sup data-parsoid='{"stx":"html"}'>1</sup><span typeof="mw:Entity" data-parsoid='{"src":"&amp;frasl;","srcContent":"⁄"}'>⁄</span><sub data-parsoid='{"stx":"html"}'>5</sub></span> because the total ionic charge is divided among five equivalent C.</p>
If the average refers to atoms that are not equivalent, the average oxidation state may not be representative of each of the atoms. This is true in [[magnetite]] {{chem|Fe|3|O|4}}, whose formula leads to an average oxidation state of +{{frac|8|3}}. In fact, two-thirds of the iron ions are Fe<sup>3+</sup>, and one-third Fe<sup>2+</sup>.


<p data-parsoid='{"dsr":[12811,13148,0,0]}'>If the average refers to atoms that are not equivalent, the average oxidation state may not be representative of each of the atoms. This is true in <a rel="mw:WikiLink" href="./Magnetite" data-parsoid='{"a":{"href":"./Magnetite"},"sa":{"href":"magnetite"},"stx":"simple","dsr":[12959,12972,2,2]}'>magnetite</a> <span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|Fe|3|O|4}}","dsr":[12973,12990,null,null]}' about="#mwt29" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"Fe"},"2":{"wt":"3"},"3":{"wt":"O"},"4":{"wt":"4"}}}'>Fe<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>3</span>O<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>4</span></span>, whose formula leads to an average oxidation state of +<span class="frac nowrap" data-parsoid='{"src":"{{frac|8|3}}","dsr":[13046,13058,null,null]}' about="#mwt30" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"8"},"2":{"wt":"3"}}}'><sup data-parsoid='{"stx":"html"}'>8</sup><span typeof="mw:Entity" data-parsoid='{"src":"&amp;frasl;","srcContent":"⁄"}'>⁄</span><sub data-parsoid='{"stx":"html"}'>3</sub></span>. In fact, two-thirds of the iron ions are Fe<sup data-parsoid='{"stx":"html","dsr":[13103,13116,5,6]}'>3+</sup>, and one-third Fe<sup data-parsoid='{"stx":"html","dsr":[13134,13147,5,6]}'>2+</sup>.</p>
Likewise, the [[ozonide]] ion O<sub>3</sub><sup>&minus;</sup> has an average oxidation state of &minus;{{frac|1|3}}. However, this ion is V-shaped, meaning that the central oxygen is not equivalent to the two others and cannot be assumed to have the same oxidation state.


<p data-parsoid='{"dsr":[13150,13421,0,0]}'>Likewise, the <a rel="mw:WikiLink" href="./Ozonide" data-parsoid='{"a":{"href":"./Ozonide"},"sa":{"href":"ozonide"},"stx":"simple","dsr":[13164,13175,2,2]}'>ozonide</a> ion O<sub data-parsoid='{"stx":"html","dsr":[13181,13193,5,6]}'>3</sub><sup data-parsoid='{"stx":"html","dsr":[13193,13211,5,6]}'><span typeof="mw:Entity" data-parsoid='{"src":"&amp;minus;","srcContent":"−","dsr":[13198,13205,null,null]}'>−</span></sup> has an average oxidation state of <span typeof="mw:Entity" data-parsoid='{"src":"&amp;minus;","srcContent":"−","dsr":[13246,13253,null,null]}'>−</span><span class="frac nowrap" data-parsoid='{"src":"{{frac|1|3}}","dsr":[13253,13265,null,null]}' about="#mwt31" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"1"},"2":{"wt":"3"}}}'><sup data-parsoid='{"stx":"html"}'>1</sup><span typeof="mw:Entity" data-parsoid='{"src":"&amp;frasl;","srcContent":"⁄"}'>⁄</span><sub data-parsoid='{"stx":"html"}'>3</sub></span>. However, this ion is V-shaped, meaning that the central oxygen is not equivalent to the two others and cannot be assumed to have the same oxidation state.</p>
As an example, some species contain carbon in more than one oxidation state, giving a fractional oxidation state overall:
{| class="wikitable"
|+ Examples of fractional oxidation states for carbon
|-
! Oxidation state !! Example species
|-
| –{{frac|6|5}} || [[Cyclopentadienyl complex|{{chem|C|5|H|5}}<sup>−</sup>]]
|-
| –{{frac|6|7}} || [[tropylium|{{chem|C|7|H|7}}]]<sup>+</sup>
|-
| –{{frac|5|4}} || [[uranocene|{{chem|C|8|H|8}}<sup>2−</sup>]]
|}


<p data-parsoid='{"dsr":[13423,13544,0,0]}'>As an example, some species contain carbon in more than one oxidation state, giving a fractional oxidation state overall:</p>
=== Oxygen ===
<table class="wikitable" data-parsoid='{"dsr":[13545,13873,20,2]}'>
<caption data-parsoid='{"dsr":[13566,13619,2,null]}'> Examples of fractional oxidation states for carbon</caption>
<tbody data-parsoid='{"dsr":[13620,13871,0,0]}'><tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[13620,13659,2,0]}'>
<th data-parsoid='{"autoInsertedEnd":true,"dsr":[13623,13641,1,0]}'> Oxidation state </th><th data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[13641,13659,2,0]}'> Example species</th></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[13660,13739,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[13663,13679,1,0]}'> –<span class="frac nowrap" data-parsoid='{"src":"{{frac|6|5}}","dsr":[13666,13678,null,null]}' about="#mwt32" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"6"},"2":{"wt":"5"}}}'><sup data-parsoid='{"stx":"html"}'>6</sup><span typeof="mw:Entity" data-parsoid='{"src":"&amp;frasl;","srcContent":"⁄"}'>⁄</span><sub data-parsoid='{"stx":"html"}'>5</sub></span> </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[13679,13739,2,0]}'> <a rel="mw:WikiLink" href="./Cyclopentadienyl_complex" data-parsoid='{"a":{"href":"./Cyclopentadienyl_complex"},"sa":{"href":"Cyclopentadienyl complex"},"stx":"piped","dsr":[13682,13739,27,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|C|5|H|5}}","dsr":[13709,13725,null,null]}' about="#mwt33" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"C"},"2":{"wt":"5"},"3":{"wt":"H"},"4":{"wt":"5"}}}'>C<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>5</span>H<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>5</span></span><sup data-parsoid='{"stx":"html","dsr":[13725,13737,5,6]}'>−</sup></a></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[13740,13804,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[13743,13759,1,0]}'> –<span class="frac nowrap" data-parsoid='{"src":"{{frac|6|7}}","dsr":[13746,13758,null,null]}' about="#mwt34" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"6"},"2":{"wt":"7"}}}'><sup data-parsoid='{"stx":"html"}'>6</sup><span typeof="mw:Entity" data-parsoid='{"src":"&amp;frasl;","srcContent":"⁄"}'>⁄</span><sub data-parsoid='{"stx":"html"}'>7</sub></span> </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[13759,13804,2,0]}'> <a rel="mw:WikiLink" href="./Tropylium" data-parsoid='{"a":{"href":"./Tropylium"},"sa":{"href":"tropylium"},"stx":"piped","dsr":[13762,13792,12,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|C|7|H|7}}","dsr":[13774,13790,null,null]}' about="#mwt35" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"C"},"2":{"wt":"7"},"3":{"wt":"H"},"4":{"wt":"7"}}}'>C<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>7</span>H<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>7</span></span></a><sup data-parsoid='{"stx":"html","dsr":[13792,13804,5,6]}'>+</sup></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[13805,13870,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[13808,13824,1,0]}'> –<span class="frac nowrap" data-parsoid='{"src":"{{frac|5|4}}","dsr":[13811,13823,null,null]}' about="#mwt36" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"5"},"2":{"wt":"4"}}}'><sup data-parsoid='{"stx":"html"}'>5</sup><span typeof="mw:Entity" data-parsoid='{"src":"&amp;frasl;","srcContent":"⁄"}'>⁄</span><sub data-parsoid='{"stx":"html"}'>4</sub></span> </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[13824,13870,2,0]}'> <a rel="mw:WikiLink" href="./Uranocene" data-parsoid='{"a":{"href":"./Uranocene"},"sa":{"href":"uranocene"},"stx":"piped","dsr":[13827,13870,12,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|C|8|H|8}}","dsr":[13839,13855,null,null]}' about="#mwt37" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"C"},"2":{"wt":"8"},"3":{"wt":"H"},"4":{"wt":"8"}}}'>C<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>8</span>H<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>8</span></span><sup data-parsoid='{"stx":"html","dsr":[13855,13868,5,6]}'>2−</sup></a></td></tr>
</tbody></table>


<h3 data-parsoid='{"dsr":[13875,13889,3,3]}'> Oxygen </h3>
As another example, oxygen has eight distinct oxidation states:
{| class="wikitable"
|+ Oxidation states of oxygen
|-
! Oxidation state !! Example compounds
|-
| –2 || [[oxide]]s, e.g. [[zinc oxide|ZnO]], [[carbon dioxide|{{chem|CO|2}}]], [[water|{{chem|H|2|O}}]]
|-
| –1 || [[peroxide]]s, e.g. [[hydrogen peroxide|{{chem|H|2|O|2}}]]
|-
| –{{frac|1|2}} || [[superoxide]]s, e.g. [[potassium superoxide|{{chem|KO|2}}]]
|-
| –{{frac|1|3}} || inorganic [[ozonide]]s, e.g. [[rubidium ozonide|{{chem|RbO|3}}]]
|-
| 0 || [[oxygen|{{chem|O|2}}]]
|-
| +{{frac|1|2}} || [[dioxygenyl]] ion, e.g. dioxygenyl hexafluoroarsenate {{chem|O|2}}<sup>+</sup> [{{chem|AsF|6}}]<sup>−</sup>
|-
| +1 || [[dioxygen difluoride|{{chem|O|2|F|2}}]]
|-
| +2 || [[oxygen difluoride|{{chem|OF|2}}]]
|}


<p data-parsoid='{"dsr":[13891,13954,0,0]}'>As another example, oxygen has eight distinct oxidation states:</p>
==Oxidation number==
<table class="wikitable" data-parsoid='{"dsr":[13955,14661,20,2]}'>
{{Main|Oxidation number}}
<caption data-parsoid='{"dsr":[13976,14005,2,null]}'> Oxidation states of oxygen</caption>
<tbody data-parsoid='{"dsr":[14006,14659,0,0]}'><tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[14006,14047,2,0]}'>
<th data-parsoid='{"autoInsertedEnd":true,"dsr":[14009,14027,1,0]}'> Oxidation state </th><th data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[14027,14047,2,0]}'> Example compounds</th></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[14048,14154,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[14051,14056,1,0]}'> –2 </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[14056,14154,2,0]}'> <a rel="mw:WikiLink" href="./Oxide" data-parsoid='{"a":{"href":"./Oxide"},"sa":{"href":"oxide"},"stx":"simple","dsr":[14059,14069,2,3],"tail":"s"}'>oxides</a>, e.g. <a rel="mw:WikiLink" href="./Zinc_oxide" data-parsoid='{"a":{"href":"./Zinc_oxide"},"sa":{"href":"zinc oxide"},"stx":"piped","dsr":[14076,14094,13,2]}'>ZnO</a>, <a rel="mw:WikiLink" href="./Carbon_dioxide" data-parsoid='{"a":{"href":"./Carbon_dioxide"},"sa":{"href":"carbon dioxide"},"stx":"piped","dsr":[14096,14128,17,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|CO|2}}","dsr":[14113,14126,null,null]}' about="#mwt38" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"CO"},"2":{"wt":"2"}}}'>CO<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span></span></a>, <a rel="mw:WikiLink" href="./Water" data-parsoid='{"a":{"href":"./Water"},"sa":{"href":"water"},"stx":"piped","dsr":[14130,14154,8,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|H|2|O}}","dsr":[14138,14152,null,null]}' about="#mwt39" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"H"},"2":{"wt":"2"},"3":{"wt":"O"}}}'>H<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span>O</span></a></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[14155,14224,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[14158,14163,1,0]}'> –1 </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[14163,14224,2,0]}'> <a rel="mw:WikiLink" href="./Peroxide" data-parsoid='{"a":{"href":"./Peroxide"},"sa":{"href":"peroxide"},"stx":"simple","dsr":[14166,14179,2,3],"tail":"s"}'>peroxides</a>, e.g. <a rel="mw:WikiLink" href="./Hydrogen_peroxide" data-parsoid='{"a":{"href":"./Hydrogen_peroxide"},"sa":{"href":"hydrogen peroxide"},"stx":"piped","dsr":[14186,14224,20,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|H|2|O|2}}","dsr":[14206,14222,null,null]}' about="#mwt40" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"H"},"2":{"wt":"2"},"3":{"wt":"O"},"4":{"wt":"2"}}}'>H<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span>O<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span></span></a></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[14225,14307,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[14228,14244,1,0]}'> –<span class="frac nowrap" data-parsoid='{"src":"{{frac|1|2}}","dsr":[14231,14243,null,null]}' about="#mwt41" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"1"},"2":{"wt":"2"}}}'><sup data-parsoid='{"stx":"html"}'>1</sup><span typeof="mw:Entity" data-parsoid='{"src":"&amp;frasl;","srcContent":"⁄"}'>⁄</span><sub data-parsoid='{"stx":"html"}'>2</sub></span> </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[14244,14307,2,0]}'> <a rel="mw:WikiLink" href="./Superoxide" data-parsoid='{"a":{"href":"./Superoxide"},"sa":{"href":"superoxide"},"stx":"simple","dsr":[14247,14262,2,3],"tail":"s"}'>superoxides</a>, e.g. <a rel="mw:WikiLink" href="./Potassium_superoxide" data-parsoid='{"a":{"href":"./Potassium_superoxide"},"sa":{"href":"potassium superoxide"},"stx":"piped","dsr":[14269,14307,23,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|KO|2}}","dsr":[14292,14305,null,null]}' about="#mwt42" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"KO"},"2":{"wt":"2"}}}'>KO<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span></span></a></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[14308,14394,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[14311,14327,1,0]}'> –<span class="frac nowrap" data-parsoid='{"src":"{{frac|1|3}}","dsr":[14314,14326,null,null]}' about="#mwt43" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"1"},"2":{"wt":"3"}}}'><sup data-parsoid='{"stx":"html"}'>1</sup><span typeof="mw:Entity" data-parsoid='{"src":"&amp;frasl;","srcContent":"⁄"}'>⁄</span><sub data-parsoid='{"stx":"html"}'>3</sub></span> </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[14327,14394,2,0]}'> inorganic <a rel="mw:WikiLink" href="./Ozonide" data-parsoid='{"a":{"href":"./Ozonide"},"sa":{"href":"ozonide"},"stx":"simple","dsr":[14340,14352,2,3],"tail":"s"}'>ozonides</a>, e.g. <a rel="mw:WikiLink" href="./Rubidium_ozonide" data-parsoid='{"a":{"href":"./Rubidium_ozonide"},"sa":{"href":"rubidium ozonide"},"stx":"piped","dsr":[14359,14394,19,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|RbO|3}}","dsr":[14378,14392,null,null]}' about="#mwt44" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"RbO"},"2":{"wt":"3"}}}'>RbO<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>3</span></span></a></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[14395,14428,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[14398,14402,1,0]}'> 0 </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[14402,14428,2,0]}'> <a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"oxygen"},"stx":"piped","dsr":[14405,14428,9,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|O|2}}","dsr":[14414,14426,null,null]}' about="#mwt45" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"O"},"2":{"wt":"2"}}}'>O<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span></span></a></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[14429,14559,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[14432,14448,1,0]}'> +<span class="frac nowrap" data-parsoid='{"src":"{{frac|1|2}}","dsr":[14435,14447,null,null]}' about="#mwt46" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"1"},"2":{"wt":"2"}}}'><sup data-parsoid='{"stx":"html"}'>1</sup><span typeof="mw:Entity" data-parsoid='{"src":"&amp;frasl;","srcContent":"⁄"}'>⁄</span><sub data-parsoid='{"stx":"html"}'>2</sub></span> </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[14448,14559,2,0]}'> <a rel="mw:WikiLink" href="./Dioxygenyl" data-parsoid='{"a":{"href":"./Dioxygenyl"},"sa":{"href":"dioxygenyl"},"stx":"simple","dsr":[14451,14465,2,2]}'>dioxygenyl</a> ion, e.g. dioxygenyl hexafluoroarsenate <span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|O|2}}","dsr":[14506,14518,null,null]}' about="#mwt47" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"O"},"2":{"wt":"2"}}}'>O<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span></span><sup data-parsoid='{"stx":"html","dsr":[14518,14530,5,6]}'>+</sup> <meta property="mw:objectAttrVal#href" about="#mwt57" data-parsoid='{"src":"{{chem|AsF|6}}","dsr":[14531,14531,null,null]}'>[<span typeof="mw:Placeholder" data-parsoid='{"src":"{{chem|AsF|6}}","dsr":[14532,14546,null,null]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"stx":"html"}'>AsF<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>6</span></span></span>]<sup data-parsoid='{"stx":"html","dsr":[14547,14559,5,6]}'>−</sup></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[14560,14611,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[14563,14568,1,0]}'> +1 </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[14568,14611,2,0]}'> <a rel="mw:WikiLink" href="./Dioxygen_difluoride" data-parsoid='{"a":{"href":"./Dioxygen_difluoride"},"sa":{"href":"dioxygen difluoride"},"stx":"piped","dsr":[14571,14611,22,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|O|2|F|2}}","dsr":[14593,14609,null,null]}' about="#mwt49" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"O"},"2":{"wt":"2"},"3":{"wt":"F"},"4":{"wt":"2"}}}'>O<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span>F<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span></span></a></td></tr>
<tr data-parsoid='{"startTagSrc":"|-","autoInsertedEnd":true,"dsr":[14612,14658,2,0]}'>
<td data-parsoid='{"autoInsertedEnd":true,"dsr":[14615,14620,1,0]}'> +2 </td><td data-parsoid='{"stx_v":"row","autoInsertedEnd":true,"dsr":[14620,14658,2,0]}'> <a rel="mw:WikiLink" href="./Oxygen_difluoride" data-parsoid='{"a":{"href":"./Oxygen_difluoride"},"sa":{"href":"oxygen difluoride"},"stx":"piped","dsr":[14623,14658,20,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"{{chem|OF|2}}","dsr":[14643,14656,null,null]}' about="#mwt50" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"OF"},"2":{"wt":"2"}}}'>OF<span style="display:inline-block; margin-bottom:-0.3em; vertical-align:-0.4em; line-height:1.2em; font-size:85%; text-align:left;" data-parsoid='{"stx":"html"}'><br data-parsoid='{"stx":"html","selfClose":true}'>2</span></span></a></td></tr>
</tbody></table>


<h2 data-parsoid='{"dsr":[14663,14683,2,2]}'>Oxidation number</h2>
The terms ''oxidation state'' and ''oxidation number'' are often used interchangeably. However, ''[[oxidation number]]'' is used in [[coordination chemistry]] with a slightly different meaning. In coordination chemistry, the rules used for counting electrons are different: Every electron in a metal-ligand bond belongs to the [[ligand]], regardless of electronegativity. Also, oxidation numbers are conventionally represented with Roman numerals, while oxidation states use Indo-Arabic numerals.
<div class="rellink relarticle mainarticle" data-parsoid='{"src":"{{Main|Oxidation number}}","dsr":[14684,14709,null,null]}' about="#mwt51" typeof="mw:Transclusion" data-mw='{"target":{"wt":"Main","href":"./Template:Main"},"params":{"1":{"wt":"Oxidation number"}}}'>Main article: <a rel="mw:WikiLink" href="./Oxidation_number" data-parsoid='{"a":{"href":"./Oxidation_number"},"sa":{"href":"Oxidation number"},"stx":"piped"}'>Oxidation number</a></div>


<p data-parsoid='{"dsr":[14711,15207,0,0]}'>The terms <i data-parsoid='{"dsr":[14721,14740,2,2]}'>oxidation state</i> and <i data-parsoid='{"dsr":[14745,14765,2,2]}'>oxidation number</i> are often used interchangeably. However, <i data-parsoid='{"dsr":[14807,14831,2,2]}'><a rel="mw:WikiLink" href="./Oxidation_number" data-parsoid='{"a":{"href":"./Oxidation_number"},"sa":{"href":"oxidation number"},"stx":"simple","dsr":[14809,14829,2,2]}'>oxidation number</a></i> is used in <a rel="mw:WikiLink" href="./Coordination_chemistry" data-parsoid='{"a":{"href":"./Coordination_chemistry"},"sa":{"href":"coordination chemistry"},"stx":"simple","dsr":[14843,14869,2,2]}'>coordination chemistry</a> with a slightly different meaning. In coordination chemistry, the rules used for counting electrons are different: Every electron in a metal-ligand bond belongs to the <a rel="mw:WikiLink" href="./Ligand" data-parsoid='{"a":{"href":"./Ligand"},"sa":{"href":"ligand"},"stx":"simple","dsr":[15038,15048,2,2]}'>ligand</a>, regardless of electronegativity. Also, oxidation numbers are conventionally represented with Roman numerals, while oxidation states use Indo-Arabic numerals.</p>
==History==
The current concept of "oxidation state" was introduced by [[W. M. Latimer]] in 1938. Oxidation itself was first studied by [[Antoine Lavoisier]], who believed that oxidation was always the result of reactions with [[oxygen]],<ref>''The Origin of the Oxidation-State Concept'' William B. Jensen [[J. Chem. Educ.]] '''2007''', 84, 1418</ref> thus the name. Although Lavoisier's idea has been shown to be incorrect, the name he proposed is still used, albeit more generally.


<h2 data-parsoid='{"dsr":[15209,15220,2,2]}'>History</h2>
Oxidation states were one of the intellectual "stepping stones" Mendeleev used to derive the modern periodic table.
<p data-parsoid='{"dsr":[15221,15693,0,0]}'>The current concept of "oxidation state" was introduced by <a rel="mw:WikiLink" href="./W._M._Latimer" data-parsoid='{"a":{"href":"./W._M._Latimer"},"sa":{"href":"W. M. Latimer"},"stx":"simple","dsr":[15280,15297,2,2]}'>W. M. Latimer</a> in 1938. Oxidation itself was first studied by <a rel="mw:WikiLink" href="./Antoine_Lavoisier" data-parsoid='{"a":{"href":"./Antoine_Lavoisier"},"sa":{"href":"Antoine Lavoisier"},"stx":"simple","dsr":[15345,15366,2,2]}'>Antoine Lavoisier</a>, who believed that oxidation was always the result of reactions with <a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"oxygen"},"stx":"simple","dsr":[15436,15446,2,2]}'>oxygen</a>,<span about="#mwt53" class="reference" data-mw='{"name":"ref","body":{"html":"<i data-parsoid=\"{&amp;quot;dsr&amp;quot;:[15452,15497,2,2]}\">The Origin of the Oxidation-State Concept</i> William B. Jensen <a rel=\"mw:WikiLink\" href=\"./J._Chem._Educ.\" data-parsoid=\"{&amp;quot;a&amp;quot;:{&amp;quot;href&amp;quot;:&amp;quot;./J._Chem._Educ.&amp;quot;},&amp;quot;sa&amp;quot;:{&amp;quot;href&amp;quot;:&amp;quot;J. Chem. Educ.&amp;quot;},&amp;quot;stx&amp;quot;:&amp;quot;simple&amp;quot;,&amp;quot;dsr&amp;quot;:[15516,15534,2,2]}\">J. Chem. Educ.</a> <b data-parsoid=\"{&amp;quot;dsr&amp;quot;:[15535,15545,3,3]}\">2007</b>, 84, 1418"},"attrs":{}}' id="cite_ref-2-0" rel="dc:references" typeof="mw:Extension/ref" data-parsoid="{&quot;src&quot;:&quot;<ref>''The Origin of the Oxidation-State Concept'' William B. Jensen [[J. Chem. Educ.]] '''2007''', 84, 1418</ref>&quot;,&quot;dsr&quot;:[15447,15561,5,6]}"><a href="#cite_note-2">[2]</a></span> thus the name. Although Lavoisier's idea has been shown to be incorrect, the name he proposed is still used, albeit more generally.</p>


<p data-parsoid='{"dsr":[15695,15810,0,0]}'>Oxidation states were one of the intellectual "stepping stones" Mendeleev used to derive the modern periodic table.</p>
==Unusual formal oxidation states==
{{Main|High-valent iron}}
Unusual formal oxidation states of metals are important in biochemical processes, the notable ones being Fe(IV) and Fe(V) in ''[[Cytochrome P450]]''-containing systems.


<h2 data-parsoid='{"dsr":[15812,15847,2,2]}'>Unusual formal oxidation states</h2>
==See also==
<div class="rellink relarticle mainarticle" data-parsoid='{"src":"{{Main|High-valent iron}}","dsr":[15848,15873,null,null]}' about="#mwt54" typeof="mw:Transclusion" data-mw='{"target":{"wt":"Main","href":"./Template:Main"},"params":{"1":{"wt":"High-valent iron"}}}'>Main article: <a rel="mw:WikiLink" href="./High-valent_iron" data-parsoid='{"a":{"href":"./High-valent_iron"},"sa":{"href":"High-valent iron"},"stx":"piped"}'>High-valent iron</a></div>
*[[List of oxidation states of the elements]]
<p data-parsoid='{"dsr":[15874,16042,0,0]}'>Unusual formal oxidation states of metals are important in biochemical processes, the notable ones being Fe(IV) and Fe(V) in <i data-parsoid='{"dsr":[15999,16022,2,2]}'><a rel="mw:WikiLink" href="./Cytochrome_P450" data-parsoid='{"a":{"href":"./Cytochrome_P450"},"sa":{"href":"Cytochrome P450"},"stx":"simple","dsr":[16001,16020,2,2]}'>Cytochrome P450</a></i>-containing systems.</p>
*[[Electrochemistry]]
*[[Oxidation number]]
*[[Valence (chemistry)]]


<h2 data-parsoid='{"dsr":[16044,16056,2,2]}'>See also</h2>
==References==
<ul data-parsoid='{"dsr":[16057,16171,0,0]}'><li data-parsoid='{"dsr":[16057,16102,1,0]}'><a rel="mw:WikiLink" href="./List_of_oxidation_states_of_the_elements" data-parsoid='{"a":{"href":"./List_of_oxidation_states_of_the_elements"},"sa":{"href":"List of oxidation states of the elements"},"stx":"simple","dsr":[16058,16102,2,2]}'>List of oxidation states of the elements</a></li>
{{Reflist}}
<li data-parsoid='{"dsr":[16103,16124,1,0]}'><a rel="mw:WikiLink" href="./Electrochemistry" data-parsoid='{"a":{"href":"./Electrochemistry"},"sa":{"href":"Electrochemistry"},"stx":"simple","dsr":[16104,16124,2,2]}'>Electrochemistry</a></li>
<li data-parsoid='{"dsr":[16125,16146,1,0]}'><a rel="mw:WikiLink" href="./Oxidation_number" data-parsoid='{"a":{"href":"./Oxidation_number"},"sa":{"href":"Oxidation number"},"stx":"simple","dsr":[16126,16146,2,2]}'>Oxidation number</a></li>
<li data-parsoid='{"dsr":[16147,16171,1,0]}'><a rel="mw:WikiLink" href="./Valence_(chemistry)" data-parsoid='{"a":{"href":"./Valence_(chemistry)"},"sa":{"href":"Valence (chemistry)"},"stx":"simple","dsr":[16148,16171,2,2]}'>Valence (chemistry)</a></li></ul>


<h2 data-parsoid='{"dsr":[16173,16187,2,2]}'>References</h2>
{{Oxide}}
<div class="reflist " style=" list-style-type: decimal;" data-parsoid='{"src":"{{Reflist}}","dsr":[16188,16199,null,null]}' about="#mwt55" typeof="mw:Transclusion" data-mw='{"target":{"wt":"Reflist","href":"./Template:Reflist"},"params":{}}'>
<ol about="#mwt59" class="references" data-mw='{"name":"references","attrs":{}}' typeof="mw:Extension/references" data-parsoid='{"src":"<references group=\"\"></references>"}'><li about="#cite_note-goldbook-1" id="cite_note-goldbook-1"><span rel="mw:referencedBy">↑ <a href="#cite_ref-goldbook-1-0">1.0</a> <a href="#cite_ref-goldbook-1-1">1.1</a></span> <span><a rel="mw:WikiLink" href="./IUPAC" data-parsoid='{"a":{"href":"./IUPAC"},"sa":{"href":"IUPAC"},"stx":"simple","dsr":[1379,1388,2,2]}'>IUPAC</a> <i data-parsoid='{"dsr":[1389,1406,2,2]}'><a rel="mw:WikiLink" href="./Gold_Book" data-parsoid='{"a":{"href":"./Gold_Book"},"sa":{"href":"Gold Book"},"stx":"simple","dsr":[1391,1404,2,2]}'>Gold Book</a></i> definition: <a rel="mw:ExtLink" href="http://goldbook.iupac.org/O04365.html" data-parsoid='{"targetOff":1458,"dsr":[1419,1478,39,1]}'><i data-parsoid='{"dsr":[1458,1477,2,2]}'>oxidation state</i></a> <span typeof="mw:Entity" data-parsoid='{"src":"&amp;nbsp;","srcContent":"&nbsp;","dsr":[1479,1485,null,null]}'>&nbsp;</span><a rel="mw:ExtLink" href="http://www.iupac.org/goldbook/O04365.pdf" data-parsoid='{"targetOff":1527,"dsr":[1485,1531,42,1]}'>PDF</a></span></li><li about="#cite_note-2" id="cite_note-2"><span rel="mw:referencedBy"><a href="#cite_ref-2-0">↑</a></span> <span><i data-parsoid='{"dsr":[15452,15497,2,2]}'>The Origin of the Oxidation-State Concept</i> William B. Jensen <a rel="mw:WikiLink" href="./J._Chem._Educ." data-parsoid='{"a":{"href":"./J._Chem._Educ."},"sa":{"href":"J. Chem. Educ."},"stx":"simple","dsr":[15516,15534,2,2]}'>J. Chem. Educ.</a> <b data-parsoid='{"dsr":[15535,15545,3,3]}'>2007</b>, 84, 1418</span></li></ol></div>


<table cellspacing="0" class="navbox" style="border-spacing:0;" about="#mwt56" data-parsoid='{"src":"{{Oxide}}","dsr":[16201,16210,null,null]}' typeof="mw:Transclusion" data-mw='{"target":{"wt":"Oxide","href":"./Template:Oxide"},"params":{}}'><tbody data-parsoid="{}"><tr data-parsoid='{"stx":"html"}'><td style="padding:2px;" data-parsoid='{"stx":"html"}'><table cellspacing="0" class="nowraplinks collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit;" about="#mwt56" data-parsoid='{"stx":"html"}'><tbody data-parsoid="{}"><tr data-parsoid='{"stx":"html"}'><th scope="col" class="navbox-title" colspan="2" data-parsoid='{"stx":"html"}'><div class="noprint plainlinks hlist navbar mini" data-parsoid='{"stx":"html"}'><ul data-parsoid='{"stx":"html"}'><li class="nv-view" data-parsoid='{"stx":"html"}'><a rel="mw:WikiLink" href="./Template:Oxide" data-parsoid='{"a":{"href":"./Template:Oxide"},"sa":{"href":"Template:Oxide"},"stx":"piped"}'><span title="View this template" style=";;background:none transparent;border:none;;" data-parsoid='{"stx":"html"}'>v</span></a></li><li class="nv-talk" data-parsoid='{"stx":"html"}'><a rel="mw:WikiLink" href="./Template%20talk:Oxide" data-parsoid='{"a":{"href":"./Template%20talk:Oxide"},"sa":{"href":"Template_talk:Oxide"},"stx":"piped"}'><span title="Discuss this template" style=";;background:none transparent;border:none;;" data-parsoid='{"stx":"html"}'>t</span></a></li><li class="nv-edit" data-parsoid='{"stx":"html"}'><a rel="mw:ExtLink" href="//en.wikipedia.org/w/index.php?title=Template:Oxide&amp;action=edit" data-parsoid='{"targetOff":715,"a":{"href":"//en.wikipedia.org/w/index.php?title=Template:Oxide&amp;action=edit"},"sa":{"href":" the tetroxides of [[ruthenium tetroxide|ruthenium]], [[xenon t"}}'><span title="Edit this template" style=";;background:none transparent;border:none;;" data-parsoid='{"stx":"html"}'>e</span></a></li></ul></div><div style="font-size:110%;" data-parsoid='{"stx":"html"}'>
[[Category:Chemical properties]]
<a rel="mw:WikiLink" href="./Oxide" data-parsoid='{"a":{"href":"./Oxide"},"sa":{"href":"Oxide"},"stx":"simple","tail":"s"}'>Oxides</a></div></th></tr><tr style="height:2px;" data-parsoid='{"stx":"html"}'><td data-parsoid='{"stx":"html"}'></td></tr><tr data-parsoid='{"stx":"html"}'><th scope="row" class="navbox-group" data-parsoid='{"stx":"html"}'>Various States</th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px;" data-parsoid='{"stx":"html"}'><div style="padding:0em 0.25em;" data-parsoid='{"stx":"html"}'>
<ul data-parsoid="{}"><li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Antimony_tetroxide" data-parsoid='{"a":{"href":"./Antimony_tetroxide"},"sa":{"href":"Antimony tetroxide"},"stx":"simple"}'>Antimony tetroxide</a> (<a rel="mw:WikiLink" href="./Antimony" data-parsoid='{"a":{"href":"./Antimony"},"sa":{"href":"Antimony"},"stx":"piped"}'>Sb</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>4</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Cobalt(II,III)_oxide" data-parsoid='{"a":{"href":"./Cobalt(II,III)_oxide"},"sa":{"href":"Cobalt(II,III) oxide"},"stx":"simple"}'>Cobalt(II,III) oxide</a> (<a rel="mw:WikiLink" href="./Cobalt" data-parsoid='{"a":{"href":"./Cobalt"},"sa":{"href":"Cobalt"},"stx":"piped"}'>Co</a><sub data-parsoid='{"stx":"html"}'>3</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>4</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Iron(II,III)_oxide" data-parsoid='{"a":{"href":"./Iron(II,III)_oxide"},"sa":{"href":"Iron(II,III) oxide"},"stx":"simple"}'>Iron(II,III) oxide</a> (<a rel="mw:WikiLink" href="./Iron" data-parsoid='{"a":{"href":"./Iron"},"sa":{"href":"Iron"},"stx":"piped"}'>Fe</a><sub data-parsoid='{"stx":"html"}'>3</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>4</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Lead(II,IV)_oxide" data-parsoid='{"a":{"href":"./Lead(II,IV)_oxide"},"sa":{"href":"Lead(II,IV) oxide"},"stx":"simple"}'>Lead(II,IV) oxide</a> (<a rel="mw:WikiLink" href="./Lead" data-parsoid='{"a":{"href":"./Lead"},"sa":{"href":"Lead"},"stx":"piped"}'>Pb</a><sub data-parsoid='{"stx":"html"}'>3</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>4</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Manganese(II,III)_oxide" data-parsoid='{"a":{"href":"./Manganese(II,III)_oxide"},"sa":{"href":"Manganese(II,III) oxide"},"stx":"simple"}'>Manganese(II,III) oxide</a> (<a rel="mw:WikiLink" href="./Manganese" data-parsoid='{"a":{"href":"./Manganese"},"sa":{"href":"Manganese"},"stx":"piped"}'>Mn</a><sub data-parsoid='{"stx":"html"}'>3</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>4</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Silver(I,III)_oxide" data-parsoid='{"a":{"href":"./Silver(I,III)_oxide"},"sa":{"href":"Silver(I,III) oxide"},"stx":"simple"}'>Silver(I,III) oxide</a> (<a rel="mw:WikiLink" href="./Silver" data-parsoid='{"a":{"href":"./Silver"},"sa":{"href":"Silver"},"stx":"piped"}'>Ag</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li></ul></div></td></tr><tr style="height:2px;" data-parsoid='{"stx":"html"}'><td data-parsoid='{"stx":"html"}'></td></tr><tr data-parsoid='{"stx":"html"}'><th scope="row" class="navbox-group" data-parsoid='{"stx":"html"}'>+1 Oxidation State</th><td class="navbox-list navbox-even hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px;" data-parsoid='{"stx":"html"}'><div style="padding:0em 0.25em;" data-parsoid='{"stx":"html"}'>
<ul data-parsoid="{}"><li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Copper(I)_oxide" data-parsoid='{"a":{"href":"./Copper(I)_oxide"},"sa":{"href":"Copper(I) oxide"},"stx":"simple"}'>Copper(I) oxide</a> (<a rel="mw:WikiLink" href="./Copper" data-parsoid='{"a":{"href":"./Copper"},"sa":{"href":"Copper"},"stx":"piped"}'>Cu</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Dicarbon_monoxide" data-parsoid='{"a":{"href":"./Dicarbon_monoxide"},"sa":{"href":"Dicarbon monoxide"},"stx":"simple"}'>Dicarbon monoxide</a> (<a rel="mw:WikiLink" href="./Carbon" data-parsoid='{"a":{"href":"./Carbon"},"sa":{"href":"Carbon"},"stx":"piped"}'>C</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Dichlorine_monoxide" data-parsoid='{"a":{"href":"./Dichlorine_monoxide"},"sa":{"href":"Dichlorine monoxide"},"stx":"simple"}'>Dichlorine monoxide</a> (<a rel="mw:WikiLink" href="./Chlorine" data-parsoid='{"a":{"href":"./Chlorine"},"sa":{"href":"Chlorine"},"stx":"piped"}'>Cl</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Lithium_oxide" data-parsoid='{"a":{"href":"./Lithium_oxide"},"sa":{"href":"Lithium oxide"},"stx":"simple"}'>Lithium oxide</a> (<a rel="mw:WikiLink" href="./Lithium" data-parsoid='{"a":{"href":"./Lithium"},"sa":{"href":"Lithium"},"stx":"piped"}'>Li</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Potassium_oxide" data-parsoid='{"a":{"href":"./Potassium_oxide"},"sa":{"href":"Potassium oxide"},"stx":"simple"}'>Potassium oxide</a> (<a rel="mw:WikiLink" href="./Potassium" data-parsoid='{"a":{"href":"./Potassium"},"sa":{"href":"Potassium"},"stx":"piped"}'>K</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Rubidium_oxide" data-parsoid='{"a":{"href":"./Rubidium_oxide"},"sa":{"href":"Rubidium oxide"},"stx":"simple"}'>Rubidium oxide</a> (<a rel="mw:WikiLink" href="./Rubidium" data-parsoid='{"a":{"href":"./Rubidium"},"sa":{"href":"Rubidium"},"stx":"piped"}'>Rb</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Silver(I)_oxide" data-parsoid='{"a":{"href":"./Silver(I)_oxide"},"sa":{"href":"Silver(I) oxide"},"stx":"simple"}'>Silver(I) oxide</a> (<a rel="mw:WikiLink" href="./Silver" data-parsoid='{"a":{"href":"./Silver"},"sa":{"href":"Silver"},"stx":"piped"}'>Ag</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Thallium(I)_oxide" data-parsoid='{"a":{"href":"./Thallium(I)_oxide"},"sa":{"href":"Thallium(I) oxide"},"stx":"simple"}'>Thallium(I) oxide</a> (<a rel="mw:WikiLink" href="./Thallium" data-parsoid='{"a":{"href":"./Thallium"},"sa":{"href":"Thallium"},"stx":"piped"}'>Tl</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Sodium_oxide" data-parsoid='{"a":{"href":"./Sodium_oxide"},"sa":{"href":"Sodium oxide"},"stx":"simple"}'>Sodium oxide</a> (<a rel="mw:WikiLink" href="./Sodium" data-parsoid='{"a":{"href":"./Sodium"},"sa":{"href":"Sodium"},"stx":"piped"}'>Na</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Properties_of_water" data-parsoid='{"a":{"href":"./Properties_of_water"},"sa":{"href":"Properties of water"},"stx":"piped"}'>Water (hydrogen oxide)</a> (<a rel="mw:WikiLink" href="./Hydrogen" data-parsoid='{"a":{"href":"./Hydrogen"},"sa":{"href":"Hydrogen"},"stx":"piped"}'>H</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li></ul></div></td></tr><tr style="height:2px;" data-parsoid='{"stx":"html"}'><td data-parsoid='{"stx":"html"}'></td></tr><tr data-parsoid='{"stx":"html"}'><th scope="row" class="navbox-group" data-parsoid='{"stx":"html"}'>+2 Oxidation State</th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px;" data-parsoid='{"stx":"html"}'><div style="padding:0em 0.25em;" data-parsoid='{"stx":"html"}'>
<ul data-parsoid="{}"><li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Aluminium(II)_oxide" data-parsoid='{"a":{"href":"./Aluminium(II)_oxide"},"sa":{"href":"Aluminium(II) oxide"},"stx":"simple"}'>Aluminium(II) oxide</a> (<a rel="mw:WikiLink" href="./Aluminium" data-parsoid='{"a":{"href":"./Aluminium"},"sa":{"href":"Aluminium"},"stx":"piped"}'>Al</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Barium_oxide" data-parsoid='{"a":{"href":"./Barium_oxide"},"sa":{"href":"Barium oxide"},"stx":"simple"}'>Barium oxide</a> (<a rel="mw:WikiLink" href="./Barium" data-parsoid='{"a":{"href":"./Barium"},"sa":{"href":"Barium"},"stx":"piped"}'>Ba</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Beryllium_oxide" data-parsoid='{"a":{"href":"./Beryllium_oxide"},"sa":{"href":"Beryllium oxide"},"stx":"simple"}'>Beryllium oxide</a> (<a rel="mw:WikiLink" href="./Beryllium" data-parsoid='{"a":{"href":"./Beryllium"},"sa":{"href":"Beryllium"},"stx":"piped"}'>Be</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Cadmium_oxide" data-parsoid='{"a":{"href":"./Cadmium_oxide"},"sa":{"href":"Cadmium oxide"},"stx":"simple"}'>Cadmium oxide</a> (<a rel="mw:WikiLink" href="./Cadmium" data-parsoid='{"a":{"href":"./Cadmium"},"sa":{"href":"Cadmium"},"stx":"piped"}'>Cd</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Calcium_oxide" data-parsoid='{"a":{"href":"./Calcium_oxide"},"sa":{"href":"Calcium oxide"},"stx":"simple"}'>Calcium oxide</a> (<a rel="mw:WikiLink" href="./Calcium" data-parsoid='{"a":{"href":"./Calcium"},"sa":{"href":"Calcium"},"stx":"piped"}'>Ca</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Carbon_monoxide" data-parsoid='{"a":{"href":"./Carbon_monoxide"},"sa":{"href":"Carbon monoxide"},"stx":"simple"}'>Carbon monoxide</a> (<a rel="mw:WikiLink" href="./Carbon" data-parsoid='{"a":{"href":"./Carbon"},"sa":{"href":"Carbon"},"stx":"piped"}'>C</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Cobalt(II)_oxide" data-parsoid='{"a":{"href":"./Cobalt(II)_oxide"},"sa":{"href":"Cobalt(II) oxide"},"stx":"simple"}'>Cobalt(II) oxide</a> (<a rel="mw:WikiLink" href="./Cobalt" data-parsoid='{"a":{"href":"./Cobalt"},"sa":{"href":"Cobalt"},"stx":"piped"}'>Co</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Copper(II)_oxide" data-parsoid='{"a":{"href":"./Copper(II)_oxide"},"sa":{"href":"Copper(II) oxide"},"stx":"simple"}'>Copper(II) oxide</a> (<a rel="mw:WikiLink" href="./Copper" data-parsoid='{"a":{"href":"./Copper"},"sa":{"href":"Copper"},"stx":"piped"}'>Cu</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Iron(II)_oxide" data-parsoid='{"a":{"href":"./Iron(II)_oxide"},"sa":{"href":"Iron(II) oxide"},"stx":"simple"}'>Iron(II) oxide</a> (<a rel="mw:WikiLink" href="./Iron" data-parsoid='{"a":{"href":"./Iron"},"sa":{"href":"Iron"},"stx":"piped"}'>Fe</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Lead(II)_oxide" data-parsoid='{"a":{"href":"./Lead(II)_oxide"},"sa":{"href":"Lead(II) oxide"},"stx":"simple"}'>Lead(II) oxide</a> (<a rel="mw:WikiLink" href="./Lead" data-parsoid='{"a":{"href":"./Lead"},"sa":{"href":"Lead"},"stx":"piped"}'>Pb</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Magnesium_oxide" data-parsoid='{"a":{"href":"./Magnesium_oxide"},"sa":{"href":"Magnesium oxide"},"stx":"simple"}'>Magnesium oxide</a> (<a rel="mw:WikiLink" href="./Magnesium" data-parsoid='{"a":{"href":"./Magnesium"},"sa":{"href":"Magnesium"},"stx":"piped"}'>Mg</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Mercury(II)_oxide" data-parsoid='{"a":{"href":"./Mercury(II)_oxide"},"sa":{"href":"Mercury(II) oxide"},"stx":"simple"}'>Mercury(II) oxide</a> (<a rel="mw:WikiLink" href="./Mercury_(element)" data-parsoid='{"a":{"href":"./Mercury_(element)"},"sa":{"href":"Mercury (element)"},"stx":"piped"}'>Hg</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Nickel(II)_oxide" data-parsoid='{"a":{"href":"./Nickel(II)_oxide"},"sa":{"href":"Nickel(II) oxide"},"stx":"simple"}'>Nickel(II) oxide</a> (<a rel="mw:WikiLink" href="./Nickel" data-parsoid='{"a":{"href":"./Nickel"},"sa":{"href":"Nickel"},"stx":"piped"}'>Ni</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Nitric_oxide" data-parsoid='{"a":{"href":"./Nitric_oxide"},"sa":{"href":"Nitric oxide"},"stx":"simple"}'>Nitric oxide</a> (<a rel="mw:WikiLink" href="./Nitrogen" data-parsoid='{"a":{"href":"./Nitrogen"},"sa":{"href":"Nitrogen"},"stx":"piped"}'>N</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Palladium(II)_oxide" data-parsoid='{"a":{"href":"./Palladium(II)_oxide"},"sa":{"href":"Palladium(II) oxide"},"stx":"simple"}'>Palladium(II) oxide</a> (<a rel="mw:WikiLink" href="./Paladium" data-parsoid='{"a":{"href":"./Paladium"},"sa":{"href":"Paladium"},"stx":"piped"}'>Pd</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Strontium_oxide" data-parsoid='{"a":{"href":"./Strontium_oxide"},"sa":{"href":"Strontium oxide"},"stx":"simple"}'>Strontium oxide</a> (<a rel="mw:WikiLink" href="./Strontium" data-parsoid='{"a":{"href":"./Strontium"},"sa":{"href":"Strontium"},"stx":"piped"}'>Sr</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Sulfur_monoxide" data-parsoid='{"a":{"href":"./Sulfur_monoxide"},"sa":{"href":"Sulfur monoxide"},"stx":"simple"}'>Sulfur monoxide</a> (<a rel="mw:WikiLink" href="./Sulfur" data-parsoid='{"a":{"href":"./Sulfur"},"sa":{"href":"Sulfur"},"stx":"piped"}'>S</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Disulfur_dioxide" data-parsoid='{"a":{"href":"./Disulfur_dioxide"},"sa":{"href":"Disulfur dioxide"},"stx":"simple"}'>Disulfur dioxide</a> (<a rel="mw:WikiLink" href="./Sulfur" data-parsoid='{"a":{"href":"./Sulfur"},"sa":{"href":"Sulfur"},"stx":"piped"}'>S</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Tin(II)_oxide" data-parsoid='{"a":{"href":"./Tin(II)_oxide"},"sa":{"href":"Tin(II) oxide"},"stx":"simple"}'>Tin(II) oxide</a> (<a rel="mw:WikiLink" href="./Tin" data-parsoid='{"a":{"href":"./Tin"},"sa":{"href":"Tin"},"stx":"piped"}'>Sn</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Titanium(II)_oxide" data-parsoid='{"a":{"href":"./Titanium(II)_oxide"},"sa":{"href":"Titanium(II) oxide"},"stx":"simple"}'>Titanium(II) oxide</a> (<a rel="mw:WikiLink" href="./Titanium" data-parsoid='{"a":{"href":"./Titanium"},"sa":{"href":"Titanium"},"stx":"piped"}'>Ti</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Vanadium(II)_oxide" data-parsoid='{"a":{"href":"./Vanadium(II)_oxide"},"sa":{"href":"Vanadium(II) oxide"},"stx":"simple"}'>Vanadium(II) oxide</a> (<a rel="mw:WikiLink" href="./Vanadium" data-parsoid='{"a":{"href":"./Vanadium"},"sa":{"href":"Vanadium"},"stx":"piped"}'>V</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Zinc_oxide" data-parsoid='{"a":{"href":"./Zinc_oxide"},"sa":{"href":"Zinc oxide"},"stx":"simple"}'>Zinc oxide</a> (<a rel="mw:WikiLink" href="./Zinc" data-parsoid='{"a":{"href":"./Zinc"},"sa":{"href":"Zinc"},"stx":"piped"}'>Zn</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a>)</li></ul></div></td></tr><tr style="height:2px;" data-parsoid='{"stx":"html"}'><td data-parsoid='{"stx":"html"}'></td></tr><tr data-parsoid='{"stx":"html"}'><th scope="row" class="navbox-group" data-parsoid='{"stx":"html"}'>+3 Oxidation State</th><td class="navbox-list navbox-even hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px;" data-parsoid='{"stx":"html"}'><div style="padding:0em 0.25em;" data-parsoid='{"stx":"html"}'>
<ul data-parsoid="{}"><li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Aluminium_oxide" data-parsoid='{"a":{"href":"./Aluminium_oxide"},"sa":{"href":"Aluminium oxide"},"stx":"simple"}'>Aluminium oxide</a> (<a rel="mw:WikiLink" href="./Aluminium" data-parsoid='{"a":{"href":"./Aluminium"},"sa":{"href":"Aluminium"},"stx":"piped"}'>Al</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Antimony_trioxide" data-parsoid='{"a":{"href":"./Antimony_trioxide"},"sa":{"href":"Antimony trioxide"},"stx":"simple"}'>Antimony trioxide</a> (<a rel="mw:WikiLink" href="./Antimony" data-parsoid='{"a":{"href":"./Antimony"},"sa":{"href":"Antimony"},"stx":"piped"}'>Sb</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Arsenic_trioxide" data-parsoid='{"a":{"href":"./Arsenic_trioxide"},"sa":{"href":"Arsenic trioxide"},"stx":"simple"}'>Arsenic trioxide</a> (<a rel="mw:WikiLink" href="./Arsenic" data-parsoid='{"a":{"href":"./Arsenic"},"sa":{"href":"Arsenic"},"stx":"piped"}'>As</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Bismuth_trioxide" data-parsoid='{"a":{"href":"./Bismuth_trioxide"},"sa":{"href":"Bismuth trioxide"},"stx":"simple"}'>Bismuth trioxide</a> (<a rel="mw:WikiLink" href="./Bismuth" data-parsoid='{"a":{"href":"./Bismuth"},"sa":{"href":"Bismuth"},"stx":"piped"}'>Bi</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Boron_oxide" data-parsoid='{"a":{"href":"./Boron_oxide"},"sa":{"href":"Boron oxide"},"stx":"simple"}'>Boron oxide</a> (<a rel="mw:WikiLink" href="./Boron" data-parsoid='{"a":{"href":"./Boron"},"sa":{"href":"Boron"},"stx":"piped"}'>B</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Chromium(III)_oxide" data-parsoid='{"a":{"href":"./Chromium(III)_oxide"},"sa":{"href":"Chromium(III) oxide"},"stx":"simple"}'>Chromium(III) oxide</a> (<a rel="mw:WikiLink" href="./Chromium" data-parsoid='{"a":{"href":"./Chromium"},"sa":{"href":"Chromium"},"stx":"piped"}'>Cr</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Dinitrogen_trioxide" data-parsoid='{"a":{"href":"./Dinitrogen_trioxide"},"sa":{"href":"Dinitrogen trioxide"},"stx":"simple"}'>Dinitrogen trioxide</a> (<a rel="mw:WikiLink" href="./Nitrogen" data-parsoid='{"a":{"href":"./Nitrogen"},"sa":{"href":"Nitrogen"},"stx":"piped"}'>N</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Erbium(III)_oxide" data-parsoid='{"a":{"href":"./Erbium(III)_oxide"},"sa":{"href":"Erbium(III) oxide"},"stx":"simple"}'>Erbium(III) oxide</a> (<a rel="mw:WikiLink" href="./Erbium" data-parsoid='{"a":{"href":"./Erbium"},"sa":{"href":"Erbium"},"stx":"piped"}'>Er</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Gadolinium(III)_oxide" data-parsoid='{"a":{"href":"./Gadolinium(III)_oxide"},"sa":{"href":"Gadolinium(III) oxide"},"stx":"simple"}'>Gadolinium(III) oxide</a> (<a rel="mw:WikiLink" href="./Gadolinium" data-parsoid='{"a":{"href":"./Gadolinium"},"sa":{"href":"Gadolinium"},"stx":"piped"}'>Gd</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Gallium(III)_oxide" data-parsoid='{"a":{"href":"./Gallium(III)_oxide"},"sa":{"href":"Gallium(III) oxide"},"stx":"simple"}'>Gallium(III) oxide</a> (<a rel="mw:WikiLink" href="./Gallium" data-parsoid='{"a":{"href":"./Gallium"},"sa":{"href":"Gallium"},"stx":"piped"}'>Ga</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Holmium(III)_oxide" data-parsoid='{"a":{"href":"./Holmium(III)_oxide"},"sa":{"href":"Holmium(III) oxide"},"stx":"simple"}'>Holmium(III) oxide</a> (<a rel="mw:WikiLink" href="./Holmium" data-parsoid='{"a":{"href":"./Holmium"},"sa":{"href":"Holmium"},"stx":"piped"}'>Ho</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Indium(III)_oxide" data-parsoid='{"a":{"href":"./Indium(III)_oxide"},"sa":{"href":"Indium(III) oxide"},"stx":"simple"}'>Indium(III) oxide</a> (<a rel="mw:WikiLink" href="./Indium" data-parsoid='{"a":{"href":"./Indium"},"sa":{"href":"Indium"},"stx":"piped"}'>In</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Iron(III)_oxide" data-parsoid='{"a":{"href":"./Iron(III)_oxide"},"sa":{"href":"Iron(III) oxide"},"stx":"simple"}'>Iron(III) oxide</a> (<a rel="mw:WikiLink" href="./Iron" data-parsoid='{"a":{"href":"./Iron"},"sa":{"href":"Iron"},"stx":"piped"}'>Fe</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Lanthanum(III)_oxide" data-parsoid='{"a":{"href":"./Lanthanum(III)_oxide"},"sa":{"href":"Lanthanum(III) oxide"},"stx":"simple"}'>Lanthanum(III) oxide</a> (<a rel="mw:WikiLink" href="./Lanthanum" data-parsoid='{"a":{"href":"./Lanthanum"},"sa":{"href":"Lanthanum"},"stx":"piped"}'>La</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Lutetium(III)_oxide" data-parsoid='{"a":{"href":"./Lutetium(III)_oxide"},"sa":{"href":"Lutetium(III) oxide"},"stx":"simple"}'>Lutetium(III) oxide</a> (<a rel="mw:WikiLink" href="./Lutetium" data-parsoid='{"a":{"href":"./Lutetium"},"sa":{"href":"Lutetium"},"stx":"piped"}'>Lu</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Nickel(III)_oxide" data-parsoid='{"a":{"href":"./Nickel(III)_oxide"},"sa":{"href":"Nickel(III) oxide"},"stx":"simple"}'>Nickel(III) oxide</a> (<a rel="mw:WikiLink" href="./Nickel" data-parsoid='{"a":{"href":"./Nickel"},"sa":{"href":"Nickel"},"stx":"piped"}'>Ni</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Phosphorus_trioxide" data-parsoid='{"a":{"href":"./Phosphorus_trioxide"},"sa":{"href":"Phosphorus trioxide"},"stx":"simple"}'>Phosphorus trioxide</a> (<a rel="mw:WikiLink" href="./Phosphorus" data-parsoid='{"a":{"href":"./Phosphorus"},"sa":{"href":"Phosphorus"},"stx":"piped"}'>P</a><sub data-parsoid='{"stx":"html"}'>4</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>6</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Promethium(III)_oxide" data-parsoid='{"a":{"href":"./Promethium(III)_oxide"},"sa":{"href":"Promethium(III) oxide"},"stx":"simple"}'>Promethium(III) oxide</a> (<a rel="mw:WikiLink" href="./Promethium" data-parsoid='{"a":{"href":"./Promethium"},"sa":{"href":"Promethium"},"stx":"piped"}'>Pm</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Rhodium(III)_oxide" data-parsoid='{"a":{"href":"./Rhodium(III)_oxide"},"sa":{"href":"Rhodium(III) oxide"},"stx":"simple"}'>Rhodium(III) oxide</a> (<a rel="mw:WikiLink" href="./Rhodium" data-parsoid='{"a":{"href":"./Rhodium"},"sa":{"href":"Rhodium"},"stx":"piped"}'>Rh</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Samarium(III)_oxide" data-parsoid='{"a":{"href":"./Samarium(III)_oxide"},"sa":{"href":"Samarium(III) oxide"},"stx":"simple"}'>Samarium(III) oxide</a> (<a rel="mw:WikiLink" href="./Samarium" data-parsoid='{"a":{"href":"./Samarium"},"sa":{"href":"Samarium"},"stx":"piped"}'>Sm</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Scandium(III)_oxide" data-parsoid='{"a":{"href":"./Scandium(III)_oxide"},"sa":{"href":"Scandium(III) oxide"},"stx":"simple"}'>Scandium(III) oxide</a> (<a rel="mw:WikiLink" href="./Scandium" data-parsoid='{"a":{"href":"./Scandium"},"sa":{"href":"Scandium"},"stx":"piped"}'>Sc</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Terbium(III)_oxide" data-parsoid='{"a":{"href":"./Terbium(III)_oxide"},"sa":{"href":"Terbium(III) oxide"},"stx":"simple"}'>Terbium(III) oxide</a> (<a rel="mw:WikiLink" href="./Terbium" data-parsoid='{"a":{"href":"./Terbium"},"sa":{"href":"Terbium"},"stx":"piped"}'>Tb</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Thallium(III)_oxide" data-parsoid='{"a":{"href":"./Thallium(III)_oxide"},"sa":{"href":"Thallium(III) oxide"},"stx":"simple"}'>Thallium(III) oxide</a> (<a rel="mw:WikiLink" href="./Thallium" data-parsoid='{"a":{"href":"./Thallium"},"sa":{"href":"Thallium"},"stx":"piped"}'>Tl</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Thulium(III)_oxide" data-parsoid='{"a":{"href":"./Thulium(III)_oxide"},"sa":{"href":"Thulium(III) oxide"},"stx":"simple"}'>Thulium(III) oxide</a> (<a rel="mw:WikiLink" href="./Thulium" data-parsoid='{"a":{"href":"./Thulium"},"sa":{"href":"Thulium"},"stx":"piped"}'>Tm</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Titanium(III)_oxide" data-parsoid='{"a":{"href":"./Titanium(III)_oxide"},"sa":{"href":"Titanium(III) oxide"},"stx":"simple"}'>Titanium(III) oxide</a> (<a rel="mw:WikiLink" href="./Titanium" data-parsoid='{"a":{"href":"./Titanium"},"sa":{"href":"Titanium"},"stx":"piped"}'>Ti</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Tungsten(III)_oxide" data-parsoid='{"a":{"href":"./Tungsten(III)_oxide"},"sa":{"href":"Tungsten(III) oxide"},"stx":"simple"}'>Tungsten(III) oxide</a> (<a rel="mw:WikiLink" href="./Tungsten" data-parsoid='{"a":{"href":"./Tungsten"},"sa":{"href":"Tungsten"},"stx":"piped"}'>W</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Vanadium(III)_oxide" data-parsoid='{"a":{"href":"./Vanadium(III)_oxide"},"sa":{"href":"Vanadium(III) oxide"},"stx":"simple"}'>Vanadium(III) oxide</a> (<a rel="mw:WikiLink" href="./Vanadium" data-parsoid='{"a":{"href":"./Vanadium"},"sa":{"href":"Vanadium"},"stx":"piped"}'>V</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Ytterbium(III)_oxide" data-parsoid='{"a":{"href":"./Ytterbium(III)_oxide"},"sa":{"href":"Ytterbium(III) oxide"},"stx":"simple"}'>Ytterbium(III) oxide</a> (<a rel="mw:WikiLink" href="./Ytterbium" data-parsoid='{"a":{"href":"./Ytterbium"},"sa":{"href":"Ytterbium"},"stx":"piped"}'>Yb</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Yttrium(III)_oxide" data-parsoid='{"a":{"href":"./Yttrium(III)_oxide"},"sa":{"href":"Yttrium(III) oxide"},"stx":"simple"}'>Yttrium(III) oxide</a> (<a rel="mw:WikiLink" href="./Yttrium" data-parsoid='{"a":{"href":"./Yttrium"},"sa":{"href":"Yttrium"},"stx":"piped"}'>Y</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li></ul></div></td></tr><tr style="height:2px;" data-parsoid='{"stx":"html"}'><td data-parsoid='{"stx":"html"}'></td></tr><tr data-parsoid='{"stx":"html"}'><th scope="row" class="navbox-group" data-parsoid='{"stx":"html"}'>+4 Oxidation State</th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px;" data-parsoid='{"stx":"html"}'><div style="padding:0em 0.25em;" data-parsoid='{"stx":"html"}'>
<ul data-parsoid="{}"><li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Carbon_dioxide" data-parsoid='{"a":{"href":"./Carbon_dioxide"},"sa":{"href":"Carbon dioxide"},"stx":"simple"}'>Carbon dioxide</a> (<a rel="mw:WikiLink" href="./Carbon" data-parsoid='{"a":{"href":"./Carbon"},"sa":{"href":"Carbon"},"stx":"piped"}'>C</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Carbon_trioxide" data-parsoid='{"a":{"href":"./Carbon_trioxide"},"sa":{"href":"Carbon trioxide"},"stx":"simple"}'>Carbon trioxide</a> (<a rel="mw:WikiLink" href="./Carbon" data-parsoid='{"a":{"href":"./Carbon"},"sa":{"href":"Carbon"},"stx":"piped"}'>C</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Cerium(IV)_oxide" data-parsoid='{"a":{"href":"./Cerium(IV)_oxide"},"sa":{"href":"Cerium(IV) oxide"},"stx":"simple"}'>Cerium(IV) oxide</a> (<a rel="mw:WikiLink" href="./Cerium" data-parsoid='{"a":{"href":"./Cerium"},"sa":{"href":"Cerium"},"stx":"piped"}'>Ce</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Chlorine_dioxide" data-parsoid='{"a":{"href":"./Chlorine_dioxide"},"sa":{"href":"Chlorine dioxide"},"stx":"simple"}'>Chlorine dioxide</a> (<a rel="mw:WikiLink" href="./Chlorine" data-parsoid='{"a":{"href":"./Chlorine"},"sa":{"href":"Chlorine"},"stx":"piped"}'>Cl</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Chromium(IV)_oxide" data-parsoid='{"a":{"href":"./Chromium(IV)_oxide"},"sa":{"href":"Chromium(IV) oxide"},"stx":"simple"}'>Chromium(IV) oxide</a> (<a rel="mw:WikiLink" href="./Chromium" data-parsoid='{"a":{"href":"./Chromium"},"sa":{"href":"Chromium"},"stx":"piped"}'>Cr</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Dinitrogen_tetroxide" data-parsoid='{"a":{"href":"./Dinitrogen_tetroxide"},"sa":{"href":"Dinitrogen tetroxide"},"stx":"simple"}'>Dinitrogen tetroxide</a> (<a rel="mw:WikiLink" href="./Nitrogen" data-parsoid='{"a":{"href":"./Nitrogen"},"sa":{"href":"Nitrogen"},"stx":"piped"}'>N</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>4</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Germanium_dioxide" data-parsoid='{"a":{"href":"./Germanium_dioxide"},"sa":{"href":"Germanium dioxide"},"stx":"simple"}'>Germanium dioxide</a> (<a rel="mw:WikiLink" href="./Germanium" data-parsoid='{"a":{"href":"./Germanium"},"sa":{"href":"Germanium"},"stx":"piped"}'>Ge</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Hafnium(IV)_oxide" data-parsoid='{"a":{"href":"./Hafnium(IV)_oxide"},"sa":{"href":"Hafnium(IV) oxide"},"stx":"simple"}'>Hafnium(IV) oxide</a> (<a rel="mw:WikiLink" href="./Hafnium" data-parsoid='{"a":{"href":"./Hafnium"},"sa":{"href":"Hafnium"},"stx":"piped"}'>Hf</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Lead(IV)_oxide" data-parsoid='{"a":{"href":"./Lead(IV)_oxide"},"sa":{"href":"Lead(IV) oxide"},"stx":"simple"}'>Lead(IV) oxide</a> (<a rel="mw:WikiLink" href="./Lead" data-parsoid='{"a":{"href":"./Lead"},"sa":{"href":"Lead"},"stx":"piped"}'>Pb</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Manganese(IV)_oxide" data-parsoid='{"a":{"href":"./Manganese(IV)_oxide"},"sa":{"href":"Manganese(IV) oxide"},"stx":"simple"}'>Manganese(IV) oxide</a> (<a rel="mw:WikiLink" href="./Manganese" data-parsoid='{"a":{"href":"./Manganese"},"sa":{"href":"Manganese"},"stx":"piped"}'>Mn</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Nitrogen_dioxide" data-parsoid='{"a":{"href":"./Nitrogen_dioxide"},"sa":{"href":"Nitrogen dioxide"},"stx":"simple"}'>Nitrogen dioxide</a> (<a rel="mw:WikiLink" href="./Nitrogen" data-parsoid='{"a":{"href":"./Nitrogen"},"sa":{"href":"Nitrogen"},"stx":"piped"}'>N</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Plutonium_dioxide" data-parsoid='{"a":{"href":"./Plutonium_dioxide"},"sa":{"href":"Plutonium dioxide"},"stx":"simple"}'>Plutonium dioxide</a> (<a rel="mw:WikiLink" href="./Plutonium" data-parsoid='{"a":{"href":"./Plutonium"},"sa":{"href":"Plutonium"},"stx":"piped"}'>Pu</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Rhodium(IV)_oxide" data-parsoid='{"a":{"href":"./Rhodium(IV)_oxide"},"sa":{"href":"Rhodium(IV) oxide"},"stx":"simple"}'>Rhodium(IV) oxide</a> (<a rel="mw:WikiLink" href="./Rhodium" data-parsoid='{"a":{"href":"./Rhodium"},"sa":{"href":"Rhodium"},"stx":"piped"}'>Rh</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Ruthenium(IV)_oxide" data-parsoid='{"a":{"href":"./Ruthenium(IV)_oxide"},"sa":{"href":"Ruthenium(IV) oxide"},"stx":"simple"}'>Ruthenium(IV) oxide</a> (<a rel="mw:WikiLink" href="./Ruthenium" data-parsoid='{"a":{"href":"./Ruthenium"},"sa":{"href":"Ruthenium"},"stx":"piped"}'>Ru</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Selenium_dioxide" data-parsoid='{"a":{"href":"./Selenium_dioxide"},"sa":{"href":"Selenium dioxide"},"stx":"simple"}'>Selenium dioxide</a> (<a rel="mw:WikiLink" href="./Selenium" data-parsoid='{"a":{"href":"./Selenium"},"sa":{"href":"Selenium"},"stx":"piped"}'>Se</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Silicon_dioxide" data-parsoid='{"a":{"href":"./Silicon_dioxide"},"sa":{"href":"Silicon dioxide"},"stx":"simple"}'>Silicon dioxide</a> (<a rel="mw:WikiLink" href="./Silicon" data-parsoid='{"a":{"href":"./Silicon"},"sa":{"href":"Silicon"},"stx":"piped"}'>Si</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Sulfur_dioxide" data-parsoid='{"a":{"href":"./Sulfur_dioxide"},"sa":{"href":"Sulfur dioxide"},"stx":"simple"}'>Sulfur dioxide</a> (<a rel="mw:WikiLink" href="./Sulfur" data-parsoid='{"a":{"href":"./Sulfur"},"sa":{"href":"Sulfur"},"stx":"piped"}'>S</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Tellurium_dioxide" data-parsoid='{"a":{"href":"./Tellurium_dioxide"},"sa":{"href":"Tellurium dioxide"},"stx":"simple"}'>Tellurium dioxide</a> (<a rel="mw:WikiLink" href="./Tellurium" data-parsoid='{"a":{"href":"./Tellurium"},"sa":{"href":"Tellurium"},"stx":"piped"}'>Te</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Thorium_dioxide" data-parsoid='{"a":{"href":"./Thorium_dioxide"},"sa":{"href":"Thorium dioxide"},"stx":"simple"}'>Thorium dioxide</a> (<a rel="mw:WikiLink" href="./Thorium" data-parsoid='{"a":{"href":"./Thorium"},"sa":{"href":"Thorium"},"stx":"piped"}'>Th</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Tin_dioxide" data-parsoid='{"a":{"href":"./Tin_dioxide"},"sa":{"href":"Tin dioxide"},"stx":"simple"}'>Tin dioxide</a> (<a rel="mw:WikiLink" href="./Tin" data-parsoid='{"a":{"href":"./Tin"},"sa":{"href":"Tin"},"stx":"piped"}'>Sn</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Titanium_dioxide" data-parsoid='{"a":{"href":"./Titanium_dioxide"},"sa":{"href":"Titanium dioxide"},"stx":"simple"}'>Titanium dioxide</a> (<a rel="mw:WikiLink" href="./Titanium" data-parsoid='{"a":{"href":"./Titanium"},"sa":{"href":"Titanium"},"stx":"piped"}'>Ti</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Tungsten(IV)_oxide" data-parsoid='{"a":{"href":"./Tungsten(IV)_oxide"},"sa":{"href":"Tungsten(IV) oxide"},"stx":"simple"}'>Tungsten(IV) oxide</a> (<a rel="mw:WikiLink" href="./Tungsten" data-parsoid='{"a":{"href":"./Tungsten"},"sa":{"href":"Tungsten"},"stx":"piped"}'>W</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Uranium_dioxide" data-parsoid='{"a":{"href":"./Uranium_dioxide"},"sa":{"href":"Uranium dioxide"},"stx":"simple"}'>Uranium dioxide</a> (<a rel="mw:WikiLink" href="./Uranium" data-parsoid='{"a":{"href":"./Uranium"},"sa":{"href":"Uranium"},"stx":"piped"}'>U</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Vanadium(IV)_oxide" data-parsoid='{"a":{"href":"./Vanadium(IV)_oxide"},"sa":{"href":"Vanadium(IV) oxide"},"stx":"simple"}'>Vanadium(IV) oxide</a> (<a rel="mw:WikiLink" href="./Vanadium" data-parsoid='{"a":{"href":"./Vanadium"},"sa":{"href":"Vanadium"},"stx":"piped"}'>V</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Zirconium_dioxide" data-parsoid='{"a":{"href":"./Zirconium_dioxide"},"sa":{"href":"Zirconium dioxide"},"stx":"simple"}'>Zirconium dioxide</a> (<a rel="mw:WikiLink" href="./Zirconium" data-parsoid='{"a":{"href":"./Zirconium"},"sa":{"href":"Zirconium"},"stx":"piped"}'>Zr</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>2</sub>)</li></ul></div></td></tr><tr style="height:2px;" data-parsoid='{"stx":"html"}'><td data-parsoid='{"stx":"html"}'></td></tr><tr data-parsoid='{"stx":"html"}'><th scope="row" class="navbox-group" data-parsoid='{"stx":"html"}'>+5 Oxidation State</th><td class="navbox-list navbox-even hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px;" data-parsoid='{"stx":"html"}'><div style="padding:0em 0.25em;" data-parsoid='{"stx":"html"}'>
<ul data-parsoid="{}"><li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Antimony_pentoxide" data-parsoid='{"a":{"href":"./Antimony_pentoxide"},"sa":{"href":"Antimony pentoxide"},"stx":"simple"}'>Antimony pentoxide</a> (<a rel="mw:WikiLink" href="./Antimony" data-parsoid='{"a":{"href":"./Antimony"},"sa":{"href":"Antimony"},"stx":"piped"}'>Sb</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>5</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Arsenic_pentoxide" data-parsoid='{"a":{"href":"./Arsenic_pentoxide"},"sa":{"href":"Arsenic pentoxide"},"stx":"simple"}'>Arsenic pentoxide</a> (<a rel="mw:WikiLink" href="./Arsenic" data-parsoid='{"a":{"href":"./Arsenic"},"sa":{"href":"Arsenic"},"stx":"piped"}'>As</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>5</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Dinitrogen_pentoxide" data-parsoid='{"a":{"href":"./Dinitrogen_pentoxide"},"sa":{"href":"Dinitrogen pentoxide"},"stx":"simple"}'>Dinitrogen pentoxide</a> (<a rel="mw:WikiLink" href="./Nitrogen" data-parsoid='{"a":{"href":"./Nitrogen"},"sa":{"href":"Nitrogen"},"stx":"piped"}'>N</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>5</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Niobium_pentoxide" data-parsoid='{"a":{"href":"./Niobium_pentoxide"},"sa":{"href":"Niobium pentoxide"},"stx":"simple"}'>Niobium pentoxide</a> (<a rel="mw:WikiLink" href="./Niobium" data-parsoid='{"a":{"href":"./Niobium"},"sa":{"href":"Niobium"},"stx":"piped"}'>Nb</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>5</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Phosphorus_pentoxide" data-parsoid='{"a":{"href":"./Phosphorus_pentoxide"},"sa":{"href":"Phosphorus pentoxide"},"stx":"simple"}'>Phosphorus pentoxide</a> (<a rel="mw:WikiLink" href="./Phosphorus" data-parsoid='{"a":{"href":"./Phosphorus"},"sa":{"href":"Phosphorus"},"stx":"piped"}'>P</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>5</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Tantalum_pentoxide" data-parsoid='{"a":{"href":"./Tantalum_pentoxide"},"sa":{"href":"Tantalum pentoxide"},"stx":"simple"}'>Tantalum pentoxide</a> (<a rel="mw:WikiLink" href="./Tantalum" data-parsoid='{"a":{"href":"./Tantalum"},"sa":{"href":"Tantalum"},"stx":"piped"}'>Ta</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>5</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Vanadium(V)_oxide" data-parsoid='{"a":{"href":"./Vanadium(V)_oxide"},"sa":{"href":"Vanadium(V) oxide"},"stx":"simple"}'>Vanadium(V) oxide</a> (<a rel="mw:WikiLink" href="./Vanadium" data-parsoid='{"a":{"href":"./Vanadium"},"sa":{"href":"Vanadium"},"stx":"piped"}'>V</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>5</sub>)</li></ul></div></td></tr><tr style="height:2px;" data-parsoid='{"stx":"html"}'><td data-parsoid='{"stx":"html"}'></td></tr><tr data-parsoid='{"stx":"html"}'><th scope="row" class="navbox-group" data-parsoid='{"stx":"html"}'>+6 Oxidation State</th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px;" data-parsoid='{"stx":"html"}'><div style="padding:0em 0.25em;" data-parsoid='{"stx":"html"}'>
<ul data-parsoid="{}"><li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Chromium_trioxide" data-parsoid='{"a":{"href":"./Chromium_trioxide"},"sa":{"href":"Chromium trioxide"},"stx":"simple"}'>Chromium trioxide</a> (<a rel="mw:WikiLink" href="./Chromium" data-parsoid='{"a":{"href":"./Chromium"},"sa":{"href":"Chromium"},"stx":"piped"}'>Cr</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Molybdenum(VI)_oxide" data-parsoid='{"a":{"href":"./Molybdenum(VI)_oxide"},"sa":{"href":"Molybdenum(VI) oxide"},"stx":"simple"}'>Molybdenum(VI) oxide</a> (<a rel="mw:WikiLink" href="./Molybdenum" data-parsoid='{"a":{"href":"./Molybdenum"},"sa":{"href":"Molybdenum"},"stx":"piped"}'>Mo</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Rhenium_trioxide" data-parsoid='{"a":{"href":"./Rhenium_trioxide"},"sa":{"href":"Rhenium trioxide"},"stx":"simple"}'>Rhenium trioxide</a> (<a rel="mw:WikiLink" href="./Rhenium" data-parsoid='{"a":{"href":"./Rhenium"},"sa":{"href":"Rhenium"},"stx":"piped"}'>Re</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Selenium_trioxide" data-parsoid='{"a":{"href":"./Selenium_trioxide"},"sa":{"href":"Selenium trioxide"},"stx":"simple"}'>Selenium trioxide</a> (<a rel="mw:WikiLink" href="./Selenium" data-parsoid='{"a":{"href":"./Selenium"},"sa":{"href":"Selenium"},"stx":"piped"}'>Se</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Sulfur_trioxide" data-parsoid='{"a":{"href":"./Sulfur_trioxide"},"sa":{"href":"Sulfur trioxide"},"stx":"simple"}'>Sulfur trioxide</a> (<a rel="mw:WikiLink" href="./Sulfur" data-parsoid='{"a":{"href":"./Sulfur"},"sa":{"href":"Sulfur"},"stx":"piped"}'>S</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Tellurium_trioxide" data-parsoid='{"a":{"href":"./Tellurium_trioxide"},"sa":{"href":"Tellurium trioxide"},"stx":"simple"}'>Tellurium trioxide</a> (<a rel="mw:WikiLink" href="./Tellurium" data-parsoid='{"a":{"href":"./Tellurium"},"sa":{"href":"Tellurium"},"stx":"piped"}'>Te</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Tungsten_trioxide" data-parsoid='{"a":{"href":"./Tungsten_trioxide"},"sa":{"href":"Tungsten trioxide"},"stx":"simple"}'>Tungsten trioxide</a> (<a rel="mw:WikiLink" href="./Tungsten" data-parsoid='{"a":{"href":"./Tungsten"},"sa":{"href":"Tungsten"},"stx":"piped"}'>W</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Uranium_trioxide" data-parsoid='{"a":{"href":"./Uranium_trioxide"},"sa":{"href":"Uranium trioxide"},"stx":"simple"}'>Uranium trioxide</a> (<a rel="mw:WikiLink" href="./Uranium" data-parsoid='{"a":{"href":"./Uranium"},"sa":{"href":"Uranium"},"stx":"piped"}'>U</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Xenon_trioxide" data-parsoid='{"a":{"href":"./Xenon_trioxide"},"sa":{"href":"Xenon trioxide"},"stx":"simple"}'>Xenon trioxide</a> (<a rel="mw:WikiLink" href="./Xenon" data-parsoid='{"a":{"href":"./Xenon"},"sa":{"href":"Xenon"},"stx":"piped"}'>Xe</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>3</sub>)</li></ul></div></td></tr><tr style="height:2px;" data-parsoid='{"stx":"html"}'><td data-parsoid='{"stx":"html"}'></td></tr><tr data-parsoid='{"stx":"html"}'><th scope="row" class="navbox-group" data-parsoid='{"stx":"html"}'>+7 Oxidation State</th><td class="navbox-list navbox-even hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px;" data-parsoid='{"stx":"html"}'><div style="padding:0em 0.25em;" data-parsoid='{"stx":"html"}'>
<ul data-parsoid="{}"><li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Dichlorine_heptoxide" data-parsoid='{"a":{"href":"./Dichlorine_heptoxide"},"sa":{"href":"Dichlorine heptoxide"},"stx":"simple"}'>Dichlorine heptoxide</a> (<a rel="mw:WikiLink" href="./Chlorine" data-parsoid='{"a":{"href":"./Chlorine"},"sa":{"href":"Chlorine"},"stx":"piped"}'>Cl</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>7</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Manganese(VII)_oxide" data-parsoid='{"a":{"href":"./Manganese(VII)_oxide"},"sa":{"href":"Manganese(VII) oxide"},"stx":"simple"}'>Manganese(VII) oxide</a> (<a rel="mw:WikiLink" href="./Manganese" data-parsoid='{"a":{"href":"./Manganese"},"sa":{"href":"Manganese"},"stx":"piped"}'>Mn</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>7</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Rhenium(VII)_oxide" data-parsoid='{"a":{"href":"./Rhenium(VII)_oxide"},"sa":{"href":"Rhenium(VII) oxide"},"stx":"simple"}'>Rhenium(VII) oxide</a> (<a rel="mw:WikiLink" href="./Rhenium" data-parsoid='{"a":{"href":"./Rhenium"},"sa":{"href":"Rhenium"},"stx":"piped"}'>Re</a><sub data-parsoid='{"stx":"html"}'>2</sub><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>7</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Technetium(VII)_oxide" data-parsoid='{"a":{"href":"./Technetium(VII)_oxide"},"sa":{"href":"Technetium(VII) oxide"},"stx":"simple"}'>Technetium(VII) oxide</a></li></ul></div></td></tr><tr style="height:2px;" data-parsoid='{"stx":"html"}'><td data-parsoid='{"stx":"html"}'></td></tr><tr data-parsoid='{"stx":"html"}'><th scope="row" class="navbox-group" data-parsoid='{"stx":"html"}'>+8 Oxidation State</th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px;" data-parsoid='{"stx":"html"}'><div style="padding:0em 0.25em;" data-parsoid='{"stx":"html"}'>
<ul data-parsoid="{}"><li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Osmium_tetroxide" data-parsoid='{"a":{"href":"./Osmium_tetroxide"},"sa":{"href":"Osmium tetroxide"},"stx":"simple"}'>Osmium tetroxide</a> (<a rel="mw:WikiLink" href="./Osmium" data-parsoid='{"a":{"href":"./Osmium"},"sa":{"href":"Osmium"},"stx":"piped"}'>Os</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>4</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Ruthenium_tetroxide" data-parsoid='{"a":{"href":"./Ruthenium_tetroxide"},"sa":{"href":"Ruthenium tetroxide"},"stx":"simple"}'>Ruthenium tetroxide</a> (<a rel="mw:WikiLink" href="./Ruthenium" data-parsoid='{"a":{"href":"./Ruthenium"},"sa":{"href":"Ruthenium"},"stx":"piped"}'>Ru</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>4</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Xenon_tetroxide" data-parsoid='{"a":{"href":"./Xenon_tetroxide"},"sa":{"href":"Xenon tetroxide"},"stx":"simple"}'>Xenon tetroxide</a> (<a rel="mw:WikiLink" href="./Xenon" data-parsoid='{"a":{"href":"./Xenon"},"sa":{"href":"Xenon"},"stx":"piped"}'>Xe</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>4</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Iridium_tetroxide" data-parsoid='{"a":{"href":"./Iridium_tetroxide"},"sa":{"href":"Iridium tetroxide"},"stx":"simple"}'>Iridium tetroxide</a> (<a rel="mw:WikiLink" href="./Iridium" data-parsoid='{"a":{"href":"./Iridium"},"sa":{"href":"Iridium"},"stx":"piped"}'>Ir</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>4</sub>)</li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Hassium_tetroxide" data-parsoid='{"a":{"href":"./Hassium_tetroxide"},"sa":{"href":"Hassium tetroxide"},"stx":"simple"}'>Hassium tetroxide</a> (<a rel="mw:WikiLink" href="./Hassium" data-parsoid='{"a":{"href":"./Hassium"},"sa":{"href":"Hassium"},"stx":"piped"}'>Hs</a><a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"Oxygen"},"stx":"piped"}'>O</a><sub data-parsoid='{"stx":"html"}'>4</sub>)</li></ul></div></td></tr><tr style="height:2px;" data-parsoid='{"stx":"html"}'><td data-parsoid='{"stx":"html"}'></td></tr><tr data-parsoid='{"stx":"html"}'><th scope="row" class="navbox-group" data-parsoid='{"stx":"html"}'>Related</th><td class="navbox-list navbox-even hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px;" data-parsoid='{"stx":"html"}'><div style="padding:0em 0.25em;" data-parsoid='{"stx":"html"}'>
<ul data-parsoid="{}"><li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Oxocarbon" data-parsoid='{"a":{"href":"./Oxocarbon"},"sa":{"href":"Oxocarbon"},"stx":"simple"}'>Oxocarbon</a></li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Suboxide" data-parsoid='{"a":{"href":"./Suboxide"},"sa":{"href":"Suboxide"},"stx":"simple"}'>Suboxide</a></li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Oxyanion" data-parsoid='{"a":{"href":"./Oxyanion"},"sa":{"href":"Oxyanion"},"stx":"simple"}'>Oxyanion</a></li>
<li data-parsoid="{}"> <a rel="mw:WikiLink" href="./Ozonide" data-parsoid='{"a":{"href":"./Ozonide"},"sa":{"href":"Ozonide"},"stx":"simple"}'>Ozonide</a></li></ul></div></td></tr><tr style="height:2px;" data-parsoid='{"stx":"html"}'><td data-parsoid='{"stx":"html"}'></td></tr><tr data-parsoid='{"stx":"html"}'><td class="navbox-abovebelow" colspan="2" data-parsoid='{"stx":"html"}'><div data-parsoid='{"stx":"html"}'>
<p data-parsoid="{}">Oxides are sorted by <a rel="mw:WikiLink" href="./Oxidation_state" data-parsoid='{"a":{"href":"./Oxidation_state"},"sa":{"href":"oxidation state"},"stx":"simple"}'>oxidation state</a>.</p>
<a rel="mw:WikiLink" href="./Category:Oxides" data-parsoid='{"a":{"href":"./Category:Oxides"},"sa":{"href":":Category:Oxides"},"stx":"simple"}'>Category:Oxides</a></div></td></tr></tbody></table></td></tr></tbody></table>

<link rel="mw:WikiLink/Category" href="./Category:Chemical_properties" data-parsoid='{"a":{"href":"./Category:Chemical_properties"},"sa":{"href":"Category:Chemical properties"},"stx":"simple","dsr":[16212,16244,null,null]}'></body></html>

Revision as of 12:08, 14 June 2013

<!DOCTYPE html>

<html prefix="mw: http://mediawiki.org/rdf/"><head prefix="schema: http://schema.org/"><meta charset="UTF-8"><meta property="mw:articleNamespace" content="0"><meta property="schema:CreativeWork/version" content="559865564"><meta property="schema:CreativeWork/version/parent" content="559862678"><meta property="schema:CreativeWork/dateModified" content="2013-06-14T12:05:57.000Z"><meta property="schema:CreativeWork/contributor/username" content="//en.wikipedia.org/wiki/User:This, that and the other"><meta property="schema:CreativeWork/contributor" content="//en.wikipedia.org/wiki/Special:UserById/4168824"><meta property="mw:revisionSHA1" content="31391174e8cb82001b06400a645945c761ea0b4a"><meta property="schema:CreativeWork/comment" content="/* Elements with multiple oxidation states */ overhaul"><title>Oxidation state</title><base href="//en.wikipedia.org/wiki/Oxidation_state"></head><body><div class="dablink" data-parsoid='{"src":"

","dsr":[0,32,null,null]}' about="#mwt1" typeof="mw:Transclusion" data-mw='{"target":{"wt":"distinguish","href":"./Template:Distinguish"},"params":{"1":{"wt":"Oxidation number"}}}'>Not to be confused with <a rel="mw:WikiLink" href="./Oxidation_number" data-parsoid='{"a":{"href":"./Oxidation_number"},"sa":{"href":":Oxidation number"},"stx":"simple"}'>Oxidation number</a>. <table class="metadata plainlinks ambox ambox-move" style="" about="#mwt2" data-parsoid='{"src":"

","dsr":[33,77,null,null]}' typeof="mw:Transclusion" data-mw='{"target":{"wt":"mergefrom","href":"./Template:Mergefrom"},"params":{"1":{"wt":"Oxidation number"},"date":{"wt":"May 2013"}}}'> <tbody data-parsoid="{}">

<img resource="./File:Mergefrom.svg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Mergefrom.svg/50px-Mergefrom.svg.png" height="20" width="50" data-parsoid='{"a":{"resource":"./File:Mergefrom.svg"},"sa":{"resource":"Image:Mergefrom.svg"}}'>

It has been suggested that <a rel="mw:WikiLink" href="./Oxidation_number" data-parsoid='{"a":{"href":"./Oxidation_number"},"sa":{"href":"::Oxidation number"},"stx":"piped"}'>Oxidation number</a> be <a rel="mw:WikiLink" href="./Wikipedia:Merging" data-parsoid='{"a":{"href":"./Wikipedia:Merging"},"sa":{"href":"Wikipedia:Merging"},"stx":"piped"}'>merged</a> into this article. (<a rel="mw:WikiLink" href="./Talk:Oxidation_state" data-parsoid='{"a":{"href":"./Talk:Oxidation_state"},"sa":{"href":"Talk:Oxidation state"},"stx":"piped"}'>Discuss</a>) Proposed since May 2013. </tbody><link rel="mw:WikiLink/Category" href="./Category:Articles_to_be_merged_from_May_2013" data-parsoid='{"a":{"href":"./Category:Articles_to_be_merged_from_May_2013"},"sa":{"href":"Category:Articles to be merged from May 2013"},"stx":"simple"}' about="#mwt2"><link rel="mw:WikiLink/Category" href="./Category:All_articles_to_be_merged" data-parsoid='{"a":{"href":"./Category:All_articles_to_be_merged"},"sa":{"href":"Category:All articles to be merged"},"stx":"simple"}' about="#mwt2">

The oxidation state is an indicator of the degree of <a rel="mw:WikiLink" href="./Oxidation" data-parsoid='{"a":{"href":"./Oxidation"},"sa":{"href":"oxidation"},"stx":"simple","dsr":[138,151,2,2]}'>oxidation</a> of an <a rel="mw:WikiLink" href="./Atom" data-parsoid='{"a":{"href":"./Atom"},"sa":{"href":"atom"},"stx":"simple","dsr":[158,166,2,2]}'>atom</a> in a <a rel="mw:WikiLink" href="./Chemical_compound" data-parsoid='{"a":{"href":"./Chemical_compound"},"sa":{"href":"chemical compound"},"stx":"simple","dsr":[172,193,2,2]}'>chemical compound</a>. The formal oxidation state is the hypothetical <a rel="mw:WikiLink" href="./Electrical_charge" data-parsoid='{"a":{"href":"./Electrical_charge"},"sa":{"href":"Electrical charge"},"stx":"piped","dsr":[247,275,20,2]}'>charge</a> that an atom would have if all bonds to atoms of different elements were 100% <a rel="mw:WikiLink" href="./Ionic_bond" data-parsoid='{"a":{"href":"./Ionic_bond"},"sa":{"href":"Ionic bond"},"stx":"piped","dsr":[354,374,13,2]}'>ionic</a>. Oxidation states are typically represented by <a rel="mw:WikiLink" href="./Integer" data-parsoid='{"a":{"href":"./Integer"},"sa":{"href":"integer"},"stx":"simple","dsr":[422,434,2,3],"tail":"s"}'>integers</a>, which can be positive, negative, or zero. In some cases, the average oxidation state of an element is a fraction, such as 8/3 for iron in <a rel="mw:WikiLink" href="./Magnetite" data-parsoid='{"a":{"href":"./Magnetite"},"sa":{"href":"magnetite"},"stx":"simple","dsr":[574,587,2,2]}'>magnetite</a> (<span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"Fe
3
O
4
","dsr":[589,606,null,null]}' about="#mwt3" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"Fe"},"2":{"wt":"3"},"3":{"wt":"O"},"4":{"wt":"4"}}}'>Fe
3
O
4
). The highest known oxidation state is +8 in the tetroxides of <a rel="mw:WikiLink" href="./Ruthenium_tetroxide" data-parsoid='{"a":{"href":"./Ruthenium_tetroxide"},"sa":{"href":"ruthenium tetroxide"},"stx":"piped","dsr":[670,703,22,2]}'>ruthenium</a>, <a rel="mw:WikiLink" href="./Xenon_tetroxide" data-parsoid='{"a":{"href":"./Xenon_tetroxide"},"sa":{"href":"xenon tetroxide"},"stx":"piped","dsr":[705,730,18,2]}'>xenon</a>, <a rel="mw:WikiLink" href="./Osmium_tetroxide" data-parsoid='{"a":{"href":"./Osmium_tetroxide"},"sa":{"href":"osmium tetroxide"},"stx":"piped","dsr":[732,759,19,2]}'>osmium</a>, <a rel="mw:WikiLink" href="./Iridium" data-parsoid='{"a":{"href":"./Iridium"},"sa":{"href":"iridium"},"stx":"simple","dsr":[761,772,2,2]}'>iridium</a>, and <a rel="mw:WikiLink" href="./Hassium" data-parsoid='{"a":{"href":"./Hassium"},"sa":{"href":"hassium"},"stx":"simple","dsr":[778,789,2,2]}'>hassium</a>, and some complexes involving <a rel="mw:WikiLink" href="./Plutonium" data-parsoid='{"a":{"href":"./Plutonium"},"sa":{"href":"plutonium"},"stx":"simple","dsr":[820,833,2,2]}'>plutonium</a>, while the lowest known oxidation state is 4 for some elements in the <a rel="mw:WikiLink" href="./Carbon_group" data-parsoid='{"a":{"href":"./Carbon_group"},"sa":{"href":"carbon group"},"stx":"simple","dsr":[911,927,2,2]}'>carbon group</a>.

The increase in oxidation state of an atom through a chemical reaction is known as an oxidation; a decrease in oxidation state is known as a <a rel="mw:WikiLink" href="./Redox" data-parsoid='{"a":{"href":"./Redox"},"sa":{"href":"redox"},"stx":"piped","dsr":[1071,1090,8,2]}'>reduction</a>. Such reactions involve the formal transfer of electrons, a net gain in electrons being a reduction and a net loss of electrons being an oxidation. For pure elements, the oxidation state is zero.

The definition of the oxidation state listed by <a rel="mw:WikiLink" href="./IUPAC" data-parsoid='{"a":{"href":"./IUPAC"},"sa":{"href":"IUPAC"},"stx":"simple","dsr":[1336,1345,2,2]}'>IUPAC</a> is as follows:<span about="#mwt5" class="reference" data-mw='{"name":"ref","body":{"html":"<a rel=\"mw:WikiLink\" href=\"./IUPAC\" data-parsoid=\"{&quot;a&quot;:{&quot;href&quot;:&quot;./IUPAC&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot;IUPAC&quot;},&quot;stx&quot;:&quot;simple&quot;,&quot;dsr&quot;:[1379,1388,2,2]}\">IUPAC</a> <a rel=\"mw:WikiLink\" href=\"./Gold_Book\" data-parsoid=\"{&quot;a&quot;:{&quot;href&quot;:&quot;./Gold_Book&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot;Gold Book&quot;},&quot;stx&quot;:&quot;simple&quot;,&quot;dsr&quot;:[1391,1404,2,2]}\">Gold Book</a> definition: <a rel=\"mw:ExtLink\" href=\"http://goldbook.iupac.org/O04365.html\" data-parsoid=\"{&quot;targetOff&quot;:1458,&quot;dsr&quot;:[1419,1478,39,1]}\">oxidation state</a> &nbsp;<a rel=\"mw:ExtLink\" href=\"http://www.iupac.org/goldbook/O04365.pdf\" data-parsoid=\"{&quot;targetOff&quot;:1527,&quot;dsr&quot;:[1485,1531,42,1]}\">PDF</a>"},"attrs":{"name":"goldbook"}}' id="cite_ref-goldbook-1-0" rel="dc:references" typeof="mw:Extension/ref" data-parsoid="{"src":"[1]","dsr":[1360,1537,19,6]}"><a href="#cite_note-goldbook-1">[1]</a>

<blockquote class="toccolours" style="float:none; padding: 10px 15px 10px 15px; display:table;" data-parsoid='{"src":"

[Oxidation state] is defined as the charge an atom might be imagined to have when electrons are counted according to an agreed-upon set of rules:\n# the oxidation state of a free element (uncombined element) is zero\n# for a simple (monoatomic) ion, the oxidation state is equal to the net charge on the ion \n# hydrogen has an oxidation state of 1 and oxygen has an oxidation state of &minus;2 when they are present in most compounds. (Exceptions to this are that hydrogen has an oxidation state of &minus;1 in hydrides of active metals, e.g. LiH, and oxygen has an oxidation state of &minus;1 in peroxides, e.g. H2O2\n# the algebraic sum of oxidation states of all atoms in a neutral molecule must be zero, while in ions the algebraic sum of the oxidation states of the constituent atoms must be equal to the charge on the ion.

","dsr":[1538,2453,null,null]}' about="#mwt6" typeof="mw:Transclusion" data-mw='{"target":{"wt":"quotation","href":"./Template:Quotation"},"params":{"1":{"wt":"[Oxidation state] is defined as the charge an atom might be imagined to have when electrons are counted according to an agreed-upon set of rules:\n# the oxidation state of a free element (uncombined element) is zero\n# for a simple (monoatomic) ion, the oxidation state is equal to the net charge on the ion \n# hydrogen has an oxidation state of 1 and oxygen has an oxidation state of &minus;2 when they are present in most compounds. (Exceptions to this are that hydrogen has an oxidation state of &minus;1 in hydrides of active metals, e.g. LiH, and oxygen has an oxidation state of &minus;1 in peroxides, e.g. H2O2\n# the algebraic sum of oxidation states of all atoms in a neutral molecule must be zero, while in ions the algebraic sum of the oxidation states of the constituent atoms must be equal to the charge on the ion."}}}'> [Oxidation state] is defined as the charge an atom might be imagined to have when electrons are counted according to an agreed-upon set of rules:

  1. the oxidation state of a <a rel="mw:WikiLink" href="./Free_element" data-parsoid='{"a":{"href":"./Free_element"},"sa":{"href":"free element"},"stx":"simple"}'>free element</a> (uncombined element) is zero
  2. for a simple (monoatomic) ion, the oxidation state is equal to the net charge on the ion
  3. hydrogen has an oxidation state of 1 and oxygen has an oxidation state of 2 when they are present in most compounds. (Exceptions to this are that hydrogen has an oxidation state of 1 in <a rel="mw:WikiLink" href="./Hydride" data-parsoid='{"a":{"href":"./Hydride"},"sa":{"href":"hydride"},"stx":"simple","tail":"s"}'>hydrides</a> of active metals, e.g. <a rel="mw:WikiLink" href="./Lithium_hydride" data-parsoid='{"a":{"href":"./Lithium_hydride"},"sa":{"href":"Lithium hydride"},"stx":"piped"}'>LiH</a>, and oxygen has an oxidation state of 1 in <a rel="mw:WikiLink" href="./Peroxide" data-parsoid='{"a":{"href":"./Peroxide"},"sa":{"href":"peroxide"},"stx":"simple","tail":"s"}'>peroxides</a>, e.g. <a rel="mw:WikiLink" href="./Hydrogen_peroxide" data-parsoid='{"a":{"href":"./Hydrogen_peroxide"},"sa":{"href":"hydrogen peroxide"},"stx":"piped"}'>H2O2</a>
  4. the algebraic sum of oxidation states of all atoms in a neutral molecule must be zero, while in ions the algebraic sum of the oxidation states of the constituent atoms must be equal to the charge on the ion.

Some general rules for determining oxidation states without use of Lewis structures

Here are general rules for simple compounds without structural formulae:<a href="#cite_note-goldbook-1">[1]</a>

  1. Any pure element (even if it forms diatomic molecules like chlorine, Cl2) has an oxidation state (OS) of zero. Examples of this are Cu or O2.
  2. For monatomic ions, the OS is the same as the charge of the ion. For example, S2− has an OS of −2, whereas Li+ has an OS of +1.
  3. The sum of OSs for all atoms in a molecule or polyatomic ion is equal to the charge of the molecule or ion, so that the OS of one element can be calculated from the OS of the other elements. For example, in <span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"SO2−
    3
    ","dsr":[3178,3194,null,null]}' about="#mwt9" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"SO"},"2":{"wt":"3"},"3":{"wt":"2-"}}}'>SO2−
    3
    (<a rel="mw:WikiLink" href="./Sulfite" data-parsoid='{"a":{"href":"./Sulfite"},"sa":{"href":"sulfite"},"stx":"simple","dsr":[3196,3207,2,2]}'>sulfite</a> ion), the total charge of the ion is −2, and each oxygen is assumed to have its usual oxidation state of −2. The sum of OSs is then OS(S) + 3(−2) = OS(S) − 6 = −2, so that OS(S) = +4.

This means that the <a rel="mw:WikiLink" href="./Sum" data-parsoid='{"a":{"href":"./Sum"},"sa":{"href":"sum"},"stx":"simple","dsr":[3413,3420,2,2]}'>sum</a> of oxidation states of all atoms in a neutral <a rel="mw:WikiLink" href="./Molecule" data-parsoid='{"a":{"href":"./Molecule"},"sa":{"href":"molecule"},"stx":"simple","dsr":[3467,3479,2,2]}'>molecule</a> must be zero. Likewise, in polyatomic ions, the sum of the oxidation states of the constituent atoms must be equal to the charge on the ion. This fact, combined with the fact that some elements almost always have certain oxidation states (due to their very high electropositivity or electronegativity), allows one to compute the oxidation states for the remaining atoms (such as transition metals) in simple compounds.

The following rules can be used for initially assigning oxidation states for certain elements, in simple compounds:

  • <a rel="mw:WikiLink" href="./Fluorine" data-parsoid='{"a":{"href":"./Fluorine"},"sa":{"href":"Fluorine"},"stx":"simple","dsr":[4019,4031,2,2]}'>Fluorine</a> has an oxidation state of 1 when bonded to any other element, since it has the highest <a rel="mw:WikiLink" href="./Electronegativity" data-parsoid='{"a":{"href":"./Electronegativity"},"sa":{"href":"electronegativity"},"stx":"simple","dsr":[4126,4147,2,2]}'>electronegativity</a> of all reactive elements.
  • <a rel="mw:WikiLink" href="./Halogen" data-parsoid='{"a":{"href":"./Halogen"},"sa":{"href":"Halogen"},"stx":"simple","dsr":[4175,4187,2,3],"tail":"s"}'>Halogens</a> other than fluorine have an oxidation state of −1 except when they are bonded to oxygen, nitrogen, or another (more electronegative) halogen. For example, the oxidation state of chlorine in <a rel="mw:WikiLink" href="./Chlorine_monofluoride" data-parsoid='{"a":{"href":"./Chlorine_monofluoride"},"sa":{"href":"chlorine monofluoride"},"stx":"simple","dsr":[4378,4403,2,2]}'>chlorine monofluoride</a> (ClF) is +1. However, in <a rel="mw:WikiLink" href="./Bromine_chloride" data-parsoid='{"a":{"href":"./Bromine_chloride"},"sa":{"href":"bromine chloride"},"stx":"simple","dsr":[4429,4449,2,2]}'>bromine chloride</a> (BrCl), the oxidation state of Cl is −1.
  • <a rel="mw:WikiLink" href="./Hydrogen" data-parsoid='{"a":{"href":"./Hydrogen"},"sa":{"href":"Hydrogen"},"stx":"simple","dsr":[4492,4504,2,2]}'>Hydrogen</a> has an <a rel="mw:WikiLink" href="./Oxidation" data-parsoid='{"a":{"href":"./Oxidation"},"sa":{"href":"oxidation"},"stx":"simple","dsr":[4512,4525,2,2]}'>oxidation</a> state of +1 except when bonded to more electropositive elements such as <a rel="mw:WikiLink" href="./Sodium" data-parsoid='{"a":{"href":"./Sodium"},"sa":{"href":"sodium"},"stx":"simple","dsr":[4598,4608,2,2]}'>sodium</a>, <a rel="mw:WikiLink" href="./Aluminium" data-parsoid='{"a":{"href":"./Aluminium"},"sa":{"href":"aluminium"},"stx":"simple","dsr":[4610,4623,2,2]}'>aluminium</a>, and <a rel="mw:WikiLink" href="./Boron" data-parsoid='{"a":{"href":"./Boron"},"sa":{"href":"boron"},"stx":"simple","dsr":[4629,4638,2,2]}'>boron</a>, as in <a rel="mw:WikiLink" href="./Sodium_hydride" data-parsoid='{"a":{"href":"./Sodium_hydride"},"sa":{"href":"sodium hydride"},"stx":"piped","dsr":[4646,4668,17,2]}'>NaH</a>, <a rel="mw:WikiLink" href="./Sodium_borohydride" data-parsoid='{"a":{"href":"./Sodium_borohydride"},"sa":{"href":"sodium borohydride"},"stx":"piped","dsr":[4670,4708,21,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"NaBH
    4
    ","dsr":[4691,4706,null,null]}' about="#mwt10" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"NaBH"},"2":{"wt":"4"}}}'>NaBH
    4
    </a>, <a rel="mw:WikiLink" href="./Lithium_aluminium_hydride" data-parsoid='{"a":{"href":"./Lithium_aluminium_hydride"},"sa":{"href":"lithium aluminium hydride"},"stx":"piped","dsr":[4710,4756,28,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"LiAlH
    4
    ","dsr":[4738,4754,null,null]}' about="#mwt11" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"LiAlH"},"2":{"wt":"4"}}}'>LiAlH
    4
    </a>, where each H has an oxidation state of −1.
  • In compounds, <a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"oxygen"},"stx":"simple","dsr":[4816,4826,2,2]}'>oxygen</a> typically has an oxidation state of −2, though there are exceptions that are listed <a rel="mw:WikiLink" href="./Oxidation_state#Elements_with_multiple_oxidation_states" data-parsoid='{"a":{"href":"./Oxidation_state#Elements_with_multiple_oxidation_states"},"sa":{"href":"Oxidation state#Elements with multiple oxidation states"},"stx":"piped","dsr":[4911,4976,58,2]}'>below</a>, such as <a rel="mw:WikiLink" href="./Peroxide" data-parsoid='{"a":{"href":"./Peroxide"},"sa":{"href":"peroxide"},"stx":"simple","dsr":[4986,4999,2,3],"tail":"s"}'>peroxides</a> (e.g. hydrogen peroxide H2O2), where oxygen has an OS of −1.
  • <a rel="mw:WikiLink" href="./Alkali_metal" data-parsoid='{"a":{"href":"./Alkali_metal"},"sa":{"href":"Alkali metal"},"stx":"simple","dsr":[5084,5101,2,3],"tail":"s"}'>Alkali metals</a> have an oxidation state of +1 in virtually all of their compounds (exception, see <a rel="mw:WikiLink" href="./Alkalide" data-parsoid='{"a":{"href":"./Alkalide"},"sa":{"href":"alkalide"},"stx":"simple","dsr":[5184,5196,2,2]}'>alkalide</a>).
  • <a rel="mw:WikiLink" href="./Alkaline_earth_metal" data-parsoid='{"a":{"href":"./Alkaline_earth_metal"},"sa":{"href":"Alkaline earth metal"},"stx":"simple","dsr":[5200,5225,2,3],"tail":"s"}'>Alkaline earth metals</a> have an oxidation state of +2 in virtually all of their compounds.

Example for a complex salt: In <span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"Cr(OH)
3
","dsr":[5331,5348,null,null]}' about="#mwt12" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"Cr(OH)"},"2":{"wt":"3"}}}'>Cr(OH)
3
, oxygen has an oxidation state of −2 (no fluorine or O–O bonds present), and hydrogen has a state of +1 (bonded to oxygen). So, each of the three <a rel="mw:WikiLink" href="./Hydroxide" data-parsoid='{"a":{"href":"./Hydroxide"},"sa":{"href":"hydroxide"},"stx":"simple","dsr":[5495,5508,2,2]}'>hydroxide</a> groups has an oxidation state of −2 + 1 = −1. As the compound is neutral, <a rel="mw:WikiLink" href="./Chromium" data-parsoid='{"a":{"href":"./Chromium"},"sa":{"href":"chromium"},"stx":"simple","dsr":[5583,5595,2,2]}'>chromium</a> has an oxidation state of +3.

Oxidation state and formal charge

<div class="rellink relarticle mainarticle" data-parsoid='{"src":"

","dsr":[5667,5731,null,null]}' about="#mwt13" typeof="mw:Transclusion" data-mw='{"target":{"wt":"Main","href":"./Template:Main"},"params":{"1":{"wt":"Formal charge#Formal charge compared to oxidation state"}}}'>Main article: <a rel="mw:WikiLink" href="./Formal_charge#Formal_charge_compared_to_oxidation_state" data-parsoid='{"a":{"href":"./Formal_charge#Formal_charge_compared_to_oxidation_state"},"sa":{"href":"Formal charge#Formal charge compared to oxidation state"},"stx":"piped"}'>Formal charge#Formal charge compared to oxidation state</a>

The oxidation state of an atom is often different from the <a rel="mw:WikiLink" href="./Formal_charge" data-parsoid='{"a":{"href":"./Formal_charge"},"sa":{"href":"formal charge"},"stx":"simple","dsr":[5791,5808,2,2]}'>formal charge</a> often included in Lewis structures (when it is non-zero). The oxidation state is calculated by assuming that each chemical bond (except between identical atoms) is ionic so that both electrons are assigned to the more electronegative bonded atom. In contrast, the formal charge is calculated by assuming that each bonds is covalent so that one electron is assigned to each bonded atom. For example, in ammonium ion (NH4+) the oxidation state of nitrogen is -3, as all eight valence electrons are assigned to the nitrogen atom which is more electronegative than hydrogen. However the formal charge is +1, calculated by assigning only four valence electrons (one per bond) to nitrogen. For comparison, the nitrogen in ammonia (NH3) has oxidation state -3 also but a formal charge of zero. On <a rel="mw:WikiLink" href="./Protonation" data-parsoid='{"a":{"href":"./Protonation"},"sa":{"href":"protonation"},"stx":"simple","dsr":[6632,6647,2,2]}'>protonation</a> of ammonia the formal charge on nitrogen changes, but its oxidation state does not.

Calculation of formal oxidation states with a Lewis structure

There are two common ways of computing the oxidation state of an atom in a compound. The first is the simple algebraic sum technique above, used in compounds that do not require a <a rel="mw:WikiLink" href="./Lewis_structure" data-parsoid='{"a":{"href":"./Lewis_structure"},"sa":{"href":"Lewis structure"},"stx":"simple","dsr":[6980,6999,2,2]}'>Lewis structure</a>. The second is used for molecules when one has a <a rel="mw:WikiLink" href="./Lewis_structure" data-parsoid='{"a":{"href":"./Lewis_structure"},"sa":{"href":"Lewis structure"},"stx":"simple","dsr":[7049,7068,2,2]}'>Lewis structure</a>.

It should be remembered that the oxidation state of an atom does not represent the "real" charge on that atom: This is particularly true of high oxidation states, where the <a rel="mw:WikiLink" href="./Ionization_energy" data-parsoid='{"a":{"href":"./Ionization_energy"},"sa":{"href":"ionization energy"},"stx":"simple","dsr":[7244,7265,2,2]}'>ionization energy</a> required to produce a multiply positive ion are far greater than the energies available in chemical reactions. The assignment of electrons between atoms in calculating an oxidation state is purely a formalism, but is a useful one for the understanding of many chemical reactions.

For more about issues with calculating atomic charges, see <a rel="mw:WikiLink" href="./Partial_charge" data-parsoid='{"a":{"href":"./Partial_charge"},"sa":{"href":"partial charge"},"stx":"simple","dsr":[7606,7624,2,2]}'>partial charge</a>.

The Lewis structure

When a <a rel="mw:WikiLink" href="./Lewis_structure" data-parsoid='{"a":{"href":"./Lewis_structure"},"sa":{"href":"Lewis structure"},"stx":"simple","dsr":[7661,7680,2,2]}'>Lewis structure</a> of a molecule is available, the oxidation states may be assigned by computing the difference between the number of <a rel="mw:WikiLink" href="./Valence_electron" data-parsoid='{"a":{"href":"./Valence_electron"},"sa":{"href":"valence electron"},"stx":"simple","dsr":[7796,7817,2,3],"tail":"s"}'>valence electrons</a> that a neutral atom of that element would have and the number of electrons that "belong" to it in the Lewis structure. For purposes of computing oxidation states, electrons in a bond between atoms of different elements belong to the more <a rel="mw:WikiLink" href="./Electronegative" data-parsoid='{"a":{"href":"./Electronegative"},"sa":{"href":"electronegative"},"stx":"simple","dsr":[8056,8075,2,2]}'>electronegative</a> atom; electrons in a bond between atoms of the same element are split equally, and electrons in a <a rel="mw:WikiLink" href="./Lone_pair" data-parsoid='{"a":{"href":"./Lone_pair"},"sa":{"href":"lone pair"},"stx":"simple","dsr":[8174,8187,2,2]}'>lone pair</a> belong only to the atom with the lone pair.

For example, consider <a rel="mw:WikiLink" href="./Acetic_acid" data-parsoid='{"a":{"href":"./Acetic_acid"},"sa":{"href":"acetic acid"},"stx":"simple","dsr":[8255,8270,2,2]}'>acetic acid</a>:

<a href="./File:Acetic_acid_structures4.png" data-parsoid='{"a":{"href":"./File:Acetic_acid_structures4.png"}}'><img resource="./File:Acetic_acid_structures4.png" src="http://upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Acetic_acid_structures4.png/400px-Acetic_acid_structures4.png" height="126" width="400" data-parsoid='{"a":{"resource":"./File:Acetic_acid_structures4.png"},"sa":{"resource":"Image:Acetic acid structures4.png"}}'></a>

The <a rel="mw:WikiLink" href="./Methyl" data-parsoid='{"a":{"href":"./Methyl"},"sa":{"href":"methyl"},"stx":"simple","dsr":[8322,8332,2,2]}'>methyl</a> group carbon atom has 6 valence electrons from its bonds to the hydrogen atoms because carbon is more electronegative than hydrogen. Also, 1 electron is gained from its bond with the other carbon atom because the electron pair in the <a rel="mw:WikiLink" href="./Carbon-carbon_bond" data-parsoid='{"a":{"href":"./Carbon-carbon_bond"},"sa":{"href":"carbon-carbon bond"},"stx":"piped","dsr":[8567,8598,21,2]}'>C–C bond</a> is split equally, giving a total of 7 electrons. A neutral carbon atom would have 4 valence electrons, because carbon is in <a rel="mw:WikiLink" href="./Group_14" data-parsoid='{"a":{"href":"./Group_14"},"sa":{"href":"group 14"},"stx":"simple","dsr":[8723,8735,2,2]}'>group 14</a> of the periodic table. The difference, 4 – 7 = –3, is the oxidation state of that carbon atom. That is, if it is assumed that all the bonds were 100% ionic (which in fact they are not), the carbon would be described as C3-.

Following the same rules, the <a rel="mw:WikiLink" href="./Carboxylic_acid" data-parsoid='{"a":{"href":"./Carboxylic_acid"},"sa":{"href":"carboxylic acid"},"stx":"simple","dsr":[9003,9022,2,2]}'>carboxylic acid</a> carbon atom has an oxidation state of +3 (it only gets one valence electron from the C–C bond; the oxygen atoms get all the other electrons because oxygen is more electronegative than carbon). The oxygen atoms both have an oxidation state of –2; they get 8 electrons each (4 from the lone pairs and 4 from the bonds), while a neutral oxygen atom would have 6. The hydrogen atoms all have oxidation state +1, because they surrender their electron to the more electronegative atoms to which they are bonded.

Inequivalent atoms of an element

<figure class="mw-halign-right" typeof="mw:Image/Thumb" data-parsoid='{"optList":[{"ck":"thumbnail","ak":"thumb"},{"ck":"right","ak":"right"},{"ck":"width","ak":"150px"},{"ck":"caption","ak":"Structure of the thiosulfate anion"}],"cacheKey":"

Structure of the thiosulfate anion

","img":{"h":894,"w":1100,"wdset":true},"dsr":[9569,9665,2,2]}'><a href="./File:Thiosulfate-ion-2D-dimensions.png" data-parsoid='{"a":{"href":"./File:Thiosulfate-ion-2D-dimensions.png"},"dsr":[9571,null,null,null]}'><img resource="./File:Thiosulfate-ion-2D-dimensions.png" src="http://upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Thiosulfate-ion-2D-dimensions.png/150px-Thiosulfate-ion-2D-dimensions.png" height="122" width="150" data-parsoid='{"a":{"resource":"./File:Thiosulfate-ion-2D-dimensions.png"},"sa":{"resource":"Image:Thiosulfate-ion-2D-dimensions.png"}}'></a><figcaption class="mw-figcaption" data-parsoid='{"dsr":[null,9663,null,null]}'>Structure of the thiosulfate anion</figcaption></figure> An example of a molecule with inequivalent atoms of the same element is the <a rel="mw:WikiLink" href="./Thiosulfate" data-parsoid='{"a":{"href":"./Thiosulfate"},"sa":{"href":"thiosulfate"},"stx":"simple","dsr":[9742,9757,2,2]}'>thiosulfate</a> ion (S2O32), for which the algebraic sum rule yields the average value +2 for sulfur, where the two ionizing electrons are assigned to the terminal sulfur atom. However, the use of a Lewis structure and electron counting shows that the two sulfur atoms are different. The central sulfur is assigned only one valence electron from the S-S bond and no valence electrons from the S-O bonds, compared to six valence electrons for a free sulfur atom, so the oxidation state of the central sulfur is +5. The terminal sulfur atom is assigned the other electron from the S-S bond plus three lone pairs for a total of seven valence electrons, so its oxidation state is −1.

Redox reactions

Oxidation states can be useful for balancing chemical equations for oxidation-reduction (or <a rel="mw:WikiLink" href="./Redox" data-parsoid='{"a":{"href":"./Redox"},"sa":{"href":"redox"},"stx":"simple","dsr":[10577,10586,2,2]}'>redox</a>) reactions, because the changes in the oxidized atoms have to be balanced by the changes in the reduced atoms. For example, in the reaction of <a rel="mw:WikiLink" href="./Acetaldehyde" data-parsoid='{"a":{"href":"./Acetaldehyde"},"sa":{"href":"acetaldehyde"},"stx":"simple","dsr":[10730,10746,2,2]}'>acetaldehyde</a> with the <a rel="mw:WikiLink" href="./Tollens'_reagent" data-parsoid='{"a":{"href":"./Tollens'_reagent"},"sa":{"href":"Tollens' reagent"},"stx":"simple","dsr":[10756,10776,2,2]}'>Tollens' reagent</a> to acetic acid (shown below), the carbonyl carbon atom changes its oxidation state from +1 to +3 (oxidation). This oxidation is balanced by reducing two equivalents of <a rel="mw:WikiLink" href="./Silver" data-parsoid='{"a":{"href":"./Silver"},"sa":{"href":"silver"},"stx":"simple","dsr":[10945,10955,2,2]}'>silver</a> from Ag+ to Ag0.

<a href="./File:Redox_Tollens_Oxidationszahlen_C.svg" data-parsoid='{"a":{"href":"./File:Redox_Tollens_Oxidationszahlen_C.svg"}}'><img resource="./File:Redox_Tollens_Oxidationszahlen_C.svg" src="http://upload.wikimedia.org/wikipedia/commons/thumb/b/be/Redox_Tollens_Oxidationszahlen_C.svg/600px-Redox_Tollens_Oxidationszahlen_C.svg.png" height="305" width="600" data-parsoid='{"a":{"resource":"./File:Redox_Tollens_Oxidationszahlen_C.svg"},"sa":{"resource":"Image:Redox Tollens Oxidationszahlen C.svg"}}'></a>

In such structural diagrams for organic chemistry, oxidation states are represented by Roman numerals to distinguish them from <a rel="mw:WikiLink" href="./Formal_charge" data-parsoid='{"a":{"href":"./Formal_charge"},"sa":{"href":"formal charge"},"stx":"simple","dsr":[11223,11241,2,3],"tail":"s"}'>formal charges</a> (calculated with all bonds covalent).

Elements with multiple oxidation states

Most elements have more than one possible oxidation state.

Carbon has nine integer oxidation states:

<tbody data-parsoid='{"dsr":[11487,11959,0,0]}'> </tbody>
Integer oxidation states of carbon
Oxidation state Example compound
–4 <a rel="mw:WikiLink" href="./Methane" data-parsoid='{"a":{"href":"./Methane"},"sa":{"href":"methane"},"stx":"piped","dsr":[11539,11564,10,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"CH
4
","dsr":[11549,11562,null,null]}' about="#mwt14" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"CH"},"2":{"wt":"4"}}}'>CH
4
</a>
–3 <a rel="mw:WikiLink" href="./Ethane" data-parsoid='{"a":{"href":"./Ethane"},"sa":{"href":"ethane"},"stx":"piped","dsr":[11576,11603,9,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"C
2
H
6
","dsr":[11585,11601,null,null]}' about="#mwt15" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"C"},"2":{"wt":"2"},"3":{"wt":"H"},"4":{"wt":"6"}}}'>C
2
H
6
</a>
–2 <a rel="mw:WikiLink" href="./Chloromethane" data-parsoid='{"a":{"href":"./Chloromethane"},"sa":{"href":"chloromethane"},"stx":"piped","dsr":[11615,11649,16,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"CH
3
Cl
","dsr":[11631,11647,null,null]}' about="#mwt16" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"CH"},"2":{"wt":"3"},"3":{"wt":"Cl"}}}'>CH
3
Cl</a>
–1 <a rel="mw:WikiLink" href="./Acetylene" data-parsoid='{"a":{"href":"./Acetylene"},"sa":{"href":"acetylene"},"stx":"piped","dsr":[11661,11691,12,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"C
2
H
2
","dsr":[11673,11689,null,null]}' about="#mwt17" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"C"},"2":{"wt":"2"},"3":{"wt":"H"},"4":{"wt":"2"}}}'>C
2
H
2
</a>
0 <a rel="mw:WikiLink" href="./Dichloromethane" data-parsoid='{"a":{"href":"./Dichloromethane"},"sa":{"href":"dichloromethane"},"stx":"piped","dsr":[11702,11740,18,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"CH
2
Cl
2
","dsr":[11720,11738,null,null]}' about="#mwt18" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"CH"},"2":{"wt":"2"},"3":{"wt":"Cl"},"4":{"wt":"2"}}}'>CH
2
Cl
2
</a>
+1 <a rel="mw:WikiLink" href="./1,1,2,2-Tetrachloroethane" data-parsoid='{"a":{"href":"./1,1,2,2-Tetrachloroethane"},"sa":{"href":"1,1,2,2-Tetrachloroethane"},"stx":"piped","dsr":[11752,11815,28,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"CHCl
2
","dsr":[11780,11796,null,null]}' about="#mwt19" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"CHCl"},"2":{"wt":"2"},"3":{"wt":""}}}'>CHCl
2
—<span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"CHCl
2
","dsr":[11797,11813,null,null]}' about="#mwt20" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"CHCl"},"2":{"wt":"2"},"3":{"wt":""}}}'>CHCl
2
</a>
+2 <a rel="mw:WikiLink" href="./Chloroform" data-parsoid='{"a":{"href":"./Chloroform"},"sa":{"href":"chloroform"},"stx":"piped","dsr":[11827,11857,13,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"CHCl
3
","dsr":[11840,11855,null,null]}' about="#mwt21" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"CHCl"},"2":{"wt":"3"}}}'>CHCl
3
</a>
+3 <a rel="mw:WikiLink" href="./Hexachloroethane" data-parsoid='{"a":{"href":"./Hexachloroethane"},"sa":{"href":"hexachloroethane"},"stx":"piped","dsr":[11869,11907,19,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"C
2
Cl
6
","dsr":[11888,11905,null,null]}' about="#mwt22" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"C"},"2":{"wt":"2"},"3":{"wt":"Cl"},"4":{"wt":"6"}}}'>C
2
Cl
6
</a>
+4 <a rel="mw:WikiLink" href="./Carbon_tetrachloride" data-parsoid='{"a":{"href":"./Carbon_tetrachloride"},"sa":{"href":"carbon tetrachloride"},"stx":"piped","dsr":[11919,11958,23,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"CCl
4
","dsr":[11942,11956,null,null]}' about="#mwt23" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"CCl"},"2":{"wt":"4"}}}'>CCl
4
</a>

Fractional oxidation states

Fractional oxidation states are often used to represent the average oxidation states of several atoms in a structure. For example, in <span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"KO
2
","dsr":[12132,12145,null,null]}' about="#mwt24" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"KO"},"2":{"wt":"2"}}}'>KO
2
, the diatomic <a rel="mw:WikiLink" href="./Superoxide" data-parsoid='{"a":{"href":"./Superoxide"},"sa":{"href":"superoxide"},"stx":"simple","dsr":[12160,12174,2,2]}'>superoxide</a> ion has an overall charge of 1, so each of its two oxygen atoms is assigned an oxidation state of ½, This ion is described as a <a rel="mw:WikiLink" href="./Resonance_(chemistry)" data-parsoid='{"a":{"href":"./Resonance_(chemistry)"},"sa":{"href":"resonance (chemistry)"},"stx":"piped","dsr":[12317,12352,24,2]}'>resonance</a> hybrid of two Lewis structures, where each oxygen has oxidation state 0 in one structure and 1 in the other.

For the <a rel="mw:WikiLink" href="./Cyclopentadienyl" data-parsoid='{"a":{"href":"./Cyclopentadienyl"},"sa":{"href":"cyclopentadienyl"},"stx":"simple","dsr":[12479,12499,2,2]}'>cyclopentadienyl</a> ion <span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"C
5
H
5
","dsr":[12504,12520,null,null]}' about="#mwt25" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"C"},"2":{"wt":"5"},"3":{"wt":"H"},"4":{"wt":"5"}}}'>C
5
H
5
, the oxidation state of C is (1) + (<span class="frac nowrap" data-parsoid='{"src":"15","dsr":[12583,12595,null,null]}' about="#mwt26" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"1"},"2":{"wt":"5"}}}'>15) = <span class="frac nowrap" data-parsoid='{"src":"65","dsr":[12606,12618,null,null]}' about="#mwt27" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"6"},"2":{"wt":"5"}}}'>65. The 1 occurs because each C is bonded to one hydrogen (a less electronegative element), and the <span class="frac nowrap" data-parsoid='{"src":"15","dsr":[12730,12742,null,null]}' about="#mwt28" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"1"},"2":{"wt":"5"}}}'>15 because the total ionic charge is divided among five equivalent C.

If the average refers to atoms that are not equivalent, the average oxidation state may not be representative of each of the atoms. This is true in <a rel="mw:WikiLink" href="./Magnetite" data-parsoid='{"a":{"href":"./Magnetite"},"sa":{"href":"magnetite"},"stx":"simple","dsr":[12959,12972,2,2]}'>magnetite</a> <span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"Fe
3
O
4
","dsr":[12973,12990,null,null]}' about="#mwt29" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"Fe"},"2":{"wt":"3"},"3":{"wt":"O"},"4":{"wt":"4"}}}'>Fe
3
O
4
, whose formula leads to an average oxidation state of +<span class="frac nowrap" data-parsoid='{"src":"83","dsr":[13046,13058,null,null]}' about="#mwt30" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"8"},"2":{"wt":"3"}}}'>83. In fact, two-thirds of the iron ions are Fe3+, and one-third Fe2+.

Likewise, the <a rel="mw:WikiLink" href="./Ozonide" data-parsoid='{"a":{"href":"./Ozonide"},"sa":{"href":"ozonide"},"stx":"simple","dsr":[13164,13175,2,2]}'>ozonide</a> ion O3 has an average oxidation state of <span class="frac nowrap" data-parsoid='{"src":"13","dsr":[13253,13265,null,null]}' about="#mwt31" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"1"},"2":{"wt":"3"}}}'>13. However, this ion is V-shaped, meaning that the central oxygen is not equivalent to the two others and cannot be assumed to have the same oxidation state.

As an example, some species contain carbon in more than one oxidation state, giving a fractional oxidation state overall:

<tbody data-parsoid='{"dsr":[13620,13871,0,0]}'> </tbody>
Examples of fractional oxidation states for carbon
Oxidation state Example species
–<span class="frac nowrap" data-parsoid='{"src":"65","dsr":[13666,13678,null,null]}' about="#mwt32" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"6"},"2":{"wt":"5"}}}'>65 <a rel="mw:WikiLink" href="./Cyclopentadienyl_complex" data-parsoid='{"a":{"href":"./Cyclopentadienyl_complex"},"sa":{"href":"Cyclopentadienyl complex"},"stx":"piped","dsr":[13682,13739,27,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"C
5
H
5
","dsr":[13709,13725,null,null]}' about="#mwt33" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"C"},"2":{"wt":"5"},"3":{"wt":"H"},"4":{"wt":"5"}}}'>C
5
H
5
</a>
–<span class="frac nowrap" data-parsoid='{"src":"67","dsr":[13746,13758,null,null]}' about="#mwt34" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"6"},"2":{"wt":"7"}}}'>67 <a rel="mw:WikiLink" href="./Tropylium" data-parsoid='{"a":{"href":"./Tropylium"},"sa":{"href":"tropylium"},"stx":"piped","dsr":[13762,13792,12,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"C
7
H
7
","dsr":[13774,13790,null,null]}' about="#mwt35" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"C"},"2":{"wt":"7"},"3":{"wt":"H"},"4":{"wt":"7"}}}'>C
7
H
7
</a>+
–<span class="frac nowrap" data-parsoid='{"src":"54","dsr":[13811,13823,null,null]}' about="#mwt36" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"5"},"2":{"wt":"4"}}}'>54 <a rel="mw:WikiLink" href="./Uranocene" data-parsoid='{"a":{"href":"./Uranocene"},"sa":{"href":"uranocene"},"stx":"piped","dsr":[13827,13870,12,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"C
8
H
8
","dsr":[13839,13855,null,null]}' about="#mwt37" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"C"},"2":{"wt":"8"},"3":{"wt":"H"},"4":{"wt":"8"}}}'>C
8
H
8
2−</a>

Oxygen

As another example, oxygen has eight distinct oxidation states:

<tbody data-parsoid='{"dsr":[14006,14659,0,0]}'> </tbody>
Oxidation states of oxygen
Oxidation state Example compounds
–2 <a rel="mw:WikiLink" href="./Oxide" data-parsoid='{"a":{"href":"./Oxide"},"sa":{"href":"oxide"},"stx":"simple","dsr":[14059,14069,2,3],"tail":"s"}'>oxides</a>, e.g. <a rel="mw:WikiLink" href="./Zinc_oxide" data-parsoid='{"a":{"href":"./Zinc_oxide"},"sa":{"href":"zinc oxide"},"stx":"piped","dsr":[14076,14094,13,2]}'>ZnO</a>, <a rel="mw:WikiLink" href="./Carbon_dioxide" data-parsoid='{"a":{"href":"./Carbon_dioxide"},"sa":{"href":"carbon dioxide"},"stx":"piped","dsr":[14096,14128,17,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"CO
2
","dsr":[14113,14126,null,null]}' about="#mwt38" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"CO"},"2":{"wt":"2"}}}'>CO
2
</a>, <a rel="mw:WikiLink" href="./Water" data-parsoid='{"a":{"href":"./Water"},"sa":{"href":"water"},"stx":"piped","dsr":[14130,14154,8,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"H
2
O
","dsr":[14138,14152,null,null]}' about="#mwt39" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"H"},"2":{"wt":"2"},"3":{"wt":"O"}}}'>H
2
O</a>
–1 <a rel="mw:WikiLink" href="./Peroxide" data-parsoid='{"a":{"href":"./Peroxide"},"sa":{"href":"peroxide"},"stx":"simple","dsr":[14166,14179,2,3],"tail":"s"}'>peroxides</a>, e.g. <a rel="mw:WikiLink" href="./Hydrogen_peroxide" data-parsoid='{"a":{"href":"./Hydrogen_peroxide"},"sa":{"href":"hydrogen peroxide"},"stx":"piped","dsr":[14186,14224,20,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"H
2
O
2
","dsr":[14206,14222,null,null]}' about="#mwt40" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"H"},"2":{"wt":"2"},"3":{"wt":"O"},"4":{"wt":"2"}}}'>H
2
O
2
</a>
–<span class="frac nowrap" data-parsoid='{"src":"12","dsr":[14231,14243,null,null]}' about="#mwt41" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"1"},"2":{"wt":"2"}}}'>12 <a rel="mw:WikiLink" href="./Superoxide" data-parsoid='{"a":{"href":"./Superoxide"},"sa":{"href":"superoxide"},"stx":"simple","dsr":[14247,14262,2,3],"tail":"s"}'>superoxides</a>, e.g. <a rel="mw:WikiLink" href="./Potassium_superoxide" data-parsoid='{"a":{"href":"./Potassium_superoxide"},"sa":{"href":"potassium superoxide"},"stx":"piped","dsr":[14269,14307,23,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"KO
2
","dsr":[14292,14305,null,null]}' about="#mwt42" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"KO"},"2":{"wt":"2"}}}'>KO
2
</a>
–<span class="frac nowrap" data-parsoid='{"src":"13","dsr":[14314,14326,null,null]}' about="#mwt43" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"1"},"2":{"wt":"3"}}}'>13 inorganic <a rel="mw:WikiLink" href="./Ozonide" data-parsoid='{"a":{"href":"./Ozonide"},"sa":{"href":"ozonide"},"stx":"simple","dsr":[14340,14352,2,3],"tail":"s"}'>ozonides</a>, e.g. <a rel="mw:WikiLink" href="./Rubidium_ozonide" data-parsoid='{"a":{"href":"./Rubidium_ozonide"},"sa":{"href":"rubidium ozonide"},"stx":"piped","dsr":[14359,14394,19,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"RbO
3
","dsr":[14378,14392,null,null]}' about="#mwt44" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"RbO"},"2":{"wt":"3"}}}'>RbO
3
</a>
0 <a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"oxygen"},"stx":"piped","dsr":[14405,14428,9,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"O
2
","dsr":[14414,14426,null,null]}' about="#mwt45" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"O"},"2":{"wt":"2"}}}'>O
2
</a>
+<span class="frac nowrap" data-parsoid='{"src":"12","dsr":[14435,14447,null,null]}' about="#mwt46" typeof="mw:Transclusion" data-mw='{"target":{"wt":"frac","href":"./Template:Frac"},"params":{"1":{"wt":"1"},"2":{"wt":"2"}}}'>12 <a rel="mw:WikiLink" href="./Dioxygenyl" data-parsoid='{"a":{"href":"./Dioxygenyl"},"sa":{"href":"dioxygenyl"},"stx":"simple","dsr":[14451,14465,2,2]}'>dioxygenyl</a> ion, e.g. dioxygenyl hexafluoroarsenate <span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"O
2
","dsr":[14506,14518,null,null]}' about="#mwt47" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"O"},"2":{"wt":"2"}}}'>O
2
+ <meta property="mw:objectAttrVal#href" about="#mwt57" data-parsoid='{"src":"AsF
6
","dsr":[14531,14531,null,null]}'>[<span typeof="mw:Placeholder" data-parsoid='{"src":"AsF
6
","dsr":[14532,14546,null,null]}'>AsF
6
]
+1 <a rel="mw:WikiLink" href="./Dioxygen_difluoride" data-parsoid='{"a":{"href":"./Dioxygen_difluoride"},"sa":{"href":"dioxygen difluoride"},"stx":"piped","dsr":[14571,14611,22,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"O
2
F
2
","dsr":[14593,14609,null,null]}' about="#mwt49" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"O"},"2":{"wt":"2"},"3":{"wt":"F"},"4":{"wt":"2"}}}'>O
2
F
2
</a>
+2 <a rel="mw:WikiLink" href="./Oxygen_difluoride" data-parsoid='{"a":{"href":"./Oxygen_difluoride"},"sa":{"href":"oxygen difluoride"},"stx":"piped","dsr":[14623,14658,20,2]}'><span class="chemf" style="white-space:nowrap;" data-parsoid='{"src":"OF
2
","dsr":[14643,14656,null,null]}' about="#mwt50" typeof="mw:Transclusion" data-mw='{"target":{"wt":"chem","href":"./Template:Chem"},"params":{"1":{"wt":"OF"},"2":{"wt":"2"}}}'>OF
2
</a>

Oxidation number

<div class="rellink relarticle mainarticle" data-parsoid='{"src":"

","dsr":[14684,14709,null,null]}' about="#mwt51" typeof="mw:Transclusion" data-mw='{"target":{"wt":"Main","href":"./Template:Main"},"params":{"1":{"wt":"Oxidation number"}}}'>Main article: <a rel="mw:WikiLink" href="./Oxidation_number" data-parsoid='{"a":{"href":"./Oxidation_number"},"sa":{"href":"Oxidation number"},"stx":"piped"}'>Oxidation number</a>

The terms oxidation state and oxidation number are often used interchangeably. However, <a rel="mw:WikiLink" href="./Oxidation_number" data-parsoid='{"a":{"href":"./Oxidation_number"},"sa":{"href":"oxidation number"},"stx":"simple","dsr":[14809,14829,2,2]}'>oxidation number</a> is used in <a rel="mw:WikiLink" href="./Coordination_chemistry" data-parsoid='{"a":{"href":"./Coordination_chemistry"},"sa":{"href":"coordination chemistry"},"stx":"simple","dsr":[14843,14869,2,2]}'>coordination chemistry</a> with a slightly different meaning. In coordination chemistry, the rules used for counting electrons are different: Every electron in a metal-ligand bond belongs to the <a rel="mw:WikiLink" href="./Ligand" data-parsoid='{"a":{"href":"./Ligand"},"sa":{"href":"ligand"},"stx":"simple","dsr":[15038,15048,2,2]}'>ligand</a>, regardless of electronegativity. Also, oxidation numbers are conventionally represented with Roman numerals, while oxidation states use Indo-Arabic numerals.

History

The current concept of "oxidation state" was introduced by <a rel="mw:WikiLink" href="./W._M._Latimer" data-parsoid='{"a":{"href":"./W._M._Latimer"},"sa":{"href":"W. M. Latimer"},"stx":"simple","dsr":[15280,15297,2,2]}'>W. M. Latimer</a> in 1938. Oxidation itself was first studied by <a rel="mw:WikiLink" href="./Antoine_Lavoisier" data-parsoid='{"a":{"href":"./Antoine_Lavoisier"},"sa":{"href":"Antoine Lavoisier"},"stx":"simple","dsr":[15345,15366,2,2]}'>Antoine Lavoisier</a>, who believed that oxidation was always the result of reactions with <a rel="mw:WikiLink" href="./Oxygen" data-parsoid='{"a":{"href":"./Oxygen"},"sa":{"href":"oxygen"},"stx":"simple","dsr":[15436,15446,2,2]}'>oxygen</a>,<span about="#mwt53" class="reference" data-mw='{"name":"ref","body":{"html":"The Origin of the Oxidation-State Concept William B. Jensen <a rel=\"mw:WikiLink\" href=\"./J._Chem._Educ.\" data-parsoid=\"{&quot;a&quot;:{&quot;href&quot;:&quot;./J._Chem._Educ.&quot;},&quot;sa&quot;:{&quot;href&quot;:&quot;J. Chem. Educ.&quot;},&quot;stx&quot;:&quot;simple&quot;,&quot;dsr&quot;:[15516,15534,2,2]}\">J. Chem. Educ.</a> 2007, 84, 1418"},"attrs":{}}' id="cite_ref-2-0" rel="dc:references" typeof="mw:Extension/ref" data-parsoid="{"src":"[2]","dsr":[15447,15561,5,6]}"><a href="#cite_note-2">[2]</a> thus the name. Although Lavoisier's idea has been shown to be incorrect, the name he proposed is still used, albeit more generally.

Oxidation states were one of the intellectual "stepping stones" Mendeleev used to derive the modern periodic table.

Unusual formal oxidation states

<div class="rellink relarticle mainarticle" data-parsoid='{"src":"

","dsr":[15848,15873,null,null]}' about="#mwt54" typeof="mw:Transclusion" data-mw='{"target":{"wt":"Main","href":"./Template:Main"},"params":{"1":{"wt":"High-valent iron"}}}'>Main article: <a rel="mw:WikiLink" href="./High-valent_iron" data-parsoid='{"a":{"href":"./High-valent_iron"},"sa":{"href":"High-valent iron"},"stx":"piped"}'>High-valent iron</a>

Unusual formal oxidation states of metals are important in biochemical processes, the notable ones being Fe(IV) and Fe(V) in <a rel="mw:WikiLink" href="./Cytochrome_P450" data-parsoid='{"a":{"href":"./Cytochrome_P450"},"sa":{"href":"Cytochrome P450"},"stx":"simple","dsr":[16001,16020,2,2]}'>Cytochrome P450</a>-containing systems.

See also

  • <a rel="mw:WikiLink" href="./List_of_oxidation_states_of_the_elements" data-parsoid='{"a":{"href":"./List_of_oxidation_states_of_the_elements"},"sa":{"href":"List of oxidation states of the elements"},"stx":"simple","dsr":[16058,16102,2,2]}'>List of oxidation states of the elements</a>
  • <a rel="mw:WikiLink" href="./Electrochemistry" data-parsoid='{"a":{"href":"./Electrochemistry"},"sa":{"href":"Electrochemistry"},"stx":"simple","dsr":[16104,16124,2,2]}'>Electrochemistry</a>
  • <a rel="mw:WikiLink" href="./Oxidation_number" data-parsoid='{"a":{"href":"./Oxidation_number"},"sa":{"href":"Oxidation number"},"stx":"simple","dsr":[16126,16146,2,2]}'>Oxidation number</a>
  • <a rel="mw:WikiLink" href="./Valence_(chemistry)" data-parsoid='{"a":{"href":"./Valence_(chemistry)"},"sa":{"href":"Valence (chemistry)"},"stx":"simple","dsr":[16148,16171,2,2]}'>Valence (chemistry)</a>

References

<div class="reflist " style=" list-style-type: decimal;" data-parsoid='{"src":"

  1. ^ a b IUPAC Gold Book definition: oxidation state &nbsp;PDF
  2. ^ The Origin of the Oxidation-State Concept William B. Jensen J. Chem. Educ. 2007, 84, 1418

","dsr":[16188,16199,null,null]}' about="#mwt55" typeof="mw:Transclusion" data-mw='{"target":{"wt":"Reflist","href":"./Template:Reflist"},"params":{}}'>

  1. ↑ <a href="#cite_ref-goldbook-1-0">1.0</a> <a href="#cite_ref-goldbook-1-1">1.1</a> <a rel="mw:WikiLink" href="./IUPAC" data-parsoid='{"a":{"href":"./IUPAC"},"sa":{"href":"IUPAC"},"stx":"simple","dsr":[1379,1388,2,2]}'>IUPAC</a> <a rel="mw:WikiLink" href="./Gold_Book" data-parsoid='{"a":{"href":"./Gold_Book"},"sa":{"href":"Gold Book"},"stx":"simple","dsr":[1391,1404,2,2]}'>Gold Book</a> definition: <a rel="mw:ExtLink" href="http://goldbook.iupac.org/O04365.html" data-parsoid='{"targetOff":1458,"dsr":[1419,1478,39,1]}'>oxidation state</a>  <a rel="mw:ExtLink" href="http://www.iupac.org/goldbook/O04365.pdf" data-parsoid='{"targetOff":1527,"dsr":[1485,1531,42,1]}'>PDF</a>
  2. <a href="#cite_ref-2-0">↑</a> The Origin of the Oxidation-State Concept William B. Jensen <a rel="mw:WikiLink" href="./J._Chem._Educ." data-parsoid='{"a":{"href":"./J._Chem._Educ."},"sa":{"href":"J. Chem. Educ."},"stx":"simple","dsr":[15516,15534,2,2]}'>J. Chem. Educ.</a> 2007, 84, 1418

<table cellspacing="0" class="navbox" style="border-spacing:0;" about="#mwt56" data-parsoid='{"src":"

","dsr":[16201,16210,null,null]}' typeof="mw:Transclusion" data-mw='{"target":{"wt":"Oxide","href":"./Template:Oxide"},"params":{}}'><tbody data-parsoid="{}">

<tbody data-parsoid="{}"></tbody>

</tbody>

<link rel="mw:WikiLink/Category" href="./Category:Chemical_properties" data-parsoid='{"a":{"href":"./Category:Chemical_properties"},"sa":{"href":"Category:Chemical properties"},"stx":"simple","dsr":[16212,16244,null,null]}'></body></html>