Jump to content

Antiseptic

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by MastiBot (talk | contribs) at 20:59, 30 December 2009 (robot Modifying: nl:Antisepticum). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

An antiseptic solution of Povidone-iodine applied to an abrasion

Antiseptics (from Greek αντί - anti, '"against" + σηπτικός - septikos, "putrefactive") are antimicrobial substances that are applied to living tissue/skin to reduce the possibility of infection, sepsis, or putrefaction. Antiseptics are generally distinguished from antibiotics by their ability to be transported through the lymphatic system to destroy bacteria within the body, and from disinfectants, which destroy microorganisms found on non-living objects. Some antiseptics are true germicides, capable of destroying microbes (bacteriocidal), whilst others are bacteriostatic and only prevent or inhibit their growth. Antibacterials are antiseptics that have the proven ability to act against bacteria especially if they target systems which kill only bacteria. Microbicides which kill virus particles are called viricides or antivirals.

Usage in surgery

The widespread introduction of antiseptic surgical methods followed the publishing of the paper Antiseptic Principle of the Practice of Surgery in 1867 by Joseph Lister, inspired by Louis Pasteur's germ theory of putrefaction. In this paper he advocated the use of carbolic acid (phenol) as a method of ensuring that any germs present were killed. Some of this work was anticipated by:

and even the ancient Greek physicians Galen (ca. 130–200 AD) and Hippocrates (ca. 400 BC). There is even a Sumerian clay tablet dating from 2150 BC advocating the use of similar techniques.[2]

But every antiseptic, however good, is more or less toxic and irritating to a wounded surface. Hence it is that the antiseptic method has been replaced in the surgery of today by the aseptic method, which relies on keeping free from the invasion of bacteria rather than destroying them when present.

How it works

For the growth of bacteria there must be a food supply, moisture, in most cases oxygen, and a certain minimum temperature (see bacteriology). These conditions have been studied and applied in preserving of food and the ancient practice of embalming the dead, which is the earliest known systematic use of antiseptics.

In early inquiries, there was much emphasis on the prevention of putrefaction, and procedures were carried out to find how much of an agent must be added to a given solution in order to prevent development of undesirable bacteria. However, for various reasons, this method was inaccurate, and today an antiseptic is judged by its effect on pure cultures of defined pathogenic celicular single helix microbes and their vegetative and spore forms. The standardization of antiseptics has been implemented in many instances, and a water solution of phenol of a certain fixed strength is now used as the standard to which other antiseptics are compared.

Some common antiseptics

  • Boric acid
    Used in suppositories to treat yeast infections of the vagina, in eyewashes, and as an antiviral to shorten the duration of cold sore attacks. Put into creams for burns. Also common in trace amounts in eye contact solution. Though it is popularly known as an antiseptic, it is in reality only a soothing fluid, and bacteria will flourish comfortably in contact with it.[citation needed]
  • Brilliant Green
    A triarylmethane dye still widely used as 1% ethanol solution in Eastern Europe and ex-USSR countries for treatment of small wounds and abscesses. Efficient against gram-positive bacteries.
  • Chlorhexidine Gluconate
    A biguanidine derivative, used in concentrations of 0.5–4.0% alone or in lower concentrations in combination with other compounds, such as alcohols. Used as a skin antiseptic and to treat inflammation of the gums (gingivitis). The microbicidal action is somewhat slow, but remanent. It is a cationic surfactant, similar to Quats.
  • Hydrogen peroxide
    Used as a 6% (20 Vols) solution to clean and deodorize wounds and ulcers. More common 3% solutions of hydrogen peroxide have been used in household first aid for scrapes, etc. However, even this less potent form is no longer recommended for typical wound care as the strong oxidization causes scar formation and increases healing time. Gentle washing with mild soap and water or rinsing a scrape with sterile saline is a better practice.
  • Iodine
    Usually used in an alcoholic solution (called tincture of iodine) or as Lugol's iodine solution as a pre- and post-operative antiseptic. No longer recommended to disinfect minor wounds because it induces scar tissue formation and increases healing time. Gentle washing with mild soap and water or rinsing a scrape with sterile saline is a better practice. Novel iodine antiseptics containing povidone-iodine (an iodophor, complex of povidone, a water-soluble polymer, with triiodide anions I3-, containing about 10% of active iodine) are far better tolerated, don't affect wound healing negatively and leave a deposit of active iodine, creating the so-called "remanent," or persistent, effect. The great advantage of iodine antiseptics is the widest scope of antimicrobial activity, killing all principal pathogenes and given enough time even spores, which are considered to be the most difficult form of microorganisms to be inactivated by disinfectants and antiseptics.
  • Mercurochrome
    Not recognized as safe and effective by the U.S. Food and Drug Administration (FDA) due to concerns about its mercury content. Other obsolete organomercury antiseptics include bis-(phenylmercuric) monohydrogenborate (Famosept).
  • Octenidine dihydrochloride
    A cationic surfactant and bis-(dihydropyridinyl)-decane derivative, used in concentrations of 0.1–2.0%. It is similar in its action to the Quats, but is of somewhat broader spectrum of activity. Octenidine is currently increasingly used in continental Europe as a QAC's and chlorhexidine (with respect to its slow action and concerns about the carcinogenic impurity 4-chloroaniline) substitute in water- or alcohol-based skin, mucosa and wound antiseptic. In aqueous formulations, it is often potentiated with addition of 2-phenoxyethanol.
  • Phenol (carbolic acid) compounds
    Phenol is germicidal in strong solution, inhibitory in weaker ones. Used as a "scrub" for pre-operative hand cleansing. Used in the form of a powder as an antiseptic baby powder, where it is dusted onto the navel as it heals. Also used in mouthwashes and throat lozenges, where it has a painkilling effect as well as an antiseptic one. Example: TCP. Other phenolic antiseptics include historically important, but today rarely used (sometimes in dental surgery) thymol, today obsolete hexachlorophene, still used triclosan and sodium 3,5-dibromo-4-hydroxybenzenesulfonate (Dibromol).
  • Sodium chloride
    Used as a general cleanser. Also used as an antiseptic mouthwash. Only a weak antiseptic effect, due to hyperosmolality of the solution above 0.9%.
  • Terpenes
    are the main type of compound found in essential oils, and some have reasonably strong antibacterial, antifungal and antiviral properties. For example Terpinen-4-ol is found in Tea tree oil.

Evolved resistance

Stuart B. Levy, in a presentation to the 2000 Emerging Infectious Diseases Conference, expressed concern that the over use of antiseptic and antibacterial agents might lead to an increase in dangerous, resistant strains of bacteria.[5] The theory states that this could cause bacteria to evolve to the point where they are no longer harmed by antiseptics.

Different antiseptics differ in how easily bacteria are able to find genetic defenses against particular compounds. It can also be dose dependent; resistance can occur at low doses but not at high; and resistance to one compound can sometimes increase resistance to others.

Endogenous

The body produces its own antiseptics, which are a part of the chemical barriers of the immune system. The skin and respiratory tract secrete antimicrobial peptides such as the β-defensins.[6] Enzymes such as lysozyme and phospholipase A2 in saliva, tears, and breast milk are also antiseptic.[7][8] Vaginal secretions serve as a chemical barrier following menarche, when they become slightly acidic, while semen contains defensins and zinc to kill pathogens.[9][10] In the stomach, gastric acid and proteases serve as powerful chemical defenses against ingested pathogens.

References

  1. ^ Best M, Neuhauser D (2004). "Ignaz Semmelweis and the birth of infection control". Qual Saf Health Care. 13 (3): 233–4. doi:10.1136/qhc.13.3.233. PMC 1743827. PMID 15175497.
  2. ^ Eming SA, Krieg T, Davidson JM (2007). "Inflammation in wound repair: molecular and cellular mechanisms". J. Invest. Dermatol. 127 (3): 514–25. doi:10.1038/sj.jid.5700701. PMID 17299434.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ http://www.ncbi.nlm.nih.gov/pubmed/16540196
  4. ^ http://www.ncbi.nlm.nih.gov/pubmed/18396809
  5. ^ CDC - Antibacterial Household Products: Cause for Concern (Stuart B. Levy)Tufts University School of Medicine, Boston, Massachusetts, USA (Presentation from the 2000 Emerging Infectious Diseases Conference in Atlanta, Georgia)
  6. ^ Agerberth B, Gudmundsson GH (2006). "Host antimicrobial defence peptides in human disease". Curr. Top. Microbiol. Immunol. 306: 67–90. doi:10.1007/3-540-29916-5_3. PMID 16909918.
  7. ^ Moreau J, Girgis D, Hume E, Dajcs J, Austin M, O'Callaghan R (09/01/2001). "Phospholipase A(2) in rabbit tears: a host defense against Staphylococcus aureus". Invest Ophthalmol Vis Sci. 42 (10): 2347–54. PMID 11527949. {{cite journal}}: Check date values in: |date= (help)CS1 maint: multiple names: authors list (link)
  8. ^ Hankiewicz J, Swierczek E (1974). "Lysozyme in human body fluids". Clin Chim Acta. 57 (3): 205–9. doi:10.1016/0009-8981(74)90398-2. PMID 4434640.
  9. ^ Fair W, Couch J, Wehner N (1976). "Prostatic antibacterial factor. Identity and significance". Urology. 7 (2): 169–77. doi:10.1016/0090-4295(76)90305-8. PMID 54972.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ Yenugu S, Hamil K, Birse C, Ruben S, French F, Hall S (2003). "Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family; salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli". Biochem J. 372 (Pt 2): 473–83. doi:10.1042/BJ20030225. PMC 1223422. PMID 12628001.{{cite journal}}: CS1 maint: multiple names: authors list (link)

See also