Jump to content

Messier 32

Coordinates: Sky map 00h 42m 41.8s, 40° 51′ 55″
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Exoplanetaryscience (talk | contribs) at 04:59, 15 November 2016 (External links). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Messier 32
Dwarf Elliptical Galaxy M32
Observation data (J2000 epoch)
ConstellationAndromeda
Right ascension00h 42m 41.8s[1]
Declination+40° 51′ 55″[1]
Redshift-200 ± 6 km/s[1]
Distance2.49 ± 0.08 million light-years (763 ± 24 kpc)[2][3][4][a]
Apparent magnitude (V)8.08[5][6]
Characteristics
TypecE2[1]
Apparent size (V)8′.7 × 6′.5[1]
Notable featuressatellite galaxy of the
Andromeda Galaxy
Other designations
M 32, NGC 221,[1] UGC 452,[1] PGC 2555,[1] Arp 168,[1] LEDA 2555
Picture of the Andromeda Galaxy, showing M32 (above left of centre)

Messier 32 (also known as NGC 221) is a dwarf elliptical galaxy located about 2.65 million light-years from Earth, appearing in the constellation Andromeda. M32 is a satellite galaxy of the Andromeda Galaxy (M31) and was discovered by Le Gentil in 1749. M32 measures 6.5 ± 0.2 thousand light-years in diameter at the widest point.[7] Like most elliptical galaxies, M32 contains mostly older faint red and yellow stars with practically no dust or gas and consequently no current star formation.[8] It does, however, show hints of star formation in the relatively recent past. [9]

The structure and stellar content of M32 is difficult to explain by traditional galaxy formation models. Some simulations suggest a scenario in which the strong tidal field of M31 can transform a spiral galaxy into a compact elliptical. As a small spiral galaxy falls into the central parts of M31, most of the outer layers of the smaller spiral are stripped away. The central bulge of the galaxy is much less affected and retains its morphology. Tidal effects trigger a massive star burst in the core, resulting in the high density of M32 observed today.[10] There is also evidence that M32 has an outer disk.[11]

Distance measurements

At least two techniques have been used to measure distances to M32. The infrared surface brightness fluctuations distance measurement technique estimates distances to spiral galaxies based on the graininess of the appearance of their bulges. The distance measured to M32 using this technique is 2.46 ± 0.09 million light-years (755 ± 28 kpc).[2] However, M32 is close enough that the tip of the red giant branch (TRGB) method may be used to estimate its distance. The estimated distance to M32 using this technique is 2.51 ± 0.13 million light-years (770 ± 40 kpc).[3][4]

Black hole

M32 contains a supermassive black hole. Its mass has been estimated to lie between 1.5 and 5 million solar masses.[12]

See also

References

  1. ^ a b c d e f g h i "NASA/IPAC Extragalactic Database". Results for NGC 221. Retrieved 2006-11-29.
  2. ^ a b Jensen, Joseph B.; Tonry, John L.; Barris, Brian J.; Thompson, Rodger I.; Liu, Michael C.; Rieke, Marcia J.; Ajhar, Edward A.; Blakeslee, John P. (2003). "Measuring Distances and Probing the Unresolved Stellar Populations of Galaxies Using Infrared Surface Brightness Fluctuations". Astrophysical Journal. 583 (2): 712–726. arXiv:astro-ph/0210129. Bibcode:2003ApJ...583..712J. doi:10.1086/345430.
  3. ^ a b Karachentsev, I. D.; Karachentseva, V. E.; Hutchmeier, W. K.; Makarov, D. I. (2004). "A Catalog of Neighboring Galaxies". Astronomical Journal. 127 (4): 2031–2068. Bibcode:2004AJ....127.2031K. doi:10.1086/382905.
  4. ^ a b Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics. 49 (1): 3–18. Bibcode:2006Ap.....49....3K. doi:10.1007/s10511-006-0002-6.
  5. ^ "SIMBAD-M32". SIMBAD Astronomical Database. Retrieved 2009-11-29.
  6. ^ Armando, Gil de Paz; Boissier; Madore; Seibert; Boselli; et al. (2007). "The GALEX Ultraviolet Atlas of Nearby Galaxies". Astrophysical Journal Supplement. 173 (2): 185–255. arXiv:astro-ph/0606440. Bibcode:2007ApJS..173..185G. doi:10.1086/516636.
  7. ^ Diameter = distance × sin(diameter_angle) = 6.5 ± 0.2 thousand light-years. diameter
  8. ^ Kepple, George Robert; Sanner, Glen W. (1998). The Night Sky Observer's Guide. Vol. Vol. 1. Willmann-Bell. p. 17. ISBN 0-943396-58-1. {{cite book}}: |volume= has extra text (help)
  9. ^ Rudenko, Pavlo; Worthey, Guy; Mateo, Mario (2009). "Intermediate age clusters in the field containing M31 and M32 stars". The Astronomical Journal. 138 (6): 1985–1989. Bibcode:2009AJ....138.1985R. doi:10.1088/0004-6256/138/6/1985.
  10. ^ Bekki, Kenji; Couch, Warrick J.; Drinkwater, Michael J.; Gregg, Michael D. (2001). "A New Formation Model for M32: A Threshed Early-Type Spiral Galaxy?". Astrophysical Journal Letters. 557 (1): L39. arXiv:astro-ph/0107117. Bibcode:2001ApJ...557L..39B. doi:10.1086/323075.
  11. ^ Graham, A. W. (2002). "Evidence for an Outer Disk in the Prototype Compact Elliptical Galaxy M32". Astrophysical Journal Letters. 568 (1): L13. arXiv:astro-ph/0202307. Bibcode:2002ApJ...568L..13G. doi:10.1086/340274.
  12. ^ Valluri, M.; Merritt, D.; Emsellem, E. (2004). "Difficulties with Recovering the Masses of Supermassive Black Holes from Stellar Kinematical Data". Astrophysical Journal. 602 (1): 66–92. arXiv:astro-ph/0210379. Bibcode:2004ApJ...602...66V. doi:10.1086/380896.