Purinergic signalling

From Wikipedia, the free encyclopedia
  (Redirected from Purinergic signaling)
Jump to: navigation, search

Purinergic signalling (or signaling: see American and British English differences) is a form of extracellular signalling mediated by purine nucleotides and nucleosides such as adenosine and ATP. It involves the activation of purinergic receptors in the cell and/or in nearby cells, thereby regulating cellular functions.[1]

The purinergic signalling complex of a cell is sometimes referred to as the “purinome”.


Evolutionary origins[edit]

Exogenously applied ATP stimulates the closure of the Venus flytrap[2]

Purinergic receptors, represented by several families, are among the most abundant receptors in living organisms and appeared early in evolution.[3]

Among invertebrates, the purinergic signalling system has been found in bacteria, amoeba, ciliates, algae, fungi, anemones, ctenophores, platyhelminthes, nematodes, crustacea, molluscs, annelids, echinoderms, and insects.[4] In green plants, extracellular ATP and other nucleotides induce an increase in the cytosolic concentration of calcium ions, in addition to other downstream changes that influence plant growth and modulate responses to stimuli.[5] In 2014, the first purinergic receptor in plants, DORN1, was discovered.[6]

The primitive P2X receptors of unicellular organisms often share low sequence similarity with those in mammals, yet they still retain micromolar sensitivity to ATP. The evolution of this receptor class is estimated to have occurred over a billion years ago.[7]

Molecular mechanisms[edit]

Generally speaking, all cells have the ability to release nucleotides. In neuronal and neuroendocrinal cells, this mostly occurs via regulated exocytosis.[1] Released nucleotides can be hydrolyzed extracellularly by a variety of cell surface-located enzymes referred to as ectonucleotidases. The purinergic signalling system consists of transporters, enzymes and receptors responsible for the synthesis, release, action, and extracellular inactivation of (primarily) ATP and its extracellular breakdown product adenosine.[8] The signalling effects of uridine triphosphate (UTP) and uridine diphosphate (UDP) are generally comparable to those of ATP.[9]

Purinergic receptors[edit]

Homology modeling of the P2RX2 receptor in the open channel state

Purinergic receptors are specific classes of membrane receptors that mediate various physiological functions such as the relaxation of gut smooth muscle, as a response to the release of ATP or adenosine. There are three known distinct classes of purinergic receptors, known as P1, P2X, and P2Y receptors. Cell signalling events initiated by P1 and P2Y receptors have opposing effects in biological systems.[10]

Name Activation Class
P1 receptors adenosine G protein-coupled receptors
P2Y receptors nucleotides G protein-coupled receptors
P2X receptors ATP ligand-gated ion channel

Nucleoside transporters[edit]

Nucleoside transporters (NTs) are a group of membrane transport proteins which transport nucleoside substrates including adenosine across the membranes of cells and/or vesicles. NTs are considered to be evolutionarily ancient membrane proteins and are found in many different forms of life.[11] There are two types of NTs:

The extracellular concentration of adenosine can be regulated by NTs, possibly in the form of a feedback loop connecting receptor signaling with transporter function.[11]


Released nucleotides can be hydrolyzed extracellularly by a variety of cell surface-located enzymes referred to as ectonucleotidases that control purinergic signalling. Extracellular nucleoside triphosphates and diphosphates are substrates of the ectonucleoside triphosphate diphophohydrolases (E-NTPDases), the ectonucleotide pyrophosphatase/phosphodiesterases (E-NPPs) and alkaline phosphatases (APs). Extracellular AMP is hydrolyzed to adenosine by ecto-5'-nucleotidase (eN) as well as by APs. In any case, the final product of the hydrolysis cascade is the nucleoside.[12][13]


The Pannexin-1 channel (PANX1) is an integral component of the P2X/P2Y purinergic signaling pathway and the key contributor to pathophysiological ATP release.[14] For example, the PANX1 channel, along with ATP, purinergic receptors, and ectonucleotidases, contribute to several feedback loops during the inflammatory response.[15]

Purinergic signalling in humans[edit]

Circulatory system[edit]

In the human heart, adenosine functions as an autacoid in the regulation of various cardiac functions such as heart rate, contractility, and coronary flow. There are currently four types of adenosine receptors found in the heart.[16] After binding onto a specific purinergic receptor, adenosine causes a negative chronotropic effect due to its influence on cardiac pacemakers. It also causes a negative dromotropic effect through the inhibition of AV-nodal conduction.[17] From the 1980s onwards, these effects of adenosine have been used in the treatment of patients with supraventricular tachycardia.[18]

The regulation of vascular tone in the endothelium of blood vessels is mediated by purinergic signalling. A decreased concentration of oxygen releases ATP from erythrocytes, triggering a propagated calcium wave in the endothelial layer of blood vessels and a subsequent production of nitric oxide that results in vasodilation.[19][20]

During the blood clotting process, adenosine diphosphate (ADP) plays a crucial role in the activation and recruitment of platelets and also ensures the structural integrity of thrombi. These effects are modulated by the P2RY1 and the P2Y12 receptors. The P2RY1 receptor is responsible for shape change in platelets, increased intracellular calcium levels and transient platelet aggregation, while the P2Y12 receptor is responsible for sustained platelet aggregation through the inhibition of adenylate cyclase and a corresponding decrease in cyclic adenosine monophosphate (cAMP) levels. The activation of both purinergic receptors is necessary to achieve sustained hemostasis.[21][22]

Digestive system[edit]

In the liver, ATP is constantly released during homeostasis and its signalling via P2 receptors influences bile secretion as well as liver metabolism and regeneration.[23] P2Y receptors in the enteric nervous system and at intestinal neuromuscular junctions modulate intestinal secretion and motility.[24]

Endocrine system[edit]

Cells of the pituitary gland secrete ATP, which acts on P2Y and P2X purinoreceptors.[25]

Immune system[edit]

As part of the inflammatory response, ATP activates the P2RX7 receptor, triggering a drop in intracellular potassium levels and the formation of inflammasomes

Autocrine purinergic signalling is an important checkpoint in the activation of white blood cells. These mechanisms either enhance or inhibit cell activation based on the purinergic receptors involved, allowing cells to adjust their functional responses initiated by extracellular environmental cues.[26]

Like most immunomodulating agents, ATP can act either as an immunosuppressive or an immunostimulatory factor, depending on the cytokine microenviroment and the type of cell receptor.[27] In white blood cells such as macrophages, dendritic cells, lymphocytes, eosinophils, and mast cells, purinergic signalling plays a pathophysiological role in calcium mobilization, actin polymerization, release of mediators, cell maturation, cytotoxicity, and apoptosis.[28] Large increases in extracellular ATP that are associated with cell death serve as a "danger signal" in the inflammatory processes.[29]

In neutrophils, tissue adenosine can either activate or inhibit various neutrophil functions, depending on the inflammatory microenvironment, the expression of adenosine receptors on the neutrophil, and the affinity of these receptors for adenosine. Micromolar concentrations of adenosine activate A2A and A2B receptors. This inhibits the release of granules and prevents oxidative burst. On the other hand, nanomolar concentrations of adenosine activate A1 and A3 receptors, resulting in neutrophilic chemotaxis towards inflammatory stimuli. The release of ATP and an autocrine feedback through P2RY2 and A3 receptors are signal amplifiers.[30][31] Hypoxia-inducible factors also influence adenosine signalling.[18]

Nervous system[edit]

Microglial activation in the CNS via purinergic signalling

In the central nervous system (CNS), ATP is released from synaptic terminals and binds to a plethora of ionotropic and metabotropic receptors. It has an excitatory effect on neurones, and acts as a mediator in neuronal–glial communications.[32] Both adenosine and ATP induce astrocyte cell proliferation. In microglia, P2X and P2Y receptors are expressed. The P2Y6 receptor, which is primarily mediated by uridine diphosphate (UDP), plays a significant role in microglial phagoptosis, while the P2Y12 receptor functions as a specialized pattern recognition receptor. P2RX4 receptors are involved in the CNS mediation of neuropathic pain.[33]

In the peripheral nervous system, Schwann cells respond to nerve stimulation and modulate the release of neurotransmitters through mechanisms involving ATP and adenosine signalling.[34] In the retina and the olfactory bulb, ATP is released by neurons to evoke transient calcium signals in several glial cells such as Muller glia and astrocytes. This influences various homeostatic processes of the nervous tissue including volume regulation and the control of blood flow. Calcium signaling evoked by purinergic receptors contributes to the processing of sensory information.[35]

During neurogenesis and in early brain development, ectonucleotidases often downregulate purinergic signalling in order to prevent the uncontrolled growth of progenitor cells and to establish a suitable environment for neuronal differentiation.[36]

Renal system[edit]

In the kidneys, the glomerular filtration rate (GFR) is regulated by several mechanisms including tubuloglomerular feedback (TGF), in which an increased distal tubular sodium chloride concentration causes a basolateral release of ATP from the macula densa cells. This initiates a cascade of events that ultimately brings GFR to an appropriate level.[37][38]

Respiratory system[edit]

ATP and adenosine are crucial regulators of mucociliary clearance.[39] The secretion of mucin involves P2RY2 receptors found on the apical membrane of goblet cells.[39] Extracellular ATP signals acting on glial cells and the neurons of the respiratory rhythm generator contribute to the regulation of breathing.[40]

Skeletal system[edit]

In the human skeleton, nearly all P2Y and P2X receptors have been found in osteoblasts and osteoclasts. These receptors enable the regulation of multiple processes such as cell proliferation, differentiation, function, and death.[41] The activation of the adenosine A1 receptor is required for osteoclast differentiation and function, whereas the activation of the adenosine A2A receptor inhibits osteoclast function. The other three adenosine receptors are involved in bone formation.[42]

Pathological aspects[edit]

Alzheimer's disease[edit]

In Alzheimer's disease (AD), the expression of A1 and A2A receptors in the frontal cortex of the human brain is increased, while the expression of A1 receptors in the outer layers of hippocampal dentate gyrus is decreased.[36]


In the airways of patients with asthma, the expression of adenosine receptors is upregulated. Adenosine receptors affect bronchial reactivity, endothelial permeability, fibrosis, angiogenesis and mucus production.[43]

Bone diseases[edit]

Purinergic signalling is involved in the pathophysiology of several bone and cartilage diseases such as osteoarthritis, rheumatoid arthritis, and osteoporosis.[44] Single-nucleotide polymorphisms (SNPs) in the P2RX7 receptor gene are associated with an increased risk of bone fracture.[41]


The P2RX7 receptor is overexpressed in most malignant tumors.[45] The expression of the adenosine A2A receptor on endothelial cells is upregulated in the early stages of human lung cancer.[46]

Cardiovascular diseases[edit]

Formation of foam cells is inhibited by adenosine A2A receptors.[47]

Chronic obstructive pulmonary disease[edit]

Abnormal levels of ATP and adenosine are present in the airways of patients with chronic obstructive pulmonary disease.[48][49]

Erectile disorders[edit]

The release of ATP increases adenosine levels and activates nitric oxide synthase, both of which induces the relaxation of the corpus cavernosum penis. In male patients with vasculogenic impotence, dysfunctional adenosine A2B receptors are associated with the resistance of the corpus cavernosum to adenosine. On the other hand, excess adenosine in penile tissue contributes to priapism.[50][51]


The bronchoalveolar lavage (BAL) fluid of patients with idiopathic pulmonary fibrosis contains a higher concentration of ATP than that of control subjects.[52] Persistently elevated concentrations of adenosine beyond the acute-injury phase leads to fibrotic remodelling.[53] Extracellular purines modulate fibroblast proliferation by binding onto adenosine receptors and P2 receptors to influence tissue structure and pathologic remodeling.[52]

Graft-versus-host disease[edit]

Following tissue injury in patients with Graft-versus-host disease (GVHD), ATP is released into the pertioneal fluid. It binds onto the P2RX7 receptors of host antigen-presenting cells (APCs) and activates the inflammasomes. As a result, the expression of co-stimulatory molecules by APCs is upregulated. The inhibition of the P2X7 receptor increases the number of regulatory T cells and decreases the incidence of acute GVHD.[54]

Therapeutic interventions[edit]


Clopidogrel (Plavix), an inhibitor of the P2Y12 receptor, was formerly the second best-selling drug in the world[55]

Mechanical deformation of the skin by acupuncture needles appears to result in the release of adenosine.[56][57] A 2014 Nature Reviews Cancer review article found that the key mouse studies that suggested acupuncture relieves pain via the local release of adenosine, which then triggered close-by A1 receptors "caused more tissue damage and inflammation relative to the size of the animal in mice than in humans, such studies unnecessarily muddled a finding that local inflammation can result in the local release of adenosine with analgesic effect."[58] The anti-nociceptive effect of acupuncture may be mediated by the adenosine A1 receptor.[59][60][61] Electroacupuncture may inhibit pain by the activation of a variety of bioactive chemicals through peripheral, spinal, and supraspinal mechanisms of the nervous system.[62]

Anti-inflammatory drugs

Methotrexate, which has strong anti-inflammatory properties, inhibits the action of dihydrofolate reductase, leading to an accumulation of adenosine. On the other hand, the adenosine-receptor antagonist caffeine reverses the anti-inflammatory effects of methotrexate.[63]

Anti-platelet drugs

Many anti-platelet drugs such as Prasugrel, Ticagrelor, and Ticlopidine are adenosine diphosphate (ADP) receptor inhibitors. Before the expiry of its patent, the P2Y12 receptor antagonist Clopidogrel (trade name: Plavix) was the second most prescribed drug in the world. In 2010 alone, it generated over US$9 billion in global sales.[64]


Theophylline was originally used as a bronchodilator, although its usage has declined due to several side effects such as seizures and cardiac arrhythmias caused by adenosine A1 receptor antagonism.[65]

Herbal medicine

Several herbs used in Traditional Chinese medicine contain drug compounds that are antagonists of P2X purinoreceptors.[66] The following table provides an overview of these drug compounds and their interaction with purinergic receptors.

Herb Drug compound Physiologic effects on purinergic receptors
Ligusticum wallichii
  • Reduction of thermal and mechanical hyperalgesia via P2RX3 antagonism[66]
Radix puerariae
  • Reduction of chronic neuropathic pain via P2RX3 and P2X2/3 antagonism[70]
Rheum officinale
  • Induction of necrosis in human liver cancer cells via a decrease in ATP levels.[73]

Regadenoson, a vasodilator which acts on the adenosine A2A receptor, was approved by the United States Food and Drug Administration in 2008 and is currently widely used in the field of cardiology.[74][75] Both adenosine and dipyridamole, which act on the A2A receptor, are used in myocardial perfusion imaging.[76]


Purinergic signalling is an important regulatory mechanism in a wide range of inflammatory diseases. It is understood that shifting the balance between purinergic P1 and P2 signalling is an emerging therapeutic concept that aims to dampen pathologic inflammation and promote healing.[10] The following list of proposed medications is based on the workings of the purinergic signalling system:


The earliest reports of purinergic signalling date back to 1929, when the Hungarian physiologist Albert Szent-Györgyi observed that purified adenine compounds produced a temporary reduction in heart rate when injected into animals.[10][79]

In the 1960s, the classical view of autonomic smooth muscle control was based upon Dale's principle, which asserts that each nerve cell can synthesize, store, and release only one neurotransmitter. It was therefore assumed that a sympathetic neuron releases noradrenaline only, while an antagonistic parasympathetic neuron releases acetylcholine only. Although the concept of cotransmission gradually gained acceptance in the 1980s, the belief that a single neuron acts via a single type of neurotransmitter continued to dominate the field of neurotransmission throughout the 1970s.[80]

Beginning in 1972, Geoffrey Burnstock ignited decades of controversy after he proposed the existence of a non-adrenergic, non-cholinergic (NANC) neurotransmitter, which he identified as ATP after observing the cellular responses in a number of systems exposed to the presence of cholinergic and adrenergic blockers.[81][82][83]

Burnstock's proposal was met with criticism, since ATP is an ubiquitous intracellular molecular energy source[84] so it seemed counter-intuitive that cells might also actively release this vital molecule as a neurotransmitter. After years of prolonged scepticism, however, the concept of purinergic signalling was gradually accepted by the scientific community.[1]

Today, purinergic signalling is no longer considered to be confined to neurotransmission, but is regarded as a general intercellular communication system of many, if not all, tissues.[1]

See also[edit]


  1. ^ a b c d Praetorius, Helle A.; Leipziger, Jens (1 March 2010). "Intrarenal Purinergic Signaling in the Control of Renal Tubular Transport". Annual Review of Physiology. 72 (1): 377–393. PMID 20148681. doi:10.1146/annurev-physiol-021909-135825. 
  2. ^ Tanaka, Kiwamu; Gilroy, Simon; Jones, Alan M.; Stacey, Gary (2010). "Extracellular ATP signaling in plants". Trends in Cell Biology. 20 (10): 601–8. PMC 4864069Freely accessible. PMID 20817461. doi:10.1016/j.tcb.2010.07.005. 
  3. ^ Abbracchio, Maria P.; Burnstock, Geoffrey; Verkhratsky, Alexei; Zimmermann, Herbert (2009). "Purinergic signalling in the nervous system: an overview". Trends in Neurosciences. 32 (1): 19–29. PMID 19008000. doi:10.1016/j.tins.2008.10.001. 
  4. ^ Burnstock, G.; Verkhratsky, A. (1 April 2009). "Evolutionary origins of the purinergic signalling system". Acta Physiologica. 195 (4): 415–447. PMID 19222398. doi:10.1111/j.1748-1716.2009.01957.x. 
  5. ^ Roux, Stanley J.; Steinebrunner, Iris (November 2007). "Extracellular ATP: an unexpected role as a signaler in plants". Trends in Plant Science. 12 (11): 522–527. PMID 17928260. doi:10.1016/j.tplants.2007.09.003. 
  6. ^ Cao, Yangrong; Tanaka, Kiwamu; Nguyen, Cuong T; Stacey, Gary (2014). "Extracellular ATP is a central signaling molecule in plant stress responses". Current Opinion in Plant Biology. 20: 82–87. PMID 24865948. doi:10.1016/j.pbi.2014.04.009. 
  7. ^ Fountain, Samuel J. (2013). "Primitive ATP-activated P2X receptors: discovery, function and pharmacology". Frontiers in Cellular Neuroscience. 7. doi:10.3389/fncel.2013.00247. 
  8. ^ Sperlagh, B; Csolle, C; Ando, RD; Goloncser, F; Kittel, A; Baranyi, M (December 2012). "The role of purinergic signaling in depressive disorders". Neuropsychopharmacologia Hungarica. 14 (4): 231–8. PMID 23269209. 
  9. ^ Corriden, R.; Insel, P. A. (5 January 2010). "Basal Release of ATP: An Autocrine-Paracrine Mechanism for Cell Regulation". Science Signaling. 3 (104): re1–re1. doi:10.1126/scisignal.3104re1. Cells release other nucleotides [for example, uridine triphosphate (UTP) and related molecules such as uridine diphosphate (UDP) sugars] that have actions akin to those of ATP 
  10. ^ a b c Eltzschig, Holger K.; Sitkovsky, Michail V.; Robson, Simon C. (13 December 2012). "Purinergic Signaling during Inflammation". New England Journal of Medicine. 367 (24): 2322–2333. doi:10.1056/NEJMra1205750. 
  11. ^ a b c d dos Santos-Rodrigues, Alexandre; Grañé-Boladeras, Natalia; Bicket, Alex; Coe, Imogen R. (April 2014). "Nucleoside transporters in the purinome". Neurochemistry International. 73: 229–237. doi:10.1016/j.neuint.2014.03.014. 
  12. ^ Jacobson, edited by Kenneth A.; Linden, Joel (2011). Pharmacology of Purine and Pyrimidine Receptors (1st ed.). Amsterdam: Elsevier/Academic Press. pp. 301–332. ISBN 0123855268. 
  13. ^ Zimmermann, H.; Zebisch, M.; Sträter, N. (2012). "Cellular function and molecular structure of ecto-nucleotidases". Purinergic Signalling. 8 (3): 437–502. PMC 3360096Freely accessible. PMID 22555564. doi:10.1007/s11302-012-9309-4. 
  14. ^ Makarenkova, Helen P.; Shestopalov, Valery I. (2014). "The role of pannexin hemichannels in inflammation and regeneration". Frontiers in Physiology. 5. doi:10.3389/fphys.2014.00063. 
  15. ^ Adamson, Samantha E.; Leitinger, Norbert (April 2014). "The role of pannexin1 in the induction and resolution of inflammation". FEBS Letters. 588 (8): 1416–1422. PMID 24642372. doi:10.1016/j.febslet.2014.03.009. 
  16. ^ McIntosh, V. J.; Lasley, R. D. (18 February 2011). "Adenosine Receptor-Mediated Cardioprotection: Are All 4 Subtypes Required or Redundant?". Journal of Cardiovascular Pharmacology and Therapeutics. 17 (1): 21–33. PMID 21335481. doi:10.1177/1074248410396877. 
  17. ^ Mustafa, SJ; Morrison, RR; Teng, B; Pelleg, A (2009). "Adenosine receptors and the heart: role in regulation of coronary blood flow and cardiac electrophysiology". Handbook of Experimental Pharmacology. Handbook of Experimental Pharmacology. 193 (193): 161–88. ISBN 978-3-540-89614-2. PMC 2913612Freely accessible. PMID 19639282. doi:10.1007/978-3-540-89615-9_6. 
  18. ^ a b Colgan, Sean P.; Eltzschig, Holger K. (17 March 2012). "Adenosine and Hypoxia-Inducible Factor Signaling in Intestinal Injury and Recovery". Annual Review of Physiology. 74 (1): 153–175. PMC 3882030Freely accessible. PMID 21942704. doi:10.1146/annurev-physiol-020911-153230. 
  19. ^ Lohman, A. W.; Billaud, M.; Isakson, B. E. (7 June 2012). "Mechanisms of ATP release and signalling in the blood vessel wall". Cardiovascular Research. 95 (3): 269–280. PMC 3400358Freely accessible. PMID 22678409. doi:10.1093/cvr/cvs187. 
  20. ^ Dahl, Gerhard; Muller, Kenneth J. (March 2014). "Innexin and pannexin channels and their signaling". FEBS Letters. 588 (8): 1396–1402. doi:10.1016/j.febslet.2014.03.007. 
  21. ^ Storey, R. F. (7 July 2011). "New P2Y12 inhibitors". Heart. 97 (15): 1262–1267. PMID 21742618. doi:10.1136/hrt.2009.184242. 
  22. ^ Barn, Kulpreet; Steinhubl, Steven R. (September 2012). "A brief review of the past and future of platelet P2Y12 antagonist". Coronary Artery Disease. 23 (6): 368–374. PMID 22735090. doi:10.1097/MCA.0b013e3283564930. 
  23. ^ Oliveira, André G.; Marques, Pedro E.; Amaral, Sylvia S.; Quintão, Jayane L. D.; Cogliati, Bruno; Dagli, Maria L. Z.; Rogiers, Vera; Vanhaecke, Tamara; Vinken, Mathieu; Menezes, Gustavo B. (March 2013). "Purinergic signalling during sterile liver injury". Liver International. 33 (3): 353–361. PMID 23402607. doi:10.1111/liv.12109. 
  24. ^ Wood, JD (December 2006). "The enteric purinergic P2Y1 receptor". Current Opinion in Pharmacology. 6 (6): 564–570. PMID 16934527. doi:10.1016/j.coph.2006.06.006. 
  25. ^ Stojilkovic, Stanko S; Koshimizu, Taka-aki (July 2001). "Signaling by extracellular nucleotides in anterior pituitary cells". Trends in Endocrinology & Metabolism. 12 (5): 218–225. doi:10.1016/S1043-2760(01)00387-3. 
  26. ^ Junger, Wolfgang G. (18 February 2011). "Immune cell regulation by autocrine purinergic signalling". Nature Reviews Immunology. 11 (3): 201–212. PMC 4209705Freely accessible. PMID 21331080. doi:10.1038/nri2938. 
  27. ^ "Final Report Summary - ATPBONE (Fighting osteoporosis by blocking nucleotides: purinergic signalling in bone formation and homeostasis)". CORDIS. Retrieved 4 September 2013. 
  28. ^ Jacob, Fenila; Novo, Claudina Pérez; Bachert, Claus; Crombruggen, Koen (2013). "Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses". Purinergic Signalling. 9 (3): 285–306. PMC 3757148Freely accessible. PMID 23404828. doi:10.1007/s11302-013-9357-4. 
  29. ^ Trautmann, A. (3 February 2009). "Extracellular ATP in the Immune System: More Than Just a "Danger Signal"". Science Signaling. 2 (56): pe6–pe6. doi:10.1126/scisignal.256pe6. 
  30. ^ Barletta, K. E.; Ley, K.; Mehrad, B. (8 June 2012). "Regulation of Neutrophil Function by Adenosine". Arteriosclerosis, Thrombosis, and Vascular Biology. 32 (4): 856–864. PMC 3353547Freely accessible. PMID 22423037. doi:10.1161/atvbaha.111.226845. 
  31. ^ Eltzschig, Holger K.; MacManus, Christopher F.; Colgan, Sean P. (April 2008). "Neutrophils as Sources of Extracellular Nucleotides: Functional Consequences at the Vascular Interface". Trends in Cardiovascular Medicine. 18 (3): 103–107. PMC 2711033Freely accessible. PMID 18436149. doi:10.1016/j.tcm.2008.01.006. 
  32. ^ North, R. Alan; Verkhratsky, Alexei (11 May 2006). "Purinergic transmission in the central nervous system". Pflügers Archiv - European Journal of Physiology. 452 (5): 479–485. doi:10.1007/s00424-006-0060-y. 
  33. ^ Ransohoff, Richard M.; Perry, V. Hugh (April 2009). "Microglial Physiology: Unique Stimuli, Specialized Responses". Annual Review of Immunology. 27 (1): 119–145. PMID 19302036. doi:10.1146/annurev.immunol.021908.132528. 
  34. ^ Fields, R. Douglas; Burnstock, Geoffrey (June 2006). "Purinergic signalling in neuron–glia interactions". Nature Reviews Neuroscience. 7 (6): 423–436. PMC 2062484Freely accessible. PMID 16715052. doi:10.1038/nrn1928. 
  35. ^ Lohr, Christian; Grosche, Antje; Reichenbach, Andreas; Hirnet, Daniela (6 April 2014). "Purinergic neuron-glia interactions in sensory systems". Pflügers Archiv: European Journal of Physiology. 466: 1859–1872. doi:10.1007/s00424-014-1510-6. 
  36. ^ a b Puerto, Ana del; Wandosell, Francisco; Garrido, Juan José (2013). "Neuronal and glial purinergic receptors functions in neuron development and brain disease". Frontiers in Cellular Neuroscience. 7. doi:10.3389/fncel.2013.00197. 
  37. ^ Arulkumaran, Nishkantha; Turner, Clare M.; Sixma, Marije L.; Singer, Mervyn; Unwin, Robert; Tam, Frederick W. K. (1 January 2013). "Purinergic signaling in inflammatory renal disease". Frontiers in Physiology. 4: 194. PMC 3725473Freely accessible. PMID 23908631. doi:10.3389/fphys.2013.00194. Extracellular adenosine contributes to the regulation of GFR. Renal interstitial adenosine is mainly derived from dephosphorylation of released ATP, AMP, or cAMP by the enzyme ecto-5′-nucleotidase (CD73) (Le Hir and Kaissling, 1993). This enzyme catalyzes the dephosphorylation of 5′-AMP or 5′-IMP to adenosine or inosine, respectively, and is located primarily on the external membranes and mitochondria of proximal tubule cells, but not in distal tubule or collecting duct cells (Miller et al., 1978). ATP consumed in active transport by the macula densa also contributes to the formation of adenosine by 5- nucleotidase (Thomson et al., 2000). Extracellular adenosine activates A1 receptors on vascular afferent arteriolar smooth muscle cells, resulting in vasoconstriction and a reduction in GFR (Schnermann et al., 1990). 
  38. ^ REN, YILIN; GARVIN, JEFFREY L; LIU, RUISHENG; CARRETERO, OSCAR A (1 October 2004). "Role of macula densa adenosine triphosphate (ATP) in tubuloglomerular feedback". Kidney International. 66 (4): 1479–1485. PMID 15458441. doi:10.1111/j.1523-1755.2004.00911.x. 
  39. ^ a b Lazarowski, Eduardo R; Boucher, Richard C (June 2009). "Purinergic receptors in airway epithelia". Current Opinion in Pharmacology. 9 (3): 262–267. PMC 2692813Freely accessible. PMID 19285919. doi:10.1016/j.coph.2009.02.004. 
  40. ^ Housley, Gary D. (October 2011). "Recent insights into the regulation of breathing". Autonomic Neuroscience. 164 (1–2): 3–5. PMID 21852203. doi:10.1016/j.autneu.2011.08.002. 
  41. ^ a b Rumney, Robin M. H.; Wang, Ning; Agrawal, Ankita; Gartland, Alison (2012). "Purinergic signalling in bone". Frontiers in Endocrinology. 3. doi:10.3389/fendo.2012.00116. 
  42. ^ Mediero, Aránzazu; Cronstein, Bruce N. (June 2013). "Adenosine and bone metabolism". Trends in Endocrinology & Metabolism. 24 (6): 290–300. doi:10.1016/j.tem.2013.02.001. 
  43. ^ Wilson, C N (29 January 2009). "Adenosine receptors and asthma in humans". British Journal of Pharmacology. 155 (4): 475–486. PMC 2579661Freely accessible. PMID 18852693. doi:10.1038/bjp.2008.361. 
  44. ^ Jørgensen, Niklas Rye; Adinolfi, Elena; Orriss, Isabel; Schwarz, Peter (1 January 2013). "Purinergic Signaling in Bone". Journal of Osteoporosis. 2013: 1–2. doi:10.1155/2013/673684. 
  45. ^ Di Virgilio, F. (22 October 2012). "Purines, Purinergic Receptors, and Cancer". Cancer Research (Editorial). 72 (21): 5441–5447. PMID 23090120. doi:10.1158/0008-5472.CAN-12-1600. 
  46. ^ Antonioli, Luca; Blandizzi, Corrado; Pacher, Pál; Haskó, György (14 November 2013). "Immunity, inflammation and cancer: a leading role for adenosine". Nature Reviews Cancer. 13 (12): 842–857. PMID 24226193. doi:10.1038/nrc3613. 
  47. ^ Reiss, A. B.; Cronstein, B. N. (8 June 2012). "Regulation of Foam Cells by Adenosine". Arteriosclerosis, Thrombosis, and Vascular Biology. 32 (4): 879–886. doi:10.1161/atvbaha.111.226878. 
  48. ^ Mortaz, Esmaeil; Folkerts, Gert; Nijkamp, Frans P.; Henricks, Paul A.J. (July 2010). "ATP and the pathogenesis of COPD". European Journal of Pharmacology. 638 (1–3): 1–4. PMID 20423711. doi:10.1016/j.ejphar.2010.04.019. 
  49. ^ Esther CR, Jr; Alexis, NE; Picher, M (2011). "Regulation of airway nucleotides in chronic lung diseases". Sub-cellular biochemistry. Subcellular Biochemistry. 55: 75–93. ISBN 978-94-007-1216-4. PMID 21560045. doi:10.1007/978-94-007-1217-1_4. 
  50. ^ Phatarpekar, Prasad V.; Wen, Jiaming; Xia, Yang (November 2010). "Role of Adenosine Signaling in Penile Erection and Erectile Disorders". The Journal of Sexual Medicine. 7 (11): 3553–3564. doi:10.1111/j.1743-6109.2009.01555.x. 
  51. ^ Wen, J.; Xia, Y. (8 June 2012). "Adenosine Signaling: Good or Bad in Erectile Function?". Arteriosclerosis, Thrombosis, and Vascular Biology. 32 (4): 845–850. PMID 22423035. doi:10.1161/atvbaha.111.226803. 
  52. ^ a b Lu, D.; Insel, P. A. (18 December 2013). "Cellular Mechanisms of Tissue Fibrosis. 6. Purinergic signaling and response in fibroblasts and tissue fibrosis". AJP: Cell Physiology. 306 (9): C779–C788. doi:10.1152/ajpcell.00381.2013. 
  53. ^ Karmouty-Quintana, Harry; Xia, Yang; Blackburn, Michael R. (23 January 2013). "Adenosine signaling during acute and chronic disease states". Journal of Molecular Medicine. 91 (2): 173–181. doi:10.1007/s00109-013-0997-1. 
  54. ^ Blazar, Bruce R.; Murphy, William J.; Abedi, Mehrdad (11 May 2012). "Advances in graft-versus-host disease biology and therapy". Nature Reviews Immunology. 12 (6): 443–458. PMC 3552454Freely accessible. PMID 22576252. doi:10.1038/nri3212. 
  55. ^ Doll, Jacob; Zeitler, Emily; Becker, Richard (10 July 2013). "Generic Clopidogrel". JAMA. 310 (2): 145–6. PMID 23839745. doi:10.1001/jama.2013.7155. 
  56. ^ Berman, Brian M.; Langevin, Helene M.; Witt, Claudia M.; Dubner, Ronald (29 July 2010). "Acupuncture for Chronic Low Back Pain". New England Journal of Medicine. 363 (5): 454–461. PMID 20818865. doi:10.1056/NEJMct0806114. Acupuncture also has effects on local tissues, including mechanical stimulation of connective tissue, release of adenosine at the site of needle stimulation, and increases in local blood flow 
  57. ^ Sawynok J. Masino S, Boison D, eds. Chapter 17: Adenosine and Pain. Adenosine a key link between metabolism and brain activity. New York, NY: Springer. p. 352. ISBN 978-1-4614-3903-5. doi:10.1007/978-1-4614-3903-5_17. in an elegant series of experiments, adenosine has been implicated as a mediator of acupuncture analgesia 
  58. ^ Gorski, David H. (2014). "Integrative oncology: really the best of both worlds?". Nature Reviews Cancer. 14. ISSN 1474-175X. PMID 25230880. doi:10.1038/nrc3822. 
  59. ^ Yang, Edward S.; Li, Pei-Wen; Nilius, Bernd; Li, Geng (26 August 2011). "Ancient Chinese medicine and mechanistic evidence of acupuncture physiology". European Journal of Physiology. 462 (5): 645–653. doi:10.1007/s00424-011-1017-3. Anti-nociceptive effect of acupuncture requires A1 receptors 
  60. ^ Zylka, Mark J. (April 2011). "Pain-relieving prospects for adenosine receptors and ectonucleotidases". Trends in Molecular Medicine. 17 (4): 188–196. doi:10.1016/j.molmed.2010.12.006. Antinociceptive effects of acupuncture require A1R activation 
  61. ^ Langevin, Helene (2014). "Acupuncture, Connective Tissue, and Peripheral Sensory Modulation". Critical Reviews in Eukaryotic Gene Expression. 24 (3): 249–53. PMID 25072149. doi:10.1615/CritRevEukaryotGeneExpr.2014008284. 
  62. ^ Zhang, Ruixin; Lao, Lixing; Ren, Ke; Berman, Brian M. (February 2014). "Mechanisms of Acupuncture–Electroacupuncture on Persistent Pain". Anesthesiology (journal). 120 (2): 482–503. PMID 24322588. doi:10.1097/ALN.0000000000000101. 
  63. ^ Chan, Edwin SL; Cronstein, Bruce N (2002). "Molecular action of methotrexate in inflammatory diseases". Arthritis Research & Therapy. 4 (4): 266–73. PMC 128935Freely accessible. PMID 12106498. doi:10.1186/ar419. 
  64. ^ Topol, Eric J; Schork, Nicholas J (January 2011). "Catapulting clopidogrel pharmacogenomics forward". Nature Medicine. 17 (1): 40–41. PMID 21217678. doi:10.1038/nm0111-40. 
  65. ^ Barnes, Peter J. (15 October 2013). "Theophylline". American Journal of Respiratory and Critical Care Medicine. 188 (8): 901–906. doi:10.1164/rccm.201302-0388PP. 
  66. ^ a b Liang, Shangdong; Xu, Changshui; Li, Guilin; Gao, Yun (December 2010). "P2X receptors and modulation of pain transmission: Focus on effects of drugs and compounds used in traditional Chinese medicine". Neurochemistry International. 57 (7): 705–712. doi:10.1016/j.neuint.2010.09.004. 
  67. ^ Burnstock, G. (1 March 2006). "Pathophysiology and Therapeutic Potential of Purinergic Signaling". Pharmacological Reviews. 58 (1): 58–86. doi:10.1124/pr.58.1.5. Tetramethylpyrazine, a traditional Chinese medicine used as an analgesic for dysmenorrhea, was shown to block P2X3 receptor signaling 
  68. ^ Burnstock, Geoffrey (June 2006). "Purinergic P2 receptors as targets for novel analgesics". Pharmacology & Therapeutics. 110 (3): 433–454. doi:10.1016/j.pharmthera.2005.08.013. 
  69. ^ Burnstock, Geoffrey; Knight, Gillian E; Greig, Aina V H (8 December 2011). "Purinergic Signaling in Healthy and Diseased Skin". Journal of Investigative Dermatology. 132 (3): 526–546. doi:10.1038/jid.2011.344. 
  70. ^ Zhou, Yan-Xi; Zhang, Hong; Peng, Cheng (December 2013). "Puerarin: A Review of Pharmacological Effects". Phytotherapy Research. 28 (7): 961–975. doi:10.1002/ptr.5083. 
  71. ^ Jiang, Lin-Hua; Baldwin, Jocelyn M.; Roger, Sebastien; Baldwin, Stephen A. (2013). "Insights into the Molecular Mechanisms Underlying Mammalian P2X7 Receptor Functions and Contributions in Diseases, Revealed by Structural Modeling and Single Nucleotide Polymorphisms". Frontiers in Pharmacology. 4. doi:10.3389/fphar.2013.00055. Natural compounds isolated from plants used in traditional medicines have also been shown to selectively inhibit the P2X7Rs 
  72. ^ Adinolfi, Elena (22 November 2013). "New intriguing roles of ATP and its receptors in promoting tumor metastasis". Purinergic Signalling (journal). 9 (4): 487–490. doi:10.1007/s11302-013-9401-4. The study from Jelassi and colleagues further support these findings showing the efficacy of emodin, a Chinese traditional medicine compound, in reducing P2X7 mediated malignant progression. 
  73. ^ Burnstock, G; Di Virgilio, F (Dec 2013). "Purinergic signalling and cancer". Purinergic Signalling (journal). 9 (4): 491–540. PMC 3889385Freely accessible. PMID 23797685. doi:10.1007/s11302-013-9372-5. Chrysophanol, a member of the anthraquinone family that is one of the components of a Chinese herb including rhubarb recommended for the treatment of cancer, induces necrosis of J5 human liver cancer cells via reduction in ATP levels 
  74. ^ Chen, Jiang-Fan; Eltzschig, Holger K.; Fredholm, Bertil B. (28 March 2013). "Adenosine receptors as drug targets — what are the challenges?". Nature Reviews Drug Discovery. 12 (4): 265–286. PMC 3930074Freely accessible. PMID 23535933. doi:10.1038/nrd3955. 
  75. ^ Palani, Gurunanthan; Ananthasubramaniam, Karthikeyan (2013). "Regadenoson". Cardiology in Review. 21 (1): 42–48. PMID 22643345. doi:10.1097/CRD.0b013e3182613db6. 
  76. ^ Cerqueira, Manuel D (July 2004). "The future of pharmacologic stress: selective a2a adenosine receptor agonists". The American Journal of Cardiology. 94 (2): 33–40. PMID 15261132. doi:10.1016/j.amjcard.2004.04.017. 
  77. ^ Skalicky, Simon; Lau, Oliver; Samarawickrama, Chameen (January 2014). "P2Y2 receptor agonists for the treatment of dry eye disease: a review". Clinical Ophthalmology. 8: 327–34. PMC 3915022Freely accessible. PMID 24511227. doi:10.2147/OPTH.S39699. 
  78. ^ Chen, Wanqiang; Wang, Hongquan; Wei, Hongtao; Gu, Shuli; Wei, Haiping (January 2013). "Istradefylline, an adenosine A2A receptor antagonist, for patients with Parkinson's Disease: A meta-analysis". Journal of the Neurological Sciences. 324 (1–2): 21–28. PMID 23085003. doi:10.1016/j.jns.2012.08.030. 
  79. ^ Drury AN, Szent-Györgyi A; Szent-Györgyi (1929). "The physiological activity of adenine compounds with special reference to their effect on the mammalian heart". J. Physiol. 68 (3): 213–37. PMC 1402863Freely accessible. PMID 16994064. 
  80. ^ Campbell, G (April 1987). "Cotransmission". Annual Review of Pharmacology and Toxicology. 27 (1): 51–70. doi:10.1146/annurev.pa.27.040187.000411. 
  81. ^ Martinson J, Muren A (1963). "Excitatory and inhibitory effects if vagus stimulation on gastric motility in the cat". Acta Physiol. Scand. 57. 
  82. ^ Burnstock G, Campbell G, Bennett M, Holman ME (1963). "Inhibition of the smooth muscle of the taenia coli". Nature. 200 (4906): 581–2. Bibcode:1963Natur.200..581B. PMID 14082235. doi:10.1038/200581a0. 
  83. ^ Burnstock G (1972). "Purinergic Nerves". Pharmacol. Rev. 24 (3): 509–81. PMID 4404211. 
  84. ^ Lipmann, Fritz (1941). "Metabolic Generation and Utilization of Phosphate Bond Energy". In Nord, F. F.; Werkman, C.H. Advances in Enzymology and Related Areas of Molecular Biology. 1. pp. 99–162. doi:10.1002/9780470122464.ch4.