Jump to content

Wikipedia:Reference desk/Archives/Science/2009 October 28

From Wikipedia, the free encyclopedia
Science desk
< October 27 << Sep | October | Nov >> October 29 >
Welcome to the Wikipedia Science Reference Desk Archives
The page you are currently viewing is an archive page. While you can leave answers for any questions shown below, please ask new questions on one of the current reference desk pages.


October 28

[edit]

Food safety question

[edit]

So I bought this delicious jar of imported sun-dried tomatoes in olive oil. Yum. Trouble is I don't know where to keep it now that the jar is open. If I put in the fridge, the olive oil congeals into an unappetizing, solid yellow cylinder. If I keep it the cupboard I worry about bacteria breeding in the oil. What's a Fat Man to do?--The Fat Man Who Never Came Back (talk) 00:03, 28 October 2009 (UTC)[reply]

Does it not have storage instructions on the label? --Tango (talk) 00:11, 28 October 2009 (UTC)[reply]
No (it's from Turkey; they don't have food safety over there).--The Fat Man Who Never Came Back (talk) 00:13, 28 October 2009 (UTC)[reply]
What's a fat man to do? Eat them, of course! Seriously, if you don't let them get damp, they should keep for at least a week out of the fridge -- there's basically no form of life that can grow without water. Looie496 (talk) 00:19, 28 October 2009 (UTC)[reply]
Oil and water don't mix very well. Safety isn't a big issue, and you may want to read water activity as an explanation of why bacteria breeding is not a big deal for things packed in oil. Having the oil go rancid from exposure to air is more of a quality concern than a safety issue. If there isn't any water in it, there won't be any bacteria growing either. There are still bacteria there, but most are spore-formers and other inactive forms. SDY (talk) 00:20, 28 October 2009 (UTC)[reply]
The stop them getting damp, you should make sure they are all completely covered by the oil. If they aren't, add more oil. --Tango (talk) 00:21, 28 October 2009 (UTC)[reply]
They were sun dried to remove the water then put in oil to keep them away from bacteria. This method was invented before fridges were even thought of. Put them where you like and they'll last for months. 08:32, 28 October 2009 (UTC) —Preceding unsigned comment added by Richard Avery (talkcontribs)
That is a good general point - a lot of foods were invented as ways of preserving fruits and vegetables over winter (jams/jellys, chutneys, pickles, etc.). They will last months without us doing anything further to preserve them. --Tango (talk) 15:49, 28 October 2009 (UTC)[reply]
Thank you, your answers make sense. However, perhaps what provoked my original question was a chef I respect once warning us to be very careful when making homemade garlic-infused or herb-infused oils, as improper storage or handling can result in botulism contamination. Why would botulism bacteria grow, even if the product were submersed in oil? Is this because of the water content of the garlic or herbs?--The Fat Man Who Never Came Back (talk) 00:02, 29 October 2009 (UTC)[reply]
I can't say anything about the safety, but I will note that submersion in fat (Confit) has a long history as a food preservation technique. -- 128.104.112.149 (talk) 22:31, 29 October 2009 (UTC)[reply]

Voice differences between blondes and brunettes

[edit]

After comparing some samples I have a feeling, that brunette girls might have a higher pitch than blondes, who feature a bit deeper voice as compared to brunettes. Are there actually any differences in general (including red-haired girls)? —Preceding unsigned comment added by 217.25.31.177 (talk) 00:51, 28 October 2009 (UTC)[reply]

Perform a double blind randomized clinical trial and let us know. DRosenbach (Talk | Contribs) 01:30, 28 October 2009 (UTC)[reply]
That's going to be a tricky experiment for a non-professional to arrange. Persuading a statistically reasonable number of blonde and brunette girls (20? 50?), whom you've never met before (they can't be people you might recognise), to talk to you while you're blindfolded without telling them why (that's important - so as not to bias the results)...not so easy! If you're going to do it - make sure you control for age - and if possible, find some people who dyed their hair so you can figure out whether that's significant. I would be somewhat surprised if this were true - but it's perfectly possible and would make a great science project. But the real issue here is: "Can we find any pre-existing evidence?" - I couldn't find anything with Google or Wikipedia searches. SteveBaker (talk) 02:07, 28 October 2009 (UTC)[reply]
Well, let's consider natural color with the age between 18 and 30. However this depends on country, it should have a significant amount of girls with both hair colors to conduct trial. 94.20.22.147 (talk) 10:16, 28 October 2009 (UTC)[reply]
You would still have to correct for age. There is quite a lot of research on female voices, dominance and attractiveness but pitch lowers with age continually 18 to 30. The dominance thing matters too though. Both men and women naturally raise the pitch of their voice when there are people whose dominance they accept present and lower the pitch when asserting. You get taught this kind of thing in body language courses. To the extent that hair colour affects confidence affects assertiveness it is even possible hair dye will change pitch. --BozMo talk 11:55, 28 October 2009 (UTC)[reply]
You could go to Amazon Mechanical Turk and request people to enter their age, hair color, and a short audio clip of them saying a set phrase, without telling them what this is all about, and then listen to the recordings without letting yourself see the hair color they entered. Or to homogenize data, you could specify that only females in a certain age range are eligible for this HIT (Human Intensive Task). You'd have to give some small amount of money for each piece of data, as 10-15 cents is common.20.137.18.50 (talk) 15:02, 28 October 2009 (UTC)[reply]
I'm not aware of any experimental data that addresses this question. However, mechanistically speaking, I would suggest it is unlikely. There are some genes known that result in hair colour differences and none of them are known to be involved in the formation or function of vocal folds. Of course, it could simply be that no-one has studied them closely enough yet. But the idea that hair colour being correlated with other characteristics is not unheard of, for example, there is a known mechanistic relationship between hair colour and pain sensitivity (e.g. PMID 15731586, PMID 12663858 ). Rockpocket 18:18, 28 October 2009 (UTC)[reply]
Indeed - but it doesn't have to be genetic. If (for example) the "blondes have more fun" and "gentlemen prefer blondes" memes were influential - perhaps blonde females might subconsciously adjust their vocal range to somehow try to seem more child-like or something. I'm certainly not saying that this happens - or that this is even a viable mechanism - but it's perfectly possible that something learned in childhood or teen years that is culturally related to hair color has something to do with it - and hence, genes need not be involved. SteveBaker (talk) 22:45, 28 October 2009 (UTC)[reply]
No one yet has raised the issue of the correlation between age and dying dyeing one's hair blonde. My purely WP:OR wild guess as to what might be going on is: A very young (and hence high-voiced) dark-haired woman doesn't have much disposable income, and gets plenty of attention from men without much effort, so she isn't all that motivated to spend the time and money to get her hair dyed blonde. A somewhat older (and hence lower-voiced) dark haired woman has more disposable income, and is more motivated about trying to hold onto her fading youthful looks in whatever ways she can, so she's more likely to dye her hair blonde. Genetics has nothing to do with it. Red Act (talk) 23:19, 28 October 2009 (UTC)[reply]
Um, dyeing rather than dying, unless there's some deeper thing going on here.... --Trovatore (talk) 23:25, 28 October 2009 (UTC)[reply]
Whoops, that's one the spell-checker can't catch. Red Act (talk) 23:33, 28 October 2009 (UTC)[reply]
Steve's suggestion is certainly possible, however vocal range is mechanistically associated with structural characteristics of the vocal folds. One has the ability (subconsciously or not) to affect a change in vocal pitch, but only with a limited range. Beyond that range, one's pitch is limited by biophysics and anatomy. A serious study into this would be able to distinguish between affected and biological differences in tone. The problem with social or environmental effectors is that they would be near impossible to control (given the propensity and popularity of hair dye these days). Finding a genetic effect would probably be the only way to show a statistically valid difference, since you can dye your hair as often as you like, but your genotype always remains the same.
As for the issue of age, any statistically robust study would use age-matching (did the OP do likewise in his or her survey?) Rockpocket 23:49, 28 October 2009 (UTC)[reply]

plz help fft plots

[edit]

Moved to Computing desk - Falconusp t c

Hard drive for archiving video?

[edit]

I have some videos I want to keep long term,indeed beyond my lifespan.If I stored them on a hard drive recorder,computer or plug in hard drive and did not use the drive again, how long would it be before the video or other data started to degrade irretrievably, compared to DVD or Blu-Ray disks stored in the dark and not played for example?80.2.204.58 (talk) 10:58, 28 October 2009 (UTC)[reply]

After you are dead the chances are that those cleaning up after you will through them away. Your best chance would be through massive replication on many servers. Constant maintenance will be required to keep the file in a format that can be used, as your codec may not be down loadable in a few decades time. I would recommend a free open source codec like ogg. Store the software to play it and its source along with your video too. Graeme Bartlett (talk) 11:40, 28 October 2009 (UTC)[reply]
There really isn't a medium for stuff like that which won't either physically degrade or become so obsolete that it won't work anymore. For example: When I was a kid, about 50 years ago, my parents took massive amounts of footage of my sister and me using "Super-8" cine cameras. Now, to play back Super-8 is almost impossible - even if the film stock is still in good shape (which it probably isn't). There are a few specialist places that'll convert it to something else - but they are horribly expensive. Give it another 50 years and it'll require someone in a museum to play back Super-8 (consider the difficulties in replaying a 1900's piano roll recording using one of the myriad of piano roll "formats" - or recovering sound from a 1900's Edison drum recorder or a 1920's wire recorder). I have software that I stored on my Atari-ST computer - there is no way for me to easily get that back - even if the floppy disks have survived.
In my opinion, the best way is to keep it on the Internet on some large public server. If the company that runs it is large enough, they'll make backups and copy your data from old, obsolete hard drives onto whatever futuristic technology comes next as a natural part of their upgrade cycle. That doesn't protect you from the file formats becoming so obsolete that they won't play anymore - but it's probably your best bet at keeping your videos intact. Put them on YouTube and on WikiCommons and on as many other similar sites as possible - one might hope that when they eventually decide to change file formats, they'd go through their existing video collections and convert them to the new format. You are unlikely to be able to do that and keep them private through - and of course it's not a cast-iron guarantee - look what happened to GeoCities this week - but at least the folks on the Internet Archive will keep copies as long as they stay in business.
But who knows? The thousands of people who recorded their own performances on piano rolls probably thought their formats would last forever too. It's likely that only the very best "most important" piano roll performances ever been transcribed onto vinyl disks and from there onto CD's and from there onto MP3's. Who knows how many of those will fall by the wayside whenever the next great thing comes along?
The migration of things like music and video into bits and bytes probably gives them the best chance at longevity because bits and bytes can be copied endlessly without degradation - but that was true for piano rolls too - and standards shift and cultural change has not done so well for them.
SteveBaker (talk) 12:08, 28 October 2009 (UTC)[reply]
And, in fact, because they are on paper, the piano rolls will probably last a few hundred years, providing they are stored well. The same cannot necessarily be said for magnetic media at all. The problem with the piano rolls is the player; the problem with magnetic media (or plastic media) is actual physical degradation over time, plus the player.
You would think there would be a market for long-term data preservation—e.g. a company that stored your data (under whatever terms you wanted), and then promised to not only make lots of copies of it in different locations, but to every five years or so transfer it to whatever the new storage medium format is at the time, etc.
Obviously it would only last as long as the company did, though, and I guess that's actually probably where the worst odds lie. --Mr.98 (talk) 13:07, 28 October 2009 (UTC)[reply]

Maybe a good bet would be to persuade the BBC that it was worth archiving?80.2.195.144 (talk) 14:01, 28 October 2009 (UTC)[reply]

I would think piano rolls could be recovered easily enough. Just run them through an optical scanner. The rest is a routine software project. If no one has yet done this, could be a business opportunity. --Trovatore (talk) 18:56, 28 October 2009 (UTC)[reply]
Sure, for someone with a lot of technical background - some highly specialised software, a large-format scanner, etc. But that's what I'm saying - after 100 years, it takes the skills of a relative expert to recover the information. And it's a lot easier with something physical like a piano roll - there is a simple 1:1 correspondence between the holes and slots and the sounds. Try that 100 years after the event with a poorly-documented, horribly complicated binary video file - possibly burdened with DRM encryption and who-knows-what else. It's not that it can't be done - it's that it takes the services of a proper antique media restoration service - and that's never going to be cheap. In 10 years time, you can probably still replay it on any PC you have at home. In 20 years, you'll have to ask around friends - look for old computer clubs - maybe find an emulator. In 40 years, it'll be impossible to run that old software and you'll probably have to pay some company a pile of money to get it back for you. In 100 years - you'll need the services of a museum-grade expert - who'll probably only consider doing it for things that have historical merit and as a part of some bigger on-going research activity.
That's why putting it on the Internet with something like YouTube would be best - assuming the company you choose doesn't go bust (and you could place it with half a dozen companies to ensure against that) - they'll upgrade their hardware as needed - migrating existing files over onto the new solid-state drives - or the holographic laser storage unit - or whatever the next trendy mass-storage device turns out to be. They'll keep backups as needed - and if the format they use for storing video ever has to be superceded, you know that they won't just ditch all of the existing material - they'll write conversion software and convert to whatever new format is trendy. This incremental tracking of the technology is what will keep your files usable. However, this is still not a cast-iron guarantee - look what happened to GeoCities yesterday. SteveBaker (talk) 22:38, 28 October 2009 (UTC)[reply]

maximum frequency infinite or not?

[edit]

Is maximum electromagnetic radiation frequency almost infinite (which means nearly an zero wavelength) or no limit with an infinite frequency and zero wavelength? Biggerbannana (talk) 12:43, 28 October 2009 (UTC)[reply]

The frequency must be finite. The electromagnetic radiation must consist of at least one photon, and the energy of a single photon is E=hν, where ν is the photon's frequency, and h is the Planck constant. So the frequency must be finite, because an infinitely large frequency would require an infinite amount of energy, which doesn't exist. Red Act (talk) 13:20, 28 October 2009 (UTC)[reply]
That's a cheap out, and not even certain - how do you know that an infinite amount of energy does not exist? A more interesting question would be if there is a theoretical limit to the wavelength of EM radiation. What if it becomes smaller than Planck length? What if the photon has enough energy to become a black hole? BTW, Biggerbannana, classical thermodynamics predicts unlimited energy photons from cavity resonators (or black bodies) - see Ultraviolet catastrophe. Einstein and Planck saved us from that... --Stephan Schulz (talk) 13:30, 28 October 2009 (UTC)[reply]
We know energy is not infinite because the universe behaves as though it has a finite amount of energy (or more properly energy/matter; since they are one in the same). If the universe had an infinite amount of energy, then it would have an infinite amount of free energy as well, and there would be no thermodynamic drive for work to occur. A photon could not contain an infinite amount of energy because then it would contain all the energy of the universe and then there wouldn't be any energy left for, you know, the rest of the universe. I suppose one could consider a pre-big-bang (or an instant-of-big-bang) something like an "all of the energy in the universe" particle, but in the current universe, once all the laws have settled out, such an idea makes little sense. --Jayron32 13:48, 28 October 2009 (UTC)[reply]
Sorry, I don't see how your claim follows. Our current models favor, but do not require an (unbounded) finite universe, but are compatible with a flat, open universe. In that case, total energy is almost certainly infinite (or average energy density would be zero). Yes, energy in the observable universe is certainly finite, but that's a different question. Anyways, the limits I suggested as possible are much stricter than "all the energy in the universe". Unless I miscalculated somewhere, a photon at Planck length would have 12.415GJ, the mass equivalence of 0.13 microgram. --Stephan Schulz (talk) 14:58, 28 October 2009 (UTC)[reply]
If a photon had an infinite amount of energy, it would form an infinitely large black hole. If such a thing existed in the visible universe, it would be pretty darn hard to miss. So a ridiculously pedantic answer might be more along the lines of "There is strong evidence that there does not exist a single photon with an infinite frequency, anywhere within the visible universe."
However, the OP looks to me like a straight-forward question, looking for a straight-forward answer. Bringing up infinite-energy black holes in response is a little like getting a question like "What insect is this?", and replying that there's a possibility that the photo might be of a robotic spy, carefully constructed to look like a insect by ancient inhabitants of a planet in orbit around Betelgeuse. That might be true, and that possibility might be fun to think about, but that's not really the kind of answer being requested. Red Act (talk) 15:35, 28 October 2009 (UTC)[reply]
I think we disagree about the interpretation of the question. It's not about an infinite energy photon - the question is if there is an upper limit to the energy of a photon. Each number in N is finite, but there is no upper limit. Your reply (there is only a finite amount of energy in the universe (debatable, but granted for this discussion), therefore the energy a photon can have is bound by this limit) is obviously correct, but it avoids the issue if there is a limit dictated by the laws of physics, not by the boundary conditions. If there is such a boundary, it could be much stricter than the one give by your argument. --Stephan Schulz (talk) 15:46, 28 October 2009 (UTC)[reply]
Any upper limit to the energy of a photon would break relativity, as there is a point of reference from which any given photon has any given amount of energy. — DanielLC 20:05, 30 October 2009 (UTC)[reply]

The article Electromagnetic spectrum says various things about the upper frequency limit: Its wavelength is thought to be in the vicinity of the Plank length; in principle there is no limit; it is 2.4x1023 Hz (1 GeV gamma rays); but 2.9x1027 Hz has been detected from astrophysical sources. See GZK limit for a theoretical upper limit to cosmic ray energies. However it seems not every cosmic ray got the memo. Cuddlyable3 (talk) 17:07, 28 October 2009 (UTC)[reply]

Also, of course, cosmic rays aren't, and are not part of the EM spectrum. --Stephan Schulz (talk) 17:16, 28 October 2009 (UTC)[reply]

Actually what I was hinting at/searching for was the highest possible frequency/shortest possible wavelength to determine from a lay point of view what particle it might be associated with or become. At some point it seems clear that particles such as a neutron for instance must express electromagnetic resonance of a particular frequency or wavelength short of infinite frequency. Is it a gamma ray or a cosmic ray or what. (Excuse my rather boring lack of understanding.) Biggerbannana (talk) 17:15, 28 October 2009 (UTC)[reply]

You may find de Broglie wavelength interesting. --Tango (talk) 21:50, 28 October 2009 (UTC)[reply]

Maillard Reaction in Pasta Production

[edit]

I am trying to find more information on Pasta Production, how would you prevent the product form changing colour. The article “Maillard Reaction” did not provide enough information. Regards, Jeanette —Preceding unsigned comment added by Jeanette de Lange (talkcontribs) 14:27, 28 October 2009 (UTC)[reply]

When I make pasta, I don't subject it to heating and therefore there will be no Maillard Reaction. Why do you think pasta production involves the reaction? --Phil Holmes (talk) 14:36, 28 October 2009 (UTC)[reply]
(edit conflict with Phil Holmes) How are you making your pasta? Fresh pasta is basically uncooked dough, and dried pasta is just dried, uncooked dough. There is nothing in the making of pasta that is hot enough to cause the Maillard Reaction to occur. It's all done at room temperature. Likewise, most pasta is cooked via boiling, and since the Maillard Reaction occurs at much hotter temperatures than the 212F/100C that water boils at, it is does not occur during the cooking process either. The ONLY applications I could see where the Maillard Reaction may occur is in applications like Fried ravioli or in some baked dishes, like lasagna, but generally only around the edges of the lasagna caserole, where the noodles are exposed and out of the sauce. --Jayron32 14:40, 28 October 2009 (UTC)[reply]

Why ozone is over antartica?

[edit]

We know that there is ozone hole(depletion of ozone) over antartica. And that becoz of CFCs emmitted by us.. my question is that "when we are polluting air above us then why ozone layer above Antartica is effected". I apologise for my english.—Preceding unsigned comment added by 117.200.54.99 (talkcontribs)

Does our article on Ozone depletion help? In short, it's because the chemical reactions that break down ozone are very much more efficient if polar stratospheric clouds catalyze the reaction. This type of clouds forms only at very cold temperatures. --Stephan Schulz (talk) 15:21, 28 October 2009 (UTC)[reply]
That's horrible.--Gilisa (talk) 17:09, 28 October 2009 (UTC)[reply]
What's horrible? His description was accurate and hard to put simpler. Regards, --—Cyclonenim | Chat  18:03, 28 October 2009 (UTC)[reply]
Not his description, the idea that as the hole in the ozone layer is grown, earth get warmer, icebergs melt, and there is no chance for the ozone layer to repair itself as polar stratospheric clouds can't be formed. (I'm not an expert-but it sounds like thats what happening).--Gilisa (talk) 19:40, 28 October 2009 (UTC)[reply]
The ozone layer does repair itself, once the sun starts shining on it again. Graeme Bartlett (talk) 19:43, 28 October 2009 (UTC)[reply]
What do you mean?--Gilisa (talk) 19:45, 28 October 2009 (UTC)[reply]
  • Read Ozone layer#Origin of ozone for how ozone is formed (UV + 02 = 03). A hole forms when depletion happens faster than regeneration. —Akrabbimtalk 20:05, 28 October 2009 (UTC)[reply]
  • You got the correlation the wrong way. Ozone is formed whenever oxygen is hit by the proper wavelength of UV light (i.e. when the sun is shining). It is destroyed by various processes, but in particular by those involving chlorine (from CFCs) and polar stratospheric clouds. Polar stratospheric clouds form when it is cold enough. That's why the ozone hole grows in winter (no sunlight, many clouds) and shrinks in summer (fewer clouds, and a lot of sun). Global warming will actually lead to a slight decrease in stratospheric temperature, but the effect should be negligible. And since we have phased out CFCs in the Montreal Protocol, things have slowly started to improve. --Stephan Schulz (talk) 20:13, 28 October 2009 (UTC)[reply]
Some facts:
  1. Ozone depletion happens to some degree over the entire planet - not just at the poles.
  2. Ozone in the upper atmosphere is created by UV light.
  3. There is much less UV light at the poles because they have no sunlight for maybe 3 months of the year - and much less sunlight than elsewhere in the world for the rest of the year.
Because they have less ozone to start with, the general ozone depletion over the entire planet affects the polar regions much more than anywhere else. So even though ozone-depleting gasses like CFC's may be denser over more occupied parts of the world, there is more than enough at the poles to remove all of the ozone and to create a hole. As others have pointed out, factors such as the temperature and the nature of polar clouds tends to exacerbate this problem.
Ozone is a weird problem. At ground level, ozone is a nasty poison and one that we go to great lengths to avoid making. In the upper atmosphere, it blocks harmful radiation and saves us from all sorts of nasty skin and eye conditions. This confuses some people. "Yeaaah Ozone! Boooo Ozone!"
It's worth mentioning that prompt action in phasing out CFC's and other ozone-destroyers has caused a significant improvement in the polar ozone levels - this is an encouraging thing since it suggests that humanity can get it's act together to fix global problems. Now if only we could do the same thing with CO2 and methane - we'd all be riding along on a much better planet.
SteveBaker (talk) 13:12, 29 October 2009 (UTC)[reply]

Electron configurations of rhodium and tungsten

[edit]

Rhodium's electron configuration is [Kr]5s14d8, rather than the expected [Kr]5s24d7. While several other transition metals have similar anomalies, they have arrangements that either have two shells half-filled (such as chromium) or one shell half-filled and another shell full (such as copper). Rhodium's electron configuration doesn't fit either of these. Also, why is tungsten's electron configuration [Xe]6s24f145d4, when the same reasoning that applies to chromium should apply to it as well? ----J4\/4 <talk> 16:27, 28 October 2009 (UTC)[reply]

From your question it looks like you've read Electron configuration article already; please read it if you haven't. Here is a more detailed answer. In atoms of d-block elements, you have three possible ground configurations: (n+1)s2ndk, (n+1)s1ndk+1, and (n+1)s0ndk+2. These three configurations are split into LS terms, which in turn are split into states. The configuration-average binding energies for the three configurations are quite similar; the difference in binding energy between (n+1)s2ndk and (n+1)s1ndk+1 is usually smaller than the differences in binding energies between some of the terms of each configuration. So it may happen that the ground state (the strongest-bound eigenstate) belongs to either one of those configurations, depending primarily on the LS terms allowed for the given value of k by the Pauli principle. Also, binding energies depend substantially on the (fractional) probability to find an outer ("optical") electron close to the nucleus, where coulomb attraction is strongest. This probability is very different for different values of the nucleus charge (different elements), so the d-block elements in periods 4, 5, and 6 may not fill out their outer shells in the same order. For example, Niobium has ground state belonging to configuration 5s14d4, but Tantalum has 6s25d3 and not 6s15d4. Complicating matters further, the three configurations (n+1)s2ndk, (n+1)s1ndk+1, and (n+1)s0ndk+2 have the same parity, so the true eigenstates may be mixtures of states in those configurations; that is, electron wavefunctions are sums of components from different LS terms of different configurations. In such a case it is not even possible to unequivocally determine which configuration is indeed the ground one. --Dr Dima (talk) 19:20, 28 October 2009 (UTC)[reply]
(continuing - hit Save instead of Preview. Sorry). So for your first example, Cobalt is 4s23d7 but Rhodium is 5s14d8 and not 5s24d7. That is, very roughly, because the difference in Coulomb interaction with nucleus in Co (Z = 27) 4s and 3d orbital is not the same as difference in Coulomb interaction with nucleus in Rhodium (Z = 45) 5s and 4d orbitals. There are other effects at play, too: difference in electron-electron interaction terms, stronger relativistic effects in Rh than in Co, and so on. The bottom line: terms of 4s23d7 overlap with terms of 4s13d8 in Co, and terms of 5s14d8 overlap with terms of 5s24d7 in Rh; it just so happens that the lowest energy term is not in the same configuration in the two cases, for the reasons explained above. The same applies to Tungsten vs Chromium and Molybdenum, as well. --Dr Dima (talk) 19:36, 28 October 2009 (UTC)[reply]

Spectroscopy

[edit]

I'm working on the bio of a chemist, Basil Weedon, I want to link to an article detailing what type of spectroscopy he used to elucidate the structures of carotenoids. The source says he used proton magnetic resonance but I can't work out what this actually is to link to, if someone can provide a link I'd to what this is called on here I'd be greatful. Thanks for your help. Smartse (talk) 18:19, 28 October 2009 (UTC)[reply]

Magnetic_resonance_imaging#Magnetic_resonance_spectroscopy. --Sean 18:31, 28 October 2009 (UTC)[reply]
In particular, NMR spectroscopy. It's the standard chemists' tool for determining molecular structure. I see that proton magnetic resonance has become a bluelink to an article with lots of details about the specific types of this analysis. DMacks (talk) 18:50, 28 October 2009 (UTC)[reply]

Planets shrinking

[edit]

Is all planets lossing size in diameter or is just Mercury? Is Uranus and Pluto alos losing size in diameter?--209.129.85.4 (talk) 20:08, 28 October 2009 (UTC)[reply]

The article says: "3 miles of its 9,000 mile diameter in four billion years" - that's 0.001 of a millimeter per year - a REALLY slow rate of loss. I doubt we have good enough images of the outer planets to measure to that kind of precision. I'm skeptical that we can measure Mercury to that precision either! Whoever says this is true must have inferred it indirectly somehow. SteveBaker (talk) 20:32, 28 October 2009 (UTC)[reply]
I believe the surface has wrinkled as it shrank and that is how we know. I think the gas giants are shrinking, at least Jupiter is - from Jupiter: "This additional heat radiation is generated by the Kelvin-Helmholtz mechanism through adiabatic contraction. This process results in the planet shrinking by about 2 cm each year." --Tango (talk) 20:45, 28 October 2009 (UTC)[reply]
Yeah, found it - Mercury (planet)#Plains: "One unusual feature of the planet’s surface is the numerous compression folds, or rupes, which crisscross the plains. As the planet’s interior cooled, it may have contracted and its surface began to deform, creating these features." --Tango (talk) 20:47, 28 October 2009 (UTC)[reply]
The rate must be even slower than the linearly-interpolated 1 micron per year because as the planet cools, the litospheric thermal boundary layer increases in thickness and insulates the inerior. The ridges are thought to be signs of contraction, but this is an inference from Mariner images; we'll learn a lot more from Messenger soon. Awickert (talk) 02:46, 30 October 2009 (UTC)[reply]

IR spectrum of benzophenone

[edit]

I will admit first off that this does constitute part of a non-assessed assignment. I have spent ages trying to work this out and I think I may just be having a blonde moment. Basically I have an IR spectrum of benzophenone with percentage transmittance on the y axis and I have managed to identify the origin of most of the peaks. However, there are three peaks around the 2000cm-1 mark. Specifically at; 1977.64, 2028.75 and 2159.88. Thank you for any help.Alaphent (talk) 20:20, 28 October 2009 (UTC)[reply]

Infrared spectroscopy correlation table may be helpful to you; though I admit I cannot find any relevent peaks in those ranges that would be expected from benzophenone. My best guess is that the peaks are due to the presence of an impurity of some sort, either left-over starting material or a decomposition product or something like that. --Jayron32 02:02, 29 October 2009 (UTC)[reply]
Here's a quick google hit for the spectrum: [1], and I don't see any significant peaks like the ones described. DMacks (talk) 02:09, 29 October 2009 (UTC)[reply]

Ok. Thanks, I'd found the quiz from the uni of colorado. It must be an impurity then. The guy who set this would do a thing like that just to be awkard. Alaphent (talk) 19:57, 29 October 2009 (UTC)[reply]

Are we Europeans all Jewish?

[edit]

It seems that if you go back far enough, everyone is a descendant of everyone (more or less) alive hundreds of years ago. According to TV (huh!) Jewishness passes through your mother and is not extinquished even if you never follow the religious rights. Does that mean that everyone of European descent is technically Jewish? 92.29.91.83 (talk) 20:47, 28 October 2009 (UTC)[reply]

No. While if you go back far enough everyone is descended from everyone else (Identical ancestors point), you aren't necessarily related to them through the maternal line. You only have one female ancestor in each generation that is just through the maternal line (your mother, your mother's mother, your mother's mother's mother, etc.). Only if one of them is/was Jewish, or you've converted, will you be Jewish under that rule. There is a very good chance that that won't be the case. --Tango (talk) 20:52, 28 October 2009 (UTC)[reply]
That said, I expect there plenty of people that are Jewish under that rule without knowing it, just not everyone. --Tango (talk) 20:54, 28 October 2009 (UTC)[reply]
Where did you get from the knowledge that all Europeans have Jewish heritage? I know about recent genetical studies in European Iberian population which reveald about 20-30% of Iberian people are descendant from Jews (on their paternal Y heritage if I remember it right), probably of the Anusim (and additional 10% from Arabs). I also heard that many of Russian people in Moscow descendant from Jews-but still there is a great distance from this to what you just suggested. Also, keep in mind that if X precents of Europeans descendant from Jews no more than X/2 are of Jewish maternal heritage. It was estimated once that without the holocaust and the high rates of assimilation and with the reproduction rates of Jewish families during the 1930's Jewish people would count more than 90 million people by now. Before the mid 19 CE rates of intermarriage of Jews with non Jews population were very very low and assimilated Jews have the reproduction rates of non Jewish European families (i.e., they can't exceed their initial precent in European population this way). So you can make the simple calculation and understand that there is no storng basis for this kind of assumptions.--Gilisa (talk) 21:01, 28 October 2009 (UTC)[reply]
That depends very much on when you start considering people Jewish. If (just as an example) the Queen of Sheeba had some children with Solomon, and you accept him as Jewish, they, as part of the nobility, would have plenty of opportunity to spread their genes around. Similarly, I would assume that there would be quite some mixed descendants from the time of the Jewish disapora in Babylonia, some of which may have been in a position to have a lot of children. There is some evidence that Ghengis Khan sneaked his genes into 0.5% of the male world population in just 1000 years, and these processes typically are exponential. I wouldn't be at all surprised if 90% of Europeans have some Jewish heritage within the last 2000 years (and, of course, the same holds for many other people - Romans, Greeks, any of the people culturally and economically integrated in the Roman Empire...). That said: It's a lot easier for males to have a large number of descendants, so for the female line criterion, the chances are a lot slimmer. --Stephan Schulz (talk) 21:23, 28 October 2009 (UTC)[reply]
I agree, the vast majority of the European population will have some Jewish ancestors. That is very different to having Jewish matrilineal ancestors. It isn't just enough to have a female Jewish ancestor or for your mother to have a Jewish ancestor, it needs to be women all the way from them to you. --Tango (talk) 21:32, 28 October 2009 (UTC)[reply]
...and we haven't even begun to discuss the concept of being "ethnically Jewish," but that is whole 'nother can of worms. Bus stop (talk) 21:41, 28 October 2009 (UTC)[reply]
And not one worth opening. Ethnicity isn't a useful way to categorise people; it is extremely imprecise and even if you can define it it says nothing about genetics just culture. --Tango (talk) 21:46, 28 October 2009 (UTC)[reply]
I saw an interesting program a while back about how much more related we are than we typically give credit for. The program said that if you went back far enough to a human that had a reasonably large number of offspring, eventually practically everyone in the world is at least somewhat related to them. The example they gave was Cleopatra. She lived 2000 years ago and had a bunch of children. If you assume this is about 100 generations (average generational gap of 20 years) and go back that many generations assuming you have 2 unrelated parents each generation, you get 2^100 or 1.2676506E10^30 people, more people than have ever lived (and maybe ever will live), an absolutely preposterously impossible number for us to have that many ancestors. The conclusion is that we are related to everyone that was alive at that time and didn't have a lineage that died out. Similarly, everyone alive today has two possibilities: in a few thousand years their line will have either died out (no children or particularly unfortunate children) or will be an ancestor to practically everyone on the planet. If looked at from a suitable number of generations, our "family trees" are actually more of a diamond shape. Of course we are related to some historical figures much more closely than others. They occupy a more prominent place in the diamond... Or if we are sticking with the tree idea, the single person occupies many many more of the spots. I suppose this doesn't apply to people completely isolated from the "main body" of humanity until relatively recently. That would include Native Americans and Australian Aboriginals, at a first guess. TastyCakes (talk) 22:02, 28 October 2009 (UTC)[reply]
Indeed. The identical ancestors point for the whole human race is estimated to be around 5,000-15,000 years ago. If you exclude groups that are or were until recently isolated, then it is much more recent (although I can't find any figures...). --Tango (talk) 22:22, 28 October 2009 (UTC)[reply]
That's a nice article I didn't know about. I think it puts the idea much less confusingly than I did above... TastyCakes (talk) 22:28, 28 October 2009 (UTC)[reply]
Stephan Schulz, Ghengis Khan had thousends of women, his heirs had similar numbers of women and you must remember that world population size was much much smaller during his life time, making founder effect to be highly plausible. As for the Jewish people, most of them are descendant from the same ancient paternal ancestor who lived in the Levant about ~ 4000 years ago and this genetic cluster is still well distinguished from other Middle Eastren populations. Also, about 40% of Ashkenazi Jews are descendant from only 4 matrons who lived in the Levant about ~1500 years ago. While you can find this maternal heritage in very small precents among non Jewish populations in the present days Middle East, you virtually can't find it among non Jewish Europeans. So, it's highly unlikely that 90% of Europeans are descendant from Jews. Also, these processes are growing in exponential rise only when the average number of offsprings is higher than the average number of offsprings in the target population. Usually, I think, population genetics models don't use exponential rise.--Gilisa (talk) 22:15, 28 October 2009 (UTC)[reply]
I disagree. It is practically certain that everyone in Europe (indeed, everyone in the world with a couple of exceptions) has an ancestor that practiced Judaism, due to the mathematics outlined above. Of course, the contributions to a person's ancestry may be so small as to be genetically trivial. As pointed out earlier, the matrimonial line requirement changes the story considerably. TastyCakes (talk) 22:22, 28 October 2009 (UTC)[reply]
If we assume that the reproduction rate of assimilated Jews and non Jews in Europe was similar-and we have no reason to assume otherwise (infact, as assimilated Jews had free occupations and lived in big cities usually their rates of reproduction were lower than these of non Jewish rural populations in Europe) and that European population grow during the last 100 years in exponential rate then the relative genetic contribution of Jews to the European population remains the same. --Gilisa (talk) 22:32, 28 October 2009 (UTC)[reply]
But it doesn't matter if the assimilation rate was even almost completely zero. All it would take is one exception far enough back in time for a Jew to become an ancestor to all Europeans, and the chances of that not happening in the thousands of years Judaism has been practiced is zero. I am not saying that Europeans have mostly Jewish DNA, most will have almost negligible amounts for the reasons you are saying. But all will have some. Similarly (and perhaps more mind-bogglingly), it is absolutely certain that you are related to a Chinese person that lived 15,000 years ago. Even though genetic intermingling was very low due to cultural and geographical separation, it wasn't zero and hence Chinese DNA undoubtedly mixed with all other Eurasians' (and Africans') DNA over the past few thousand years. TastyCakes (talk) 22:38, 28 October 2009 (UTC)[reply]
To clarify the basic error in the question, it's true that if you trace back all of a person's ancestors, the number doubles every generation you go back, except for overlap due to multiple paths leading to the same ancestor. That means if you go back a hundred generations, you get a major fraction of the world as ancestors. But if you only count mothers, you only get one for each generation, so for a hundred generations back, you only get a hundred mothers. Looie496 (talk) 22:46, 28 October 2009 (UTC)[reply]

By the same logic are we all Muslem? And are all Muslems Jewish and all Jewish people Muslem? 92.24.25.252 (talk) 01:38, 31 October 2009 (UTC)[reply]

I thought that acrylamide was produced as a result of the Maillard reaction, but the Maillard reaction article does not mention it. Does it or dosnt it create acrylamide please? 92.29.91.83 (talk) 20:53, 28 October 2009 (UTC)[reply]

The Maillard reaction article does not mention it, see the page on acrylamide - this does clearly state that that it may be a by-product - not the main product - of the Maillard reaction. It may well be that the Maillard reaction product decomposes to acrylamide with more heat, but that does not make it a product of the Maillard reaction, but a product of a subsequent pyrolysis reaction.  Ronhjones  (Talk) 22:45, 28 October 2009 (UTC)[reply]

What is the intermediate product please? 78.144.248.102 (talk) 10:32, 30 October 2009 (UTC)[reply]

Icons of Evolution

[edit]

I'm about to rip my hair out.

I read the article on Icons of Evolution. Please glance over it. Note that in the first sentence the book is condemned as pseudoscientific. Later a sweeping claim is made that all biologists endorse evolution. Hopefully, even if you are an evolutionist yourself, you can see that that isn't proper for an encyclopedic article. I can provide names of at least three prominent non-evolutionist biologists -- Michael Behe, Dean Kenyon, and Phillip E. Johnson. Don't be silly like Auntie E. and say that just because I provide only three names means that there are only three.

This is my problem. While reading the article, I noticed that the article lacked one huge thing: information on what was said in the book! This article claims to be ABOUT Icons of Evolution, but has nothing on what's discussed in the book. Nearly everything in the article is criticism -- cited criticism, at least, but still it's a very biased article.

You might say, "Well, go fix it yourself." I tried. I don't like to be abusive, but Auntie E. has been downright incorrigible. I eliminated the word "pseudoscientific." I took out the sweeping claims discussed above. Under some chapter headings, I added a little on what was discussed in the book. Did Auntie E. even read what I wrote before deleting it under the pretense that it was not neutral? I honestly don't know.

Please talk with Auntie E. This shouldn't be a question of Intelligent Design versus Evolution. This article should, if you apply common sense, be a pro-ID article, because for heaven's sakes the book that is supposed to be discussed in it is pro-ID! Anyone who tries to clean up the bias finds Auntie E. flaunting neutrality rules in their faces. I wanted to uphold the integrity of Wikipedia. Instead I'm being browbeaten by a biased "editor" who seems, by her conduct, to be interested in nothing but safeguarding her evolutionist beliefs. --Thalia14 (talk) 21:12, 28 October 2009 (UTC)[reply]

I'm not sure that this is the right forum, why won't you take it to wikipedia's mediation? --Gilisa (talk) 21:17, 28 October 2009 (UTC)[reply]
(Johnson is not anything like a biologist, he's a law professor, argues about the philosophy of materialism, etc.) Anyway, I do agree that the article suffers from quite a bit of POV—it is nothing but rebuttals, aside from one list of Wells' "icons", which really is quite insufficient for a book, even one full of contentious and challenged statements. Anyway... in my personal experience, the best you can do is be calm, try to appeal to more high-minded folks. You are unlikely to have any success, though—Wikipedia's NPOV on such topics usually is the SPOV, even though it isn't supposed to be. Editing contentious Wikipedia articles is basically a game of seeing who is most persistent and who knows how to use the system to their aims better. It is a frustrating and un-fun experience, and the stakes are, in my opinion, not high enough to warrant it. It is one of the reasons I barely edit articles anymore. --Mr.98 (talk) 21:28, 28 October 2009 (UTC)[reply]
I suggest you compare it with the Featured Articles, Uncle Tom's Cabin and Jack the Ripper: The Final Solution. Notice how both of these tell the reader very early on whether the work is widely believed to be true or not. They both devote a good deal of space to discussing how the works were received, and how they are currently received, particularly by people who are experts on the topics the books are about. They also include brief information on the key contents of the works: you can find the same in the Icons of Evolution article under Wells' Icons. It's quite a large section.
You need to read WP:NPOV (again, if you already have) and understand that the article should not be pro-ID at all. If your real problem is that you think evolution can't possibly be true, and therefore anything which does not support Wells' criticisms must be dishonest, you need to step back and decide whether you can honestly edit any articles on this topic without getting emotionally involved and violating NPOV. 80.41.80.71 (talk) 21:41, 28 October 2009 (UTC)[reply]
I think that she made few good points. Exclusion of information from an article, when there is room for it, is second worse only to inclusion of wrong arguments in it. It doesn't matter what you believe in, objectiveness must be kept and I think that maybe in this case it was missing to certain extent. More, I understand that you didn't discuss it on the talk page? Also, I suggest you to take the advises of Mr.98. Also, remeber that you may use Wikipedia different boards if you feel that edits on the article are being done without agreement. I suggest you to seek mediation by third party.--Gilisa (talk) 21:49, 28 October 2009 (UTC)[reply]
Yes, a better place is the talk page, or WP:NPOVN, or a RfC. But I disagree with much of the criticism - starting with the small, I could not find the "claim that all biologists endorse evolution". --Stephan Schulz (talk) 21:56, 28 October 2009 (UTC)[reply]
You're both right the first thing to do of course would be to actually try discussing this on the article talk page. I see User:Aunt Entropy has indicated a willingness to do so and it looks like at least one other editor is as well. I suspect if the user actually attempts to discuss it, other people would be willing as well. However attacking other editors is not going to help the discussion so I suggest Thalia refrain from doing either of these if they wish to discuss it further in the talk page Nil Einne (talk) 22:36, 28 October 2009 (UTC)[reply]
This is absolutely not the right place to bring up these complaints. APL (talk) 22:24, 28 October 2009 (UTC)[reply]
Well well a disagreement between two Scientists called Steve on ending this discussion. I am all for ending it myself. It really is not about a scientific subject. --BozMo talk 13:04, 29 October 2009 (UTC)[reply]


May I suggest the Help Desk for editing help? 66.65.140.116 (talk) 00:12, 30 October 2009 (UTC)[reply]

Saturn V versus Ares rocket: Reinventing the wheel.

[edit]

NASA and the TV news made a big deal of the launch of the new Ares rocket, going on about how amazingly big and powerful it is. Checking the stats, the Saturn V was 110.3 meters tall versus 94 for the Ares 1-x, had a diameter 10.1 meters of compared to 5.5 meters, and could deliver 118,800 kg to low earth orbit compared to just 25,000 kg. The Ares thrust is not stated in the Wikipedia article, but a website says it is "3 million pounds" compared to 7,648,000 for the Saturn. My question: Is the Ares less than 21% of the cost per unit compared to the Saturn V (inflation adjusted)? The remaining development costs are also to be considered for the new rocket. The Saturn also has a demonstrated safety record. Why didn't NASA dust off the blueprints for the old Saturn V and have Boeing build a few? (If the U.S, government threw away the detailed plans, they could probably get a copy of what spies likely supplied to the USSR.) Edison (talk) 22:49, 28 October 2009 (UTC)[reply]

They shouldn't be making a big deal about how big and powerful it is. That isn't the important thing about it. You don't just want the most powerful rocket you can get, you want a rocket that is right for the job you intend to use it for. Ares I is just supposed to carry the people up to LEO, Ares V will do the heavy lifting. (Assuming they actually get that far - that is rather in doubt at the moment.) --Tango (talk) 22:55, 28 October 2009 (UTC)[reply]
Hopefully this doesn't come across as soapboxing as it is largely OR. I read on one of the article talk pages (found it here Talk:Orion (spacecraft)#Falcon 9 Heavy to replace Ares I?) someone saying most people recommended NASA should have designed something like the Soyuz (after all the Chinese did and it appears to work well for both of them, the Russians and Chinese are fairly secretive about their safety record and costs but I would expect the US government has a rather good idea of both) but NASA ignored them because they didn't want to use something they didn't design. I don't know if this is true, but it does seem likely NASA would find it politically problematic to copy another country particularly the Russians. In the same vein, I would wonder whether just reusing a perhaps slightly modified old design would have similar problems of being not politically acceptable. After all when you have people like this [2]... (Okay the last bit was only of minimal relevance but I've been dying to use that since I came across it a few weeks ago) Nil Einne (talk) 23:36, 28 October 2009 (UTC)[reply]

Even if NASA wanted to build more Saturn V's, it wouldn't be just a matter of "dusting off the plans". Components that you could buy off the shelf in the 1960s are not necessarily available at all today, and that includes not only the parts used directly in the rocket, but also the parts used to make the devices used to make the rocket. For that matter, even the Vehicle Assembly Building is no longer available as long as it's needed for use with Space Shuttles. --Anonymous, 23:55 UTC, October 28, 2009.

To some extant they have: Apollo Heat Shield Uncrated After 35 Years, Helps New Crew Vehicle Design and Museums guide NASA to future missions Engineers study Apollo exhibits to learn how to return to moon:

"Snoddy, a manager at NASA’s Marshall Space Flight Center, has been removing valves and other parts from Apollo exhibits as he oversees construction of the upper-stage engine on the new moon rocket, dubbed Ares 1." Rmhermen (talk) 01:19, 29 October 2009 (UTC)[reply]

As Anon said, one of the main reasons they did not re-use the Saturn V is because the infrastructure for building it is not in place. NASA was not the only organization involved in the Apollo missions--they contracted out a lot of the R&D and construction to corporations around the country. All of the facilities, personnel, and resources that were used to build the Saturn V are now being used for other purposes that may not even be related to the space program (for the record, the Vehicle Assembly Building actually was used for the assembly of Ares I-X, it's the only building in the world that has that capability). The Constellation program actually does use a lot of old infrastructure, as the OP suggested--a lot of the hardware is based on the Shuttle program! Ares I is adapted from the Shuttles' Solid Rocket Boosters, and the liquid rocket of Ares V is adapted from the corresponding system on the Shuttle. Mildly MadTC 18:16, 29 October 2009 (UTC)[reply]

There was no existing infrastructure for creating pumps, combustion chambers, fuel storage tanks, etc for Saturn. It was all created in a very few years. This is a red herring. It could be re-created with the benefit of 20-20 hindsight. As I asked initially,, is the Ares proportionately cheaper to its lower earth orbit capability? Recovery of the solid rocket casings, compared to throwaway of the Saturn booster is not a convincing factor in favor of Ares, absent cost information. The ability of the Shuttle to land and take off again was supposed to make spaceflight super cheap, but it did not turn out that way. Edison (talk) 04:56, 30 October 2009 (UTC)[reply]

tiredness

[edit]

why is it that at bedtime I feel sleepy but if i stay up half an hour past my usual bedtime I'm then not sleepy? —Preceding unsigned comment added by 86.166.235.46 (talk) 23:16, 28 October 2009 (UTC)[reply]

Its probably a consequence of your circadian rhythm. If you maintain a regular bedtime schedule, its likely your body has become entrained to certain zeitgebers that define your bedtime. You then upset that schedule, your rhythm goes out of whack, and the molecules in you body that makes you feel sleepy are no longer there. Rockpocket 00:04, 29 October 2009 (UTC)[reply]
The MOLECULES in your body??? Which particular ones? What sort of answer is that? This is a non answer of the highest magnitude. —Preceding unsigned comment added by 79.75.3.92 (talk) 02:20, 29 October 2009 (UTC)[reply]
As Looie496 correctly points out below, the molecular mechanisms involved in sleep are not yet fully understood. While melatonin is clearly a big player in chronobiology, its unlikely that it is primarily responsible for the observation the OP is asking about. Nevertheless, anyone who has experienced jet-lag can attest that circadian rhythm and the feeling of tiredness/alertness have a close relationship. Rather than speculate on the precise molecules involved, I preferred to offer the OP an general overview of circadian rhythm (with links) and how it would effect sleep. If s/he or anyone else would like a more detailed answer, with links to primary sources, then I would be happy to offer them. Other than that, I would note that my answer was orders of magnitude more constructive than the childishly petulant outbursts of a certain banned former editor. Rockpocket 18:49, 29 October 2009 (UTC)[reply]
The primary molecules involved in the management of circadian rhythms usually include Melatonin. The idea is that melatonin levels wax and wane, and your body's response to it waxes and wanes as well. If either your melatonin levels drop, or if you become tolerant to existing melatonin levels, you may "miss" the opportunity to fall asleep. --Jayron32 03:41, 29 October 2009 (UTC)[reply]
"This is a non answer of the highest magnitude." Actually, it was a rather informed answer that Rockpocket generously took the time to provide. Nobody tells us that we have to answer questions here. Falconusp t c 03:51, 29 October 2009 (UTC)[reply]
Well, it was probably a guess, actually -- the relationship between circadian rhythms and sleep patterns is not that precisely understood. Another possible answer is that the questioner tends to engage in behaviors that are more stimulating on the occasions when he misses his usual bedtime. The melatonin-based explanation is pretty unlikely -- there are much more direct interactions between the circadian system and the brain circuits that control sleep. Looie496 (talk) 05:00, 29 October 2009 (UTC)[reply]
Becoming aware that one is missing one's normal bedtime and possibly anticipating that getting up the next morning will be difficult is a stress situation where the nervous system may generate Epinephrine (adrenalin) hormone which is a "fight or flee" stimulant.Cuddlyable3 (talk) 10:38, 29 October 2009 (UTC)[reply]
You may be addicted to caffeine. If you abstain from caffiene then you will feel not so good for a few days, but then sleep very well and wake up feeling refreshed and alert all the time (as if you had just had a large coffee). 78.144.206.114 (talk) 11:27, 31 October 2009 (UTC)[reply]
Whoah there 78.144.206.114. You gave medical diagnosis and advice which we DO NOT GIVE. Cuddlyable3 (talk) 14:55, 31 October 2009 (UTC)[reply]