Columbus (crater)

From Wikipedia, the free encyclopedia
  (Redirected from Columbus Crater)
Jump to: navigation, search
Columbus Crater
Martian crater Columbus based on day THEMIS.png
Columbus crater based on THEMIS day-time image
Planet Mars
Coordinates 29°48′S 166°06′W / 29.8°S 166.1°W / -29.8; -166.1Coordinates: 29°48′S 166°06′W / 29.8°S 166.1°W / -29.8; -166.1
Diameter 119 km
Eponym Christopher Columbus, Italian explorer (1451-1506)

Columbus Crater is a crater in the Memnonia quadrangle of Mars, located at 29.8° south latitude and 166.1° west longitude. It is 119 km in diameter and was named after Christopher Columbus, Italian explorer (1451–1506).[1]

Layers[edit]

Columbus Crater contains layers, also called strata. Many places on Mars show rocks arranged in layers. Sometimes the layers are of different colors. Light-toned rocks on Mars have been associated with hydrated minerals like sulfates. The Mars Rover Opportunity examined such layers close-up with several instruments. Some layers are probably made up of fine particles because they seem to break up into fine dust. Other layers break up into large boulders so they are probably much harder. Basalt, a volcanic rock, is thought to be in the layers that form boulders. Basalt has been identified on Mars in many places. Instruments on orbiting spacecraft have detected clay (also called phyllosilicates) in some layers. The CRISM instrument on the Mars Reconnaissance Orbiter found kaolinite, hydrated sulfates including alunite and possibly jarosite.[2] Scientists are excited about finding hydrated minerals such as sulfates and clays on Mars because they are usually formed in the presence of water.[3] Places that contain clays and/or other hydrated minerals would be good places to look for evidence of life.[4] Recent research with an orbiting near-infrared spectrometer, which reveals the types of minerals present based on the wavelengths of light they absorb, found evidence of layers of both clay and sulfates in Columbus crater. This is exactly what would appear if a large lake had slowly evaporated. Moreover, because some layers contained gypsum, a sulfate which forms in relatively fresh water, life could have formed in the crater.[5]

Rock can form layers in a variety of ways. Layers may be formed by volcanoes, wind, or water.[6]

References[edit]

  1. ^ http://planetarynames.wr.usgs.gov
  2. ^ Murchie, S. et al. 2009. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. Journal of Geophysical Research: 114.
  3. ^ http://themis.asu.edu/features/nilosyrtis
  4. ^ http://hirise.lpl.arizona.edu/PSP_004046_2080
  5. ^ http://news.nationalgeographic.com/news/2009/11/091125-mars-crater-lake-michigan-water_2.html
  6. ^ http://hirise.lpl.arizona.edu?PSP_008437_1750

See also[edit]