List of device bit rates

From Wikipedia, the free encyclopedia
Jump to: navigation, search

This is a list of device bit rates, or physical layer information rates, net bit rates, useful bit rates, peak bit rates or digital bandwidth capacity, at which digital interfaces of computer peripheral equipment and network devices can communicate over various kinds of buses and networks.

Bar chart of common computer interface speeds

The distinction can be arbitrary between a bus, (which is inside a box and usually relies on many parallel wires), and a communications network cable, (which is external, between boxes and rarely relies on more than four wires). Many device interfaces or protocols (e.g., SATA, USB, SCSI, PCI and a few variants of Ethernet) are used both inside many-device boxes, such as a PC, and one-device-boxes, such as a hard drive enclosure. Accordingly, this page lists both the internal ribbon and external communications cable standards together in one sortable table.

Factors limiting actual performance, criteria for real decisions[edit]

Most of the listed rates are theoretical maximum throughput measures; in practice, the actual effective throughput is almost inevitably lower in proportion to the load from other devices (network/bus contention), interframe gap, and other overhead in data link layer protocols etc. The maximum goodput (for example, the file transfer rate) may be even lower due to higher layer protocol overhead and data packet retransmissions caused by line noise or interference such as crosstalk, or lost packets in congested intermediate network nodes. All protocols lose something, and the more robust ones that deal resiliently with very many failure situations tend to lose more maximum throughput to get higher total long term rates.

Device interfaces where one bus transfers data via another will be limited to the throughput of the slowest interface, at best. For instance, SATA 6G controllers on one PCIe 5G channel will be limited to the 5G rate and have to employ more channels to get around this problem. Early implementations of new protocols very often have this kind of problem. The physical phenomena on which the device relies (such as spinning platters in a hard drive) will also impose limits; for instance, no spinning platter shipping in 2009 saturates SATA II (3 Gbit/s), so moving from this 3 Gbit/s interface to USB3 at 4.8 Gbit/s for one spinning drive will result in no increase in realized transfer rate.

Contention in a wireless or noisy spectrum, where the physical medium is entirely out of the control of those who specify the protocol, requires measures that also use up throughput. Wireless devices, BPL, and modems may produce a higher line rate or gross bit rate, due to error-correcting codes and other physical layer overhead. It is extremely common for throughput to be far less than half of theoretical maximum, though the more recent technologies (notably BPL) employ preemptive spectrum analysis to avoid this and so have much more potential to reach actual gigabit rates in practice than prior modems.

Another factor reducing throughput is deliberate policy decisions made by Internet service providers that are made for contractual, risk management, aggregation saturation, or marketing reasons. Examples are rate limiting, bandwidth throttling, and the assignment of IP addresses to groups. These practices tend to minimize the throughput available to every user, but maximize the number of users that can be supported on one backbone.

Furthermore, chips are often not available in order to implement the fastest rates. AMD, for instance, does not support the 32-bit HyperTransport interface on any CPU it has shipped as of the end of 2009. Additionally, WiMax service providers in the US typically support only up to 4 Mbit/s as of the end of 2009.

Choosing service providers or interfaces based on theoretical maxima is unwise, especially for commercial needs. A good example is large scale data centers, which should be more concerned with price per port to support the interface, wattage and heat considerations, and total cost of the solution. Because some protocols such as SCSI and Ethernet now operate many orders of magnitude faster than when originally deployed, scalability of the interface is one major factor, as it prevents costly shifts to technologies that are not backward compatible. Underscoring this is the fact that these shifts often happen involuntarily or by surprise, especially when a vendor abandons support for a proprietary system.

Conventions[edit]

By convention, bus and network data rates are denoted either in bits per second (bit/s) or bytes per second (B/s). In general, parallel interfaces are quoted in B/s and serial in bit/s. The more commonly used is shown below in bold type.

On devices like modems, bytes may be more than 8 bits long because they may be individually padded out with additional start and stop bits; the figures below will reflect this. Where channels use line codes (such as Ethernet, Serial ATA and PCI Express), quoted rates are for the decoded signal.

The figures below are simplex data rates, which may conflict with the duplex rates vendors sometimes use in promotional materials. Where two values are listed, the first value is the downstream rate and the second value is the upstream rate.

All quoted figures are in metric decimal units, where:

  • 1 byte (B) = 8 bit
  • 1 kbit/s = 1,000 bit/s
  • 1 Mbit/s = 1,000,000 bit/s
  • 1 Gbit/s = 1,000,000,000 bit/s
  • 1 kB/s = 1,000 byte/s
  • 1 MB/s = 1,000,000 byte/s
  • 1 GB/s = 1,000,000,000 byte/s
  • 1 TB/s = 1,000,000,000,000 byte/s

Note that these aren't the traditional binary prefixes for memory size. These decimal prefixes have long been established in data communications. This occurred before 1998 when IEC and other organizations introduced new binary prefixes and attempted to standardize their use across all computing applications.

Bandwidths[edit]

The figures below are grouped by network or bus type, then sorted within each group from lowest to highest bandwidth; gray shading indicates a lack of known implementations.

Time Signal Station to Radio Clock[edit]

Technology Max. rate (bit/s) Max. rate (characters/s) Year
IRIG and related 1 bit/s ~0.2 characters/s [1][2]

TTY/Teletypewriter or telecommunications device for the deaf (TDD)[edit]

Technology Max. rate (bit/s) Max. rate (characters/s) Year
TTY (V.18) 45.4545 bit/s 6 characters/s[3]
TTY (V.18) 50 bit/s 6.6 characters/s
NTSC Line 21 Closed Captioning 1 kbit/s ~100 characters/s

Modems (Narrowband & Broadband)[edit]

The bytes column of this particular table shows a net data transfer rate after the protocol overhead has been removed.

(The other device tables show bit rate equivalents.)

Narrowband (POTS: 3.1 kHz channel)[edit]

Technology Rate (kbit/s) Rate (kbyte/s) Year
Morse code (skilled operator) 0.056 kbit/s 4 cps (~40 wpm)[4] 1844
Modem 110 baud (symbols / second) (Bell 101) 0.11 kbit/s 0.010 kB/s (~10 cps)[5] 1959
Modem 300 (300 baud) (Bell 103 or V.21) 0.3 kbit/s 0.03 kB/s (~30 cps)[5] 1962[6]
Modem 1200 (600 baud) (Bell 212A or V.22) 1.2 kbit/s 0.12 kB/s (~120 cps)[5] 1976
Modem 1200/75 (600 baud) (V.23) 1.2/0.075 kbit/s 0.12/0.0075 kB/s (~120 cps)[5]
Modem 2400 (600 baud) (V.22bis) 2.4 kbit/s 0.3 kB/s[5]
Modem 4800 (1600 baud) (V.27ter) 4.8 kbit/s 0.6 kB/s[5]
Modem 9600 (2400 baud) (V.32) 9.6 kbit/s 1.2 kB/s[5] 1989[6]
Modem 14.4 (2400 baud) (V.32bis) 14.4 kbit/s 1.8 kB/s[5] 1991[6]
Modem 28.8 (3200 baud) (V.34-1994) 28.8 kbit/s 3.6 kB/s[5] 1994
Modem 33.6 (3429 baud) (V.34-1996/98) 33.6 kbit/s 4.2 kB/s[5] 1996[7]
Modem 56k (8000/3429 baud) (V.90) 56.0/33.6 kbit/s[8] 7/4.2 kB/s 1998
Modem 56k (8000/8000 baud) (V.92) 56.0/48.0 kbit/s[8] 7/6 kB/s 2001
Modem data compression (variable) (V.92/V.44) 56.0–320.0 kbit/s[8] 7–40 kB/s
ISP-side text/image compression (variable) 56.0–1000.0 kbit/s 7–125 kB/s
ISDN Basic Rate Interface (single/dual channel) 64/128 kbit/s[9] 8/16 kB/s 1986[10]
IDSL (dual ISDN + 16 kbit/s data channels) 144 kbit/s 18 kB/s 2000[11]

Broadband (hundreds of kHz wide)[edit]

Technology Rate (kbit/s) Rate (kbyte/s) Year
HDSL ITU G.991.1 aka DS1 1,544 kbit/s 193 kB/s 1998[12]
MSDSL 2,000 kbit/s 250 kB/s
SDSL 2,320 kbit/s 290 kB/s
SHDSL ITU G.991.2 5,690 kbit/s 711 kB/s 2001
ADSL (G.lite) 1,536/512 kbit/s 192/64 kB/s 1998
ADSL (G.dmt) 8,192/1,024 kbit/s 1,024/128 kB/s 1999
ADSL2 12,288/1,440 kbit/s 1,536/180 kB/s 2002
ADSL2+ 24,576/3,584 kbit/s 3,072/448 kB/s 2003
DOCSIS v1.0[13] (Cable modem) 38,000/9,000 kbit/s 4,750/1,125 kB/s 1997
DOCSIS v2.0[14] (Cable modem) 38,000/27,000 kbit/s 4,750/3,375 kB/s 2001
VDSL ITU G.993.1 52,000 kbit/s 7,000 kB/s 2001
VDSL2 ITU G.993.2 100,000 kbit/s 12,500 kB/s 2006
DOCSIS v3.0[15] (Cable modem) 160,000/120,000 kbit/s 20,000/15,000 kB/s (~200,000,000 wpm) 2006
Uni-DSL 200,000 kbit/s 25,000 kB/s
BPON (G.983) fiber optic service 622,000/155,000 kbit/s 77,700/19,300 kB/s 2005[16]
EPON (802.3ah) fiber optic service 1,000,000/1,000,000 kbit/s 125,000/125,000 kB/s 2008
GPON (G.984) fiber optic service 2,488,000/1,244,000 kbit/s 311,000/155,500 kB/s (~3 billion+ wpm) 2008[17]
10G-PON (G.987) fiber optic service 10,000,000/2,500,000 kbit/s 1,250,000/312,500 kB/s (~12 billion+ wpm) 2012[18]

Mobile telephone interfaces[edit]

Technology Download rate (bit/s) Upload rate (bit/s) Download rate (byte/s) Upload rate (byte/s) Year
GSM CSD (2G) 14.4 kbit/s[19] 14.4 kbit/s 1.8 kB/s 1.8 kB/s
HSCSD 57.6 kbit/s 14.4 kbit/s 5.4 kB/s 1.8 kB/s
GPRS (2.5G) 57.6 kbit/s 28.8 kbit/s 7.2 kB/s 3.6 kB/s
WiDEN 100 kbit/s 100 kbit/s 12.5 kB/s 12.5 kB/s
CDMA2000 1×RTT 153 kbit/s 153 kbit/s 18 kB/s 18 kB/s
EDGE (2.75G) (type 1 MS) 236.8 kbit/s 236.8 kbit/s 29.6 kB/s 29.6 kB/s
UMTS 3G 384 kbit/s 384 kbit/s 48 kB/s 48 kB/s
EDGE (type 2 MS) 473.6 kbit/s 473.6 kbit/s 59.2 kB/s 59.2 kB/s
EDGE Evolution (type 1 MS) 1,184 kbit/s 474 kbit/s 148 kB/s 59 kB/s
EDGE Evolution (type 2 MS) 1,894 kbit/s 947 kbit/s 237 kB/s 118 kB/s
1×EV-DO rev. 0 2,457 kbit/s 153 kbit/s 307.2 kB/s 19 kB/s
1×EV-DO rev. A 3.1 Mbit/s 1.8 Mbit/s 397 kB/s 230 kB/s
1×EV-DO rev. B 14.7 Mbit/s 5.4 Mbit/s 1,837 kB/s 675 kB/s
HSPA (3.5G) 13.98 Mbit/s 5.760 Mbit/s 1,706 kB/s 720 kB/s
4×EV-DO Enhancements (2×2 MIMO) 34.4 Mbit/s 12.4 Mbit/s 4.3 MB/s 1.55 MB/s
HSPA+ (2×2 MIMO) 42 Mbit/s 11.5 Mbit/s 5.25 MB/s 1.437 MB/s
15×EV-DO rev. B 73.5 Mbit/s 27 Mbit/s 9.2 MB/s 3.375 MB/s
UMB (2×2 MIMO) 140 Mbit/s 34 Mbit/s 17.5 MB/s 4.250 MB/s
LTE (2×2 MIMO) 173 Mbit/s 58 Mbit/s 21.625 MB/s 7.25 MB/s
UMB (4×4 MIMO) 280 Mbit/s 68 Mbit/s 35 MB/s 8.5 MB/s
EV-DO rev. C 280 Mbit/s 75 Mbit/s 35 MB/s 9 MB/s
LTE (4×4 MIMO) 326 Mbit/s 86 Mbit/s 40.750 MB/s 10.750 MB/s

Wide area networks[edit]

Technology Rate (bit/s) Rate (byte/s) Year
DS0 0.064 Mbit/s 0.008 MB/s
G.lite (aka ADSL Lite) 1.536/0.512 Mbit/s 0.192/0.064 MB/s
DS1/T1 (and ISDN Primary Rate Interface) 1.544 Mbit/s 0.192 MB/s
E1 (and ISDN Primary Rate Interface) 2.048 Mbit/s 0.256 MB/s
G.SHDSL 2.304 Mbit/s 0.288 MB/s
LR-VDSL2 (4 to 5 km [long-]range) (symmetry optional) 4 Mbit/s 0.512 MB/s
SDSL[20] 2.32 Mbit/s 0.29 MB/s
T2 6.312 Mbit/s 0.789 MB/s
ADSL[21] 8.0/1.024 Mbit/s 1.0/0.128 MB/s
E2 8.448 Mbit/s 1.056 MB/s
ADSL2 12/3.5 Mbit/s 1.5/0.448 MB/s
Satellite Internet[22] 16/1 Mbit/s 2.0/0.128 MB/s
ADSL2+ 24/3.5 Mbit/s 3.0/0.448 MB/s
E3 34.368 Mbit/s 4.296 MB/s
DOCSIS v1.0 (Cable modem)[13] 55.62/42.88 Mbit/s 10.24 MB/s
DOCSIS v2.0 (Cable modem)[14] 55.62/42.88 Mbit/s 30.72 MB/s
DS3/T3 ('45 Meg') 44.736 Mbit/s 5.5925 MB/s
STS-1/EC-1/OC-1/STM-0 51.84 Mbit/s 6.48 MB/s
VDSL (symmetry optional) 100 Mbit/s 12.5 MB/s
OC-3/STM-1 155.52 Mbit/s 19.44 MB/s
DOCSIS v3.0 (Cable modem)[15] 222.48/171.52 Mbit/s 122.88 MB/s
VDSL2 (symmetry optional) 250 Mbit/s 31.25 MB/s
T4 274.176 Mbit/s 34.272 MB/s
T5 400.352 Mbit/s 50.044 MB/s
OC-9 466.56 Mbit/s 58.32 MB/s
OC-12/STM-4 622.08 Mbit/s 77.76 MB/s
OC-18 933.12 Mbit/s 116.64 MB/s
OC-24 1.244 Gbit/s 155.5 MB/s
OC-36 1.900 Gbit/s 237.5 MB/s
OC-48/STM-16 2.488 Gbit/s 311.04 MB/s
OC-96 4.976 Gbit/s 622.08 MB/s
OC-192/STM-64 9.953 Gbit/s 1.244 GB/s
10 Gigabit Ethernet WAN PHY 9.953 Gbit/s 1.244 GB/s
10 Gigabit Ethernet LAN PHY 10.000 Gbit/s 1.25 GB/s
OC-256 13.271 Gbit/s 1.659 GB/s
OC-768/STM-256 39.813 Gbit/s 4.976 GB/s
OC-1536/STM-512 79.626 Gbit/s 9.953 GB/s
OC-3072/STM-1024 159.252 Gbit/s 19.907 GB/s

Local area networks[edit]

Technology Rate (bit/s) Rate (byte/s) Year
LocalTalk 230 kbit/s 28.8 kB/s
Econet 800 kbit/s 100 kB/s 1981
Omninet 1 Mbit/s 125 kB/s
IBM PC Network 2 Mbit/s 250 kB/s 1985
ARCNET (Standard) 2.5 Mbit/s 312.5 kB/s 1977
Token Ring (Original) 4 Mbit/s 500 kB/s 1985
Ethernet (10BASE-T) 10 Mbit/s 1.25 MB/s 1980 (1985 IEEE Standard)
Token Ring (Later) 16 Mbit/s 2 MB/s 1989
ARCnet Plus 20 Mbit/s 2.5 MB/s 1992
Token Ring IEEE 802.5t 100 Mbit/s 12.5 MB/s
Fast Ethernet (100BASE-TX) 100 Mbit/s 12.5 MB/s 1995
FDDI 100 Mbit/s 12.5 MB/s
MoCA 1.0[23] 100 Mbit/s 12.5 MB/s
MoCA 1.1[23] 175 Mbit/s 21.875 MB/s
HomePlug AV 200 Mbit/s 25 MB/s 2005
FireWire (IEEE 1394) 400[24][25] 400 Mbit/s 50 MB/s 1995
HIPPI 800 Mbit/s 100 MB/s
IEEE 1901 1,000 Mbit/s 125 MB/s 2010
Token Ring IEEE 802.5v 1 Gbit/s 125 MB/s 2001
Gigabit Ethernet (1000BASE-T) 1 Gbit/s 125 MB/s 1998
Reflective Memory or RFM2 (1.25 µs latency) 2 Gbit/s 235 MB/s 1970
Myrinet 2000 2 Gbit/s 250 MB/s
Infiniband SDR 1×[26] 2 Gbit/s 250 MB/s
RapidIO Gen1 1x 2.5 Gbit/s 312.5 MB/s
Quadrics QsNetI 3.6 Gbit/s 450 MB/s
Infiniband DDR 1×[26] 4 Gbit/s 500 MB/s
RapidIO Gen2 1x 5 Gbit/s 625 MB/s
Infiniband QDR 1×[26] 8 Gbit/s 1 GB/s
Infiniband SDR 4×[26] 8 Gbit/s 1 GB/s
Quadrics QsNetII 8 Gbit/s 1 GB/s
RapidIO Gen1 4x 10 Gbit/s 1.25 GB/s
RapidIO Gen2 2x 10 Gbit/s 1.25 GB/s
10 Gigabit Ethernet (10GBASE-X) 10 Gbit/s 1.25 GB/s
Myri 10G 10 Gbit/s 1.25 GB/s
Infiniband FDR-10 1×[27] 10.31 Gbit/s 1.29 GB/s
Infiniband FDR 1×[27] 13.64 Gbit/s 1.7 GB/s
Infiniband DDR 4×[26] 16 Gbit/s 2 GB/s
RapidIO Gen2 4x 20 Gbit/s 2.5 GB/s
Scalable Coherent Interface (SCI) Dual Channel SCI, x8 PCIe 20 Gbit/s 2.5 GB/s
Infiniband SDR 12×[26] 24 Gbit/s 3 GB/s
Infiniband EDR 1×[27] 25 Gbit/s 3.125 GB/s
Infiniband QDR 4×[26] 32 Gbit/s 4 GB/s
RapidIO Gen2 8x 40 Gbit/s 5 GB/s
40 Gigabit Ethernet (40GBASE-X) 40 Gbit/s 5 GB/s
Infiniband FDR-10 4×[27] 41.25 Gbit/s 5.16 GB/s
Infiniband DDR 12×[26] 48 Gbit/s 6 GB/s
Infiniband FDR 4×[27] 54.54 Gbit/s 6.82 GB/s
RapidIO Gen2 16x 80 Gbit/s 10 GB/s
Infiniband QDR 12×[26] 96 Gbit/s 12 GB/s
Infiniband EDR 4×[27] 100 Gbit/s 12.5 GB/s
100 Gigabit Ethernet (100GBASE-X) 100 Gbit/s 12.5 GB/s
Infiniband FDR-10 12×[27] 123.75 Gbit/s 15.47 GB/s
Infiniband FDR 12×[27] 163.64 Gbit/s 20.45 GB/s
Infiniband EDR 12×[27] 300 Gbit/s 37.5 GB/s

Wireless networks[edit]

802.11 networks in infrastructure mode are half-duplex; all stations share the medium. In infrastructure or access point mode, all traffic has to pass through an Access Point (AP). Thus, two stations on the same access point that are communicating with each other must have each and every frame transmitted twice: from the sender to the access point, then from the access point to the receiver. This approximately halves the effective bandwidth.

802.11 networks in ad hoc mode are still half-duplex, but devices communicate directly rather than through an access point. In this mode all devices must be able to "see" each other, instead of only having to be able to "see" the access point.

Standard Rate (bit/s) Rate (byte/s) Year
Classic WaveLAN 2 Mbit/s 250 kB/s 1988
IEEE 802.11 2 Mbit/s 250 kB/s 1997
RONJA (full duplex) 10 Mbit/s 1.25 MB/s 2001
IEEE 802.11a 54 Mbit/s 6.75 MB/s 1999
IEEE 802.11b 11 Mbit/s 1.375 MB/s 1999
IEEE 802.11g 54 Mbit/s 6.75 MB/s 2003
IEEE 802.16 (WiMAX) 70 Mbit/s 8.75 MB/s 2004
IEEE 802.11g with Super G by Atheros 108 Mbit/s 13.5 MB/s 2003
IEEE 802.11g with 125 High Speed Mode by Broadcom 125 Mbit/s 15.625 MB/s 2003
IEEE 802.11g with Nitro by Conexant 140 Mbit/s 17.5 MB/s 2003
IEEE 802.11n 600 Mbit/s 75 MB/s 2009
IEEE 802.11ac (maximum theoretical speed) 6.93 Gbit/s 850 MB/s 2012
IEEE 802.11ad (maximum theoretical speed) 7.138 Gbit/s 900 MB/s 2011

Wireless personal area networks[edit]

Technology Rate (bit/s) Rate (byte/s) Year
ANT 20 kbit/s 2.5 kB/s
IrDA-Control 72 kbit/s 9 kB/s
IrDA-SIR 115.2 kbit/s 14 kB/s
802.15.4 (2.4 GHz) 250 kbit/s 31.25 kB/s
Bluetooth 1.1 1 Mbit/s 125 kB/s 2002
Bluetooth 2.0+EDR 3 Mbit/s 375 kB/s 2004
IrDA-FIR 4 Mbit/s 500 kB/s
IrDA-VFIR 16 Mbit/s 2 MB/s
Bluetooth 3.0 24 Mbit/s 3 MB/s 2009
Bluetooth 4.0 24 Mbit/s 3 MB/s 2010
IrDA-UFIR 96 Mbit/s 12 MB/s
WUSB-UWB 480 Mbit/s 60 MB/s
IrDA-Giga-IR 1,024 Mbit/s 128 MB/s

Computer buses[edit]

Main buses[edit]

Technology Rate (bit/s) Rate (byte/s) Year
I²C 3.4 Mbit/s 425 kB/s 1992 (standardized)
Apple II series (incl. Apple IIGS) 8-bit/1 MHz 8 Mbit/s 1 MB/s,[28][29]
SS-50 Bus 8-bit/1(?) MHz 8 Mbit/s 1 MB/s
STD-80 8-bit/8 MHz 16 Mbit/s 2 MB/s
ISA 8-Bit/4.77 MHz 19.1 Mbit/s 2.39 MB/s 1981 (created)
STD-80 16-bit/8 MHz 32 Mbit/s 4 MB/s
Zorro II 16-bit/7.14 MHz[30] 42.4 Mbit/s 5.3 MB/s 1986
ISA 16-Bit/8.33 MHz 66.7 Mbit/s 8.33 MB/s 1984 (created)
Europe Card Bus 8-Bit/10 MHz 66.7 Mbit/s 8.33 MB/s 1977 (created)
S-100 bus 8-bit/10 MHz 80 Mbit/s 10 MB/s
Serial Peripheral Interface Bus (Up to 100 MHz) 100 Mbit/s 12.5 MB/s
Low Pin Count 125 Mbit/s 15.63 MB/s [x]
STEbus 8-Bit/16 MHz 128 Mbit/s 16 MB/s 1987 (standardized)
C-Bus 16-bit/10 MHz 160 Mbit/s 20 MB/s[31]
HP Precision Bus 184 Mbit/s 23 MB/s
STD-32 32-bit/8 MHz 256 Mbit/s 32 MB/s[32]
NESA 32-bit/8 MHz 256 Mbit/s 32 MB/s[33]
EISA 8-16-32bit/8.33 MHz 266.56 Mbit/s 33.32 MB/s 1988
VME64 32-64bit 400 Mbit/s 40 MB/s
NuBus 10 MHz 400 Mbit/s 40 MB/s
DEC TURBOchannel 32-bit/12.5 MHz 400 Mbit/s 50 MB/s
MCA 16-32bit/10 MHz 660 Mbit/s 66 MB/s 1987
NuBus90 20 MHz 800 Mbit/s 80 MB/s
APbus 32-bit/25(?) MHz 800 Mbit/s 100 MB/s[34]
Sbus 32-bit/25 MHz 800 Mbit/s 100 MB/s 1989
DEC TURBOchannel 32-bit/25 MHz 800 Mbit/s 100 MB/s
Local Bus 98 32-bit/33 MHz 1,056 Mbit/s 132 MB/s[35]
VESA Local Bus - VLB 32-bit/33 MHz 1,067 Mbit/s 133.33 MB/s 1992
PCI 32-bit/33 MHz 1,067 Mbit/s 133.33 MB/s 1993
HP GSC-1X 1,136 Mbit/s 142 MB/s
Zorro III 32-bit/async (eq. 37.5 MHz)[36][37] 1,200 Mbit/s 150 MB/s[38] 1990
VESA Local Bus - VLB 32-bit/40 MHz 1,280 Mbit/s 160 MB/s 1992
Sbus 64-bit/25 MHz 1.6 Gbit/s 200 MB/s
PCI Express 1.0 (×1 link)[39] 2.5 Gbit/s 250 MB/s [z] 2004
HP GSC-2X 2.048 Gbit/s 256 MB/s
PCI 64-bit/33 MHz 2.133 Gbit/s 266.7 MB/s 1993
PCI 32-bit/66 MHz 2.133 Gbit/s 266.7 MB/s 1995
AGP 2.133 Gbit/s 266.7 MB/s 1997
RapidIO Gen1 1x 2.5 Gbit/s 312.5 MB/s
HIO bus 2.560 Gbit/s 320 MB/s
GIO64 64-bit/40 MHz 2.560 Gbit/s 320 MB/s
PCI Express 1.0 (×2 link)[39] 5 Gbit/s 500 MB/s [z] 2011
PCI Express 2.0 (×1 link)[40] 5 Gbit/s 500 MB/s [z] 2007
AGP 4.266 Gbit/s 533.3 MB/s 1997
PCI 64-bit/66 MHz 4.266 Gbit/s 533.3 MB/s
PCI-X DDR 16-bit 4.266 Gbit/s 533.3 MB/s
RapidIO Gen2 1x 5 Gbit/s 625 MB/s
PCI 64-bit/100 MHz 6.4 Gbit/s 800 MB/s
PCI Express 3.0 (×1 link)[41] 8 Gbit/s 984.6 MB/s [y] 2011
Unified Media Interface (UMI) (×4 link) 10 Gbit/s 1 GB/s [z] 2011
Direct Media Interface (DMI) (×4 link) 10 Gbit/s 1 GB/s [z] 2004
Enterprise Southbridge Interface (ESI) 8 Gbit/s 1 GB/s
PCI Express 1.0 (×4 link)[39] 10 Gbit/s 1 GB/s [z] 2004
AGP 8.533 Gbit/s 1.067 GB/s 1998
PCI-X 133 8.533 Gbit/s 1.067 GB/s
PCI-X QDR 16-bit 8.533 Gbit/s 1.067 GB/s
InfiniBand single 4×[26] 8 Gbit/s 1 GB/s
RapidIO Gen1 4x 10 Gbit/s 1.25 GB/s
RapidIO Gen2 2x 10 Gbit/s 1.25 GB/s
UPA 15.360 Gbit/s 1.920 GB/s
Unified Media Interface 2.0 (UMI 2.0) (×4 link) 20 Gbit/s 2 GB/s [z] 2012
Direct Media Interface 2.0 (DMI 2.0) (×4 link) 20 Gbit/s 2 GB/s [z] 2011
PCI Express 1.0 (×8 link)[39] 20 Gbit/s 2 GB/s [z] 2004
PCI Express 2.0 (×4 link)[40] 20 Gbit/s 2 GB/s [z] 2007
AGP 8x 17.066 Gbit/s 2.133 GB/s 2002
PCI-X DDR 17.066 Gbit/s 2.133 GB/s
RapidIO Gen2 4x 20 Gbit/s 2.5 GB/s
Sun JBus (200 MHz) 20.48 Gbit/s 2.56 GB/s 2003
HyperTransport (800 MHz, 16-pair) 25.6 Gbit/s 3.2 GB/s 2001
PCI Express 3.0 (×4 link)[41] 32 Gbit/s 3.934 GB/s [y] 2011
HyperTransport (1 GHz, 16-pair) 32 Gbit/s 4 GB/s
PCI Express 1.0 (×16 link)[39] 40 Gbit/s 4 GB/s [z] 2004
PCI Express 2.0 (×8 link)[40] 40 Gbit/s 4 GB/s [z] 2007
PCI-X QDR 34.133 Gbit/s 4.266 GB/s
AGP 8× 64-bit 34.133 Gbit/s 4.266 GB/s
RapidIO Gen2 8x 40 Gbit/s 5 GB/s
PCI Express 3.0 (×8 link)[41] 64 Gbit/s 7.88 GB/s [y] 2011
PCI Express 1.0 (×32 link)[39] 80 Gbit/s 8 GB/s [z] 2001
PCI Express 2.0 (×16 link)[40] 80 Gbit/s 8 GB/s [z] 2007
RapidIO Gen2 16x 80 Gbit/s 10 GB/s
PCI Express 3.0 (×16 link)[41] 128 Gbit/s 15.75 GB/s [y] 2011
PCI Express 2.0 (×32 link)[40] 160 Gbit/s 16 GB/s [z] 2007
QPI (4.80GT/s, 2.40 GHz) 153.6 Gbit/s 19.2 GB/s
HyperTransport 2.0 (1.4 GHz, 32-pair) 179.2 Gbit/s 22.4 GB/s 2004
QPI (5.86GT/s, 2.93 GHz) 187.52 Gbit/s 23.44 GB/s
QPI (6.40GT/s, 3.20 GHz) 204.8 Gbit/s 25.6 GB/s
QPI (7.2GT/s, 3.6 GHz) 230.4 Gbit/s 28.8 GB/s 2012
PCI Express 3.0 (×32 link)[40] 256 Gbit/s 31.5 GB/s [y] 2011
QPI (8.0GT/s, 4.0 GHz) 256.0 Gbit/s 32.0 GB/s 2012
HyperTransport 3.0 (2.6 GHz, 32-pair) 332.8 Gbit/s 41.6 GB/s 2006
HyperTransport 3.1 (3.2 GHz, 32-pair) 409.6 Gbit/s 51.2 GB/s 2008

x LPC protocol includes high overhead. While the bruto data rate equals 33.3 million 4-bit-transfers per second (or 16.67 MB/s), the fastest transfer, firmware read, results in 15.63 MB/s. The next fastest bus cycle, 32-bit ISA-style DMA write, yields only 6.67 MB/s. Other transfers may be as low as 2 MB/s.[42]

y Uses 128b/130b encoding, meaning that about 1.54% of each transfer is used by the interface instead of carrying data between the hardware components at each end of the interface. For example, a single link PCIe 3.0 interface has an 8 Gbit/s transfer rate, yet its usable bandwidth is only about 7.88 Gbit/s.

z Uses 8b/10b encoding, meaning that 20% of each transfer is used by the interface instead of carrying data from between the hardware components at each end of the interface. For example, a single link PCIe 1.0 has a 2.5 Gbit/s transfer rate, yet its usable bandwidth is only 2 Gbit/s (250 MB/s).

Portable[edit]

Technology Rate (bit/s) Rate (byte/s) Year
PC Card 16-bit 255 ns byte mode 31.36 Mbit/s 3.92 MB/s
PC Card 16-bit 255 ns word mode 62.72 Mbit/s 7.84 MB/s
PC Card 16-bit 100 ns byte mode 80 Mbit/s 10 MB/s
PC Card 16-bit 100 ns word mode 160 Mbit/s 20 MB/s
PC Card 32-bit (CardBus) byte mode 267 Mbit/s 33.33 MB/s
ExpressCard 1.2 USB 2.0 mode 480 Mbit/s 60 MB/s
PC Card 32-bit (CardBus) word mode 533 Mbit/s 66.66 MB/s
PC Card 32-bit (CardBus) doubleword mode 1,067 Mbit/s 133.33 MB/s
ExpressCard 1.2 PCI Express mode 2,500 Mbit/s 250 MB/s
ExpressCard 2.0 USB 3.0 mode 4,800 Mbit/s 600 MB/s
ExpressCard 2.0 PCI Express mode 5,000 Mbit/s 625 MB/s

Storage[edit]

Technology Rate (bit/s) Rate (byte/s) Year
Teletype Model 33 paper tape (70 bit/s, 10 ASCII characters per second) 0.000070 Mbit/s 0.000010 MB/s 1963
TRS-80 Model 1 Level 1 BASIC cassette tape interface (250 bit/s) 0.00025 Mbit/s 0.000032 MB/s 1977
Apple 2 cassette tape interface (1500 bit/s) 0.0015 Mbit/s 0.0002 MB/s 1977
Single Density 8" FM Floppy Disk Controller (160 KB) 0.250 Mbit/s 0.031 MB/s 1973
Double Density 5.25" MFM Floppy Disk Controller (360 KB) 0.500 Mbit/s 0.062 MB/s 1978
High Density MFM Floppy Disk Controller (1.2 MB/1.44 MB) 1.0 Mbit/s 0.124 MB/s 1984
CD Controller (1×) 1.171 Mbit/s 0.146 MB/s
MFM hard disk 5 Mbit/s 0.625 MB/s
RLL hard disk 7.5 Mbit/s 0.937 MB/s
DVD Controller (1×) 11.1 Mbit/s 1.32 MB/s
USB-1 12 Mbit/s 1.5 MB/s
ESDI 24 Mbit/s 3 MB/s
ATA PIO Mode 0 26.4 Mbit/s 3.3 MB/s
HD DVD Controller (1×) 36 Mbit/s 4.5 MB/s
Blu-ray Controller (1×) 36 Mbit/s 4.5 MB/s
SCSI (Narrow SCSI) (5 MHz)[43] 40 Mbit/s 5 MB/s
ATA PIO Mode 1 41.6 Mbit/s 5.2 MB/s
ATA PIO Mode 2 66.4 Mbit/s 8.3 MB/s
Fast SCSI (8 bits/10 MHz) 80 Mbit/s 10 MB/s
ATA PIO Mode 3 88.8 Mbit/s 11.1 MB/s
AoE over Fast Ethernet, per path 100 Mbit/s 12.5 MB/s
iSCSI over Fast Ethernet 100 Mbit/s 12.5 MB/s
ATA PIO Mode 4 133.3 Mbit/s 16.7 MB/s
Fast Wide SCSI (16 bits/10 MHz) 160 Mbit/s 20 MB/s
Ultra SCSI (Fast-20 SCSI) (8 bits/20 MHz) 160 Mbit/s 20 MB/s
Ultra DMA ATA 33 264 Mbit/s 33 MB/s
Ultra Wide SCSI (16 bits/20 MHz) 320 Mbit/s 40 MB/s
Ultra-2 SCSI 40 (Fast-40 SCSI) (8 bits/40 MHz) 320 Mbit/s 40 MB/s
Ultra DMA ATA 66 533.6 Mbit/s 66.7 MB/s
Blu-ray Controller (16×) 576 Mbit/s 72 MB/s
Ultra-2 wide SCSI (16 bits/40 MHz) 640 Mbit/s 80 MB/s
Serial Storage Architecture SSA 640 Mbit/s 80 MB/s
Ultra DMA ATA 100 800 Mbit/s 100 MB/s
Fibre Channel 1GFC (1.0625 GHz)[44] 850 Mbit/s 106.25 MB/s
AoE over Gigabit Ethernet, per path 1,000 Mbit/s 125 MB/s
iSCSI over Gigabit Ethernet 1,000 Mbit/s 125 MB/s
Ultra DMA ATA 133 1,064 Mbit/s 133 MB/s
Ultra-3 SCSI (Ultra 160 SCSI; Fast-80 Wide SCSI) (16 bits/40 MHz DDR) 1,280 Mbit/s 160 MB/s
SATA revision 1.0[45] 1,500 Mbit/s 150 MB/s [a]
Fibre Channel 2GFC (2.125 GHz)[44] 1,700 Mbit/s 212.5 MB/s
Ultra-320 SCSI (Ultra4 SCSI) (16 bits/80 MHz DDR) 2,560 Mbit/s 320 MB/s
Serial Attached SCSI (SAS)[45] 3,000 Mbit/s 300 MB/s [a]
SATA Revision 2.0[45] 3,000 Mbit/s 300 MB/s [a]
Fibre Channel 4GFC (4.25 GHz)[44] 3,400 Mbit/s 425 MB/s
Ultra-640 SCSI (16 bits/160 MHz DDR) 5,120 Mbit/s 640 MB/s
Serial Attached SCSI (SAS) 2[45] 6,000 Mbit/s 600 MB/s [a]
SATA Revision 3.0[45] 6,000 Mbit/s 600 MB/s [a]
Fibre Channel 8GFC (8.50 GHz)[44] 6,800 Mbit/s 850 MB/s
Fibre Channel 16GFC (17.0 GHz)[44] 12,000 Mbit/s 1,500 MB/s
Serial Attached SCSI (SAS) 3[45] 12,000 Mbit/s 1,200 MB/s
AoE over 10GbE, per path 10,000 Mbit/s 1,250 MB/s
iSCSI over 10GbE 10,000 Mbit/s 1,250 MB/s
FCoE over 10GbE 10,000 Mbit/s 1,250 MB/s
SATA revision 3.2 - SATA Express 16,000 Mbit/s 2,000 MB/s
Serial Attached SCSI (SAS) 4 (prelim spec)[45] 24,000 Mbit/s 2,400 MB/s
iSCSI over InfiniBand 32,000 Mbit/s 4,000 MB/s
iSCSI over 100G Ethernet (hypothetical) 100,000 Mbit/s 12,500 MB/s
FCoE over 100G Ethernet (hypothetical) 100,000 Mbit/s

a Uses 8b/10b encoding

Peripheral[edit]

Technology Rate (bit/s) Rate (byte/s) Year
CBM Bus[46][47] 2.7 kbit/s 0.34 kB/s 1981
Apple Desktop Bus 10.0 kbit/s 1.25 kB/s 1986
Serial MIDI 31.25 kbit/s 3.9 kB/s 1983
Serial EIA-232 max. 230.4 kbit/s 28.8 kB/s 1962
Serial DMX512A 250.0 kbit/s 31.25 kB/s 1998
Parallel (Centronics) 1 Mbit/s 125 kB/s 1970 (Standardised 1994)
Serial 16550 UART max. 1.5 Mbit/s 187.5 kB/s
USB 1.1 ("Low-Bandwidth") 1.536 Mbit/s 192 kB/s 1996
Serial UART max 2.7648 Mbit/s 345.6 kB/s
GPIB/HPIB (IEEE-488.1) IEEE-488 max. 8 Mbit/s 1 MB/s late 1960s (Standardised 1976)
Serial EIA-422 max. 10 Mbit/s 1.25 MB/s
USB 1.1 ("Full-Bandwidth") 12 Mbit/s 1.5 MB/s 1996
Parallel (Centronics) EPP 2 MHz 16 Mbit/s 2 MB/s 1992
Serial EIA-485 max. 35 Mbit/s 4.375 MB/s
GPIB/HPIB (IEEE-488.1-2003) IEEE-488 max. 64 Mbit/s 8 MB/s
FireWire (IEEE 1394) 100 98.304 Mbit/s 12.288 MB/s 1995
FireWire (IEEE 1394) 200 196.608 Mbit/s 24.576 MB/s 1995
FireWire (IEEE 1394) 400 393.216 Mbit/s 49.152 MB/s 1995
USB 2.0 ("Hi-Speed") 480 Mbit/s 60 MB/s 2000
FireWire (IEEE 1394b) 800[48] 786.432 Mbit/s 98.304 MB/s 2002
Fibre Channel 1 Gb SCSI 1,062.5 Mbit/s 100 MB/s
FireWire (IEEE 1394b) 1600[48] 1.573 Gbit/s 196.6 MB/s 2007
Fibre Channel 2 Gb SCSI 2,125 Mbit/s 200 MB/s
eSATA (SATA 300) 3 Gbit/s 375 MB/s 2004
CoaXPress Base (up and down bidirectional link) 3.125 Gbit/s + 20.833 Mbit/s 390 MB/s 2009
FireWire (IEEE 1394b) 3200[48] 3,145.7 Mbit/s 393.216 MB/s 2007
External PCI Express 2.0 ×1 4 Gbit/s 500 MB/s
Fibre Channel 4 Gb SCSI 4.25 Gbit/s 531.25 MB/s
USB 3.0 ("SuperSpeed") 5 Gbit/s 625 MB/s 2010
eSATA (SATA 600) 6 Gbit/s 750 MB/s 2011
CoaXPress full (up and down bidirectional link) 6.25 Gbit/s + 20.833 Mbit/s 781 MB/s 2009
External PCI Express 2.0 ×2 8 Gbit/s 1,000 MB/s
USB 3.1 ("SuperSpeed+") 10 Gbit/s 1,250 MB/s 2013
Thunderbolt 10 Gbit/s × 2 1,250 MB/s × 2 2011
External PCI Express 2.0 ×4 16 Gbit/s 2,000 MB/s
Thunderbolt 2 20 Gbit/s 2,500 MB/s 2013
External PCI Express 2.0 ×8 32 Gbit/s 4,000 MB/s
External PCI Express 2.0 ×16 64 Gbit/s 8,000 MB/s

MAC to PHY[edit]

Technology Rate (bit/s) Rate (byte/s) Year
MII (4 lanes) 100 Mbit/s 12.5 MB/s
RMII (2 lanes) 100 Mbit/s 12.5 MB/s
SMII (1 lane) 100 Mbit/s 12.5 MB/s
GMII (8 lanes) 1.0 Gbit/s 125 MB/s
RGMII (4 lanes) 1.0 Gbit/s 125 MB/s
SGMII (2 lanes) 1.0 Gbit/s 125 MB/s
XGMII (32 lanes) 10.0 Gbit/s 1.25 GB/s
XAUI (4 lanes) 10.0 Gbit/s 1.25 GB/s
XLGMII 40.0 Gbit/s 5 GB/s
CGMII 100.0 Gbit/s 12.5 GB/s 2008

PHY to XPDR[edit]

Technology Rate (bit/s) Rate (byte/s) Year
XSBI (16 lanes) 0.995 Gbit/s 0.124 GB/s

Dynamic random access memory[edit]

The table below shows values for PC memory module types. These modules usually combine multiple chips on one circuit board. SIMM modules connect to the computer via an 8 bit or 32 bit wide interface. DIMM modules connect to the computer via a 64 bit wide interface. Some other computer architectures use different modules with a different bus width.

FPM, EDO, SDR, and RDRAM memories were not commonly installed in a dual-channel configuration. DDR and DDR2 memory are usually installed in single or dual-channel configuration. DDR3 memory are installed in single, dual, tri, and quad-channel configurations. Bit rates of multi-channel configuration are slightly increased.

Module type Chip Type Memory clock Bus speed Transfer rate (bit/s) Transfer rate (byte/s)
FPM DRAM 45 ns 22 MHz 0.177 GT/s 1.416 Gbit/s 177 MB/s
EDO DRAM 30 ns 33 MHz 0.266 GT/s 2.128 Gbit/s 266 MB/s
PC-66 SDR SDRAM 10/15 ns 66 MHz 0.066 GT/s 4.264 Gbit/s 533 MB/s
PC-100 SDR SDRAM 8 ns 100 MHz 0.100 GT/s 6.4 Gbit/s 800 MB/s
PC-133 SDR SDRAM 7/7.5 ns 133 MHz 0.133 GT/s 8.528 Gbit/s 1.066 GB/s
RIMM-1200 RDRAM PC-600 300 MHz 0.600 GT/s 9.6 Gbit/s 1.2 GB/s
RIMM-1400 RDRAM PC-700 350 MHz 0.700 GT/s 11.2 Gbit/s 1.4 GB/s
RIMM-1600 RDRAM PC-800 400 MHz 0.800 GT/s 12.8 Gbit/s 1.6 GB/s
PC-1600 DDR SDRAM DDR-200 100 MHz 0.200 GT/s 12.8 Gbit/s 1.6 GB/s
RIMM-2100 RDRAM PC-1066 533 MHz 1.066 GT/s 17.034 Gbit/s 2.133 GB/s
PC-2100 DDR SDRAM DDR-266 133 MHz 0.266 GT/s 17.034 Gbit/s 2.133 GB/s
PC-2700 DDR SDRAM DDR-333 166 MHz 0.333 GT/s 21.336 Gbit/s 2.667 GB/s
PC-3200 DDR SDRAM DDR-400 200 MHz 0.400 GT/s 25.6 Gbit/s 3.2 GB/s
PC2-3200 DDR2 SDRAM DDR2-400 100 MHz 0.400 GT/s 25.6 Gbit/s 3.2 GB/s
PC-3500 DDR SDRAM DDR-433 216 MHz 0.433 GT/s 27.728 Gbit/s 3.466 GB/s
PC-3700 DDR SDRAM DDR-466 233 MHz 0.466 GT/s 29.864 Gbit/s 3.733 GB/s
PC-4000 DDR SDRAM DDR-500 250 MHz 0.500 GT/s 32 Gbit/s 4 GB/s
PC-4200 DDR SDRAM DDR-533 266 MHz 0.533 GT/s 34.128 Gbit/s 4.266 GB/s
PC2-4200 DDR2 SDRAM DDR2-533 133 MHz 0.533 GT/s 34.128 Gbit/s 4.266 GB/s
PC-4400 DDR SDRAM DDR-550 275 MHz 0.550 GT/s 35.2 Gbit/s 4.4 GB/s
PC-4800 DDR SDRAM DDR-600 300 MHz 0.600 GT/s 38.4 Gbit/s 4.8 GB/s
PC2-5300 DDR2 SDRAM DDR2-667 167 MHz 0.667 GT/s 42.664 Gbit/s 5.333 GB/s
PC2-6000 DDR2 SDRAM DDR2-750 188 MHz 0.750 GT/s 48 Gbit/s 6 GB/s
PC2-6400 DDR2 SDRAM DDR2-800 200 MHz 0.800 GT/s 51.2 Gbit/s 6.4 GB/s
PC3-6400 DDR3 SDRAM DDR3-800 100 MHz 0.800 GT/s 51.2 Gbit/s 6.4 GB/s
PC2-7200 DDR2 SDRAM DDR2-900 225 MHz 0.900 GT/s 57.6 Gbit/s 7.2 GB/s
PC2-8000 DDR2 SDRAM DDR2-1000 250 MHz 1 GT/s 57.6 Gbit/s 7.2 GB/s
PC2-8500 DDR2 SDRAM DDR2-1066 267 MHz 1.066 GT/s 64 Gbit/s 8 GB/s
PC3-8500 DDR3 SDRAM DDR3-1066 133 MHz 1.066 GT/s 64 Gbit/s 8 GB/s
PC2-8800 DDR2 SDRAM DDR2-1100 275 MHz 1.1 GT/s 70.4 Gbit/s 8.8 GB/s
PC2-8888 DDR2 SDRAM DDR2-1100 278 MHz 1.111 GT/s 71.104 Gbit/s 8.888 GB/s
PC2-9136 DDR2 SDRAM DDR2-1142 286 MHz 1.142 GT/s 73.088 Gbit/s 9.136 GB/s
PC2-9200 DDR2 SDRAM DDR2-1150 288 MHz 1.15 GT/s 73.6 Gbit/s 9.2 GB/s
PC2-9600 DDR2 SDRAM DDR2-1200 300 MHz 1.2 GT/s 76.8 Gbit/s 9.6 GB/s
PC2-10000 DDR2 SDRAM DDR2-1250 313 MHz 1.25 GT/s 80 Gbit/s 10 GB/s
PC3-10600 DDR3 SDRAM DDR3-1333 167 MHz 1.333 GT/s 85.336 Gbit/s 10.667 GB/s
PC3-11000 DDR3 SDRAM DDR3-1375 172 MHz 1.375 GT/s 88 Gbit/s 11 GB/s
PC3-12800 DDR3 SDRAM DDR3-1600 200 MHz 1.6 GT/s 102.4 Gbit/s 12.8 GB/s
PC3-13000 DDR3 SDRAM DDR3-1625 203 MHz 1.625 GT/s 104 Gbit/s 13 GB/s
PC3-14400 DDR3 SDRAM DDR3-1800 225 MHz 1.8 GT/s 115.2 Gbit/s 14.4 GB/s
PC3-14900 DDR3 SDRAM DDR3-1866 233 MHz 1.866 GT/s 119.464 Gbit/s 14.933 GB/s
PC3-15000 DDR3 SDRAM DDR3-1866 233 MHz 1.866 GT/s 119.464 Gbit/s 14.933 GB/s
PC3-16000 DDR3 SDRAM DDR3-2000 250 MHz 2 GT/s 128 Gbit/s 16 GB/s
PC3-17000 DDR3 SDRAM DDR3-2133 266 MHz 2.133 GT/s 136.528 Gbit/s 17.066 GB/s
PC4-17000 DDR4 SDRAM DDR4-2133 266 MHz 2.133 GT/s 136.5 Gbit/s 17 GB/s [49]
PC3-17600 DDR3 SDRAM DDR3-2200 275 MHz 2.2 GT/s 140.8 Gbit/s 17.6 GB/s
PC3-19200 DDR3 SDRAM DDR3-2400 300 MHz 2.4 GT/s 153.6 Gbit/s 19.2 GB/s
PC3-21300 DDR3 SDRAM DDR3-2666 333 MHz 2.666 GT/s 170.4 Gbit/s 21.3 GB/s
PC3-24000 DDR3 SDRAM DDR3-3000 375 MHz 3.0 GT/s 192 Gbit/s 24 GB/s
PC4-25600 DDR4 SDRAM DDR4-3200 400 MHz 3.2 GT/s 204.8 Gbit/s 25.6 GB/s

Video RAM[edit]

RAM memory modules are also utilised by graphics processing units; however, video memory differs somewhat, particularly with lower power requirements, and is specialised to serve GPUs: for example, the introduction of GDDR3, which was fundamentally based on DDR2. Every video memory chip is directly connected to the GPU (point-to-point). The total GPU memory bus width varies with the number of memory chips and the number of lanes per chip. For example, GDDR5 specifies either 16 or 32 lanes per "device" (chip). Over the years, bus widths ranged from 64-bit to 512-bit.[50] Because of this variability, graphics memory speeds are sometimes compared per pin. For direct comparison to the values for 64-bit modules shown above, video RAM is compared here in 64-lane lots, corresponding to two chips. In 2012, high-end GPUs use 8 or even 12 chips with 32 lanes each, for a total memory bus width of 256 or 384 bits. Combined with a transfer rate per pin of 5 GT/s or more, such cards can reach 240 GB/s or more.

Video RAM frequencies vary greatly. The values given below are examples for high-end cards.[51] Since many cards have more than one pair of chips, the total bandwidth is correspondingly higher. For example, high-end cards often have eight chips, so that the total bandwidth is four times the value given below.

Module type Chip Type Memory clock Transfers/s Transfer rate (bit/s) Transfer rate (byte/s)
64 lanes DDR 350 MHz 0.7 GT/s 44.8 Gbit/s 5.6 GB/s
64 lanes DDR2 250 MHz 1 GT/s 64 Gbit/s 8 GB/s
64 lanes GDDR3 1250 MHz 2.5 GT/s 159 Gbit/s 19.9 GB/s
64 lanes GDDR4 1100 MHz 2.2 GT/s 140.8 Gbit/s 17.6 GB/s
64 lanes GDDR5 1500 MHz 6 GT/s 384 Gbit/s 48 GB/s

Digital audio[edit]

Device Rate (bit/s) Rate (byte/s)
CD Audio (16-bit PCM) 1.411 Mbit/s 176.4 KB/s
I²S 2.250 Mbit/s @ 24bit/48 kHz 0.281 MB/s
AES/EBU 2.625 Mbit/s @ 24-bit/48 kHz 0.328 MB/s
S/PDIF 3.072 Mbit/s 0.384 MB/s
ADAT Lightpipe (Type I) 9.216 Mbit/s 2.304 MB/s
AC'97 12.288 Mbit/s 1.536 MB/s
HDMI 1.x 36.864 Mbit/s 4.608 MB/s
DisplayPort 36.864 Mbit/s 4.608 MB/s
Intel High Definition Audio rev. 1.0[52] 48 Mbit/s outbound; 24 Mbit/s inbound 6 MB/s outbound ; 3 MB/s inbound
HDMI 2.0 49.152 Mbit/s 6.144 MB/s
MADI 100 Mbit/s 12.5 MB/s

Digital video interconnects[edit]

Data rates given are from the video source (e.g., video card) to receiving device (e.g., monitor) only. Out of band and reverse signaling channels are not included.

Device Rate (bit/s) Rate (byte/s)
HD-SDI (SMPTE 292M) 1.485 Gbit/s 0.186 GB/s
Camera Link Base (single) 24-bit 85 MHz 2.040 Gbit/s 0.255 GB/s
LVDS Display Interface[53] 2.80 Gbit/s 0.35 GB/s
3G-SDI (SMPTE 424M) 2.97 Gbit/s 0.371 GB/s
Single link DVI 4.95 Gbit/s 0.619 GB/s [a]
HDMI 1.0[54] 4.95 Gbit/s 0.619 GB/s [a]
Camera Link full (dual) 64-bit 85 MHz 5.44 Gbit/s 0.680 GB/s
DisplayPort 1.0 (4-lane Reduced Bit Rate)[55] 6.48 Gbit/s 0.810 GB/s [a]
Dual link DVI 9.90 Gbit/s 1.238 GB/s [a]
HDMI 1.3[56] 10.2 Gbit/s 1.275 GB/s [a]
Dual High-Speed LVDS Display Interface 10.5 Gbit/s 1.312 GB/s
DisplayPort 1.0 (4-lane High Bit Rate)[55] 10.8 Gbit/s 1.35 GB/s [a]
HDMI 2.0[57] 18.0 Gbit/s 2.25 GB/s [a]
DisplayPort 1.2 (4-lane High Bit Rate 2)[55] 21.6 Gbit/s 2.7 GB/s [a]
DisplayPort 1.3 (4-lane High Bit Rate 3) 32.4 Gbit/s 4.05 GB/s [a]

a Uses 8b/10b encoding for video data—effective data rate is 80% of the symbol rate

See also[edit]

Notes[edit]

  1. ^ http://www.nist.gov/pml/div688/grp40/upload/NIST-Enhanced-WWVB-Broadcast-Format-sept-2012-Radio-Station-staff.pdf
  2. ^ http://tf.nist.gov/timefreq/general/pdf/2422.pdf
  3. ^ TTY uses a Baudot code, not ASCII. This uses 5 bits per character instead of 8, plus one start and approx. 1.5 stop bits (7.5 total bits per character sent).
  4. ^ WPM, or Words Per Minute, is the number of times the word "PARIS" is transferred per minute. Strictly speaking the code is quinary, accounting inter-element, inter-letter, and inter-word gaps, yielding 50 binary elements (bits) per one word. Therefore 40 wpm is 2000 bits/min or 55.6 bits/s. Counting characters, including inter-word gaps, gives six characters per word or 240 characters per minute, and finally four characters per second.
  5. ^ a b c d e f g h i j All modems are wrongly assumed to be in serial operation with 1 start bit, 8 data bits, no parity, and 1 stop bit (2 stop bits for 110-baud modems). Therefore, currently modems are wrongly calculated with transmission of 10 bits per 8-bit byte (11 bits for 110-baud modems). Although the serial port is nearly always used to connect a modem and has equivalent data rates, the protocols, modulations and error correction differ completely.
  6. ^ a b c Modem Types and Timeline, Daxal Communications, 2003-12-16, retrieved 2009-04-16 
  7. ^ ITU.int
  8. ^ a b c 56K modems: V.90 and V.92 have just 5% overhead for the protocol signaling. The maximum capacity can only be achieved when the upstream (service provider) end of the connection is digital, i.e. a DS0 channel.
  9. ^ Note that effective aggregate bandwidth for an ISDN installation is typically higher than the rates shown for a single channel due to the use of multiple channels. A basic rate interface (BRI) provides two "B" channels and one "D" channel. Each B channel provides 64 kbit/s bandwidth and the "D" channel carries signaling (call setup) information. B channels can be bonded to provide a 128 kbit/s data rate. Primary rate interfaces (PRI) vary depending on whether the region uses E1 (Europe, world) or T1 (North America) bearers. In E1 regions, the PRI carries 30 B-channels and one D-channel; in T1 regions the PRI carries 23 B-channels and one D-channel. The D-channel has different bandwidth on the two interfaces.
  10. ^ Massey, David (2006-07-04), "Timeline of Telecommunications", Telephone Tribute, retrieved 2009-04-16 
  11. ^ Adam.com.au
  12. ^ Itu.int
  13. ^ a b DOCSIS 1.0 includes technology which first became available around 1995–1996, and has since become very widely deployed. DOCSIS 1.1 introduces some security improvements and Quality of Service (QoS).
  14. ^ a b DOCSIS 2.0 specifications provide increased upstream throughput for symmetric services.
  15. ^ a b DOCSIS 3.0 is currently in development by the CableLabs consortium and is slated to include support for channel bonding and IPv6.
  16. ^ ITU.int
  17. ^ ITU.int
  18. ^ [1]
  19. ^ Most operators only support up to 9600bit/s
  20. ^ SDSL is available in various speeds.
  21. ^ ADSL connections will vary in throughput from 64 kbit/s to several Mbit/s depending on configuration. Most are commonly below 2 Mbit/s. Some ADSL and SDSL connections have a higher digital bandwidth than T1 but their rate is not guaranteed, and will drop when the system gets overloaded, whereas the T1 type connections are usually guaranteed and have no contention ratios.
  22. ^ Satellite internet may have a high bandwidth but also has a high latency due to the distance between the modem, satellite and hub. One-way satellite connections exist where all the downstream traffic is handled by satellite and the upstream traffic by land-based connections such as 56K modems and ISDN.
  23. ^ a b "MoCA 1.1 improves throughput" over coaxial cable to 175 Mbits/s versus the 100 Mbits/s provided by the MoCA 1.0 specification.
  24. ^ FireWire natively supports TCP/IP, and is often used at an alternative to Ethernet when connecting 2 nodes. Tweaktown.com
  25. ^ Data rate comparison between FW and Giganet shows that FW's lower overhead has nearly the same throughput as Giganet. Unibrain.com
  26. ^ a b c d e f g h i j InfiniBand SDR, DDR and QDR use an 8b/10b encoding scheme.
  27. ^ a b c d e f g h i InfiniBand FDR-10, FDR and EDR use a 64b/66b encoding scheme.
  28. ^ Mac History
  29. ^ VAW: Apple IIgs Specs
  30. ^ The Zorro II bus use 4 clocks per 16-Bit of data transferred. See the Zorro III technical specification for more information.
  31. ^ Japan wikipedia article, Bus used in early NEC PC-9800 series and compatible systems
  32. ^ STD 32 Bus Specification and Designer's Guide
  33. ^ Japan wikipedia article, Bus used in later NEC PC-9800 series and compatible systems
  34. ^ Local Area Networks Newsletter by Paul Polishuk, September 1992, Page 7 (APbus used in Sony NeWS and NEC UP4800 workstations and NEC EWS4800 servers after VMEbus and before switch to PCI)
  35. ^ Japan wikipedia article, Bus used in NEC PC-9821 series
  36. ^ Dave Haynie, designer of the Zorro III bus, claims in this posting that the theoretical max of the Zorro III bus can be derived by the timing information given in ‘’chapter 5’’ of the Zorro III technical specification.
  37. ^ Dave Haynie, designer of the Zorro III bus, states in this posting that Zorro III is an asynchronous bus and therefore does not have a classical MHz rating. A maximum theoretical MHz value may be derived by examining timing constraints detailed in the Zorro III technical specification, which should yield about 37.5 MHz. No existing implementation performs to this level.
  38. ^ Dave Haynie, designer of the Zorro III bus, claims in this posting that Zorro III has a max burst rate of 150 MB/s.
  39. ^ a b c d e f Note that PCI Express 1.0/2.0 lanes use an 8b/10b encoding scheme.
  40. ^ a b c d e f PCIe 2.0 effectively doubles the bus standard's bandwidth from 2.5 GT/s to 5 GT/s
  41. ^ a b c d PCIe 3.0 increases the bandwidth from 5 GT/s to 8 GT/s and switches to 128b-130b encoding
  42. ^ Intel LPC Interface Specification 1.1
  43. ^ SCSI-1, SCSI-2 and SCSI-3 are signaling protocols and do not explicitly refer to a specific rate. Narrow SCSI exists using SCSI-1 and SCSI-2. Higher rates use SCSI-2 or later.
  44. ^ a b c d e Fibre Channel 1GFC, 2GFC, 4GFC use an 8b/10b encoding scheme. Fibre Channel 10GFC, which uses a 64B/66B encoding scheme, is not compatible with 1GFC, 2GFC and 4GFC, and is used only to interconnect switches.
  45. ^ a b c d e f g SATA and SAS use an 8b/10b encoding scheme.
  46. ^ proprietary serial version of IEEE-488 by Commodore International
  47. ^ http://cbmmuseum.kuto.de/floppy.html
  48. ^ a b c FireWire (IEEE 1394b) uses an 8b/10b encoding scheme.
  49. ^ Scott Mueller. Upgrading and Repairing PCs. Que Publishing. Mar 7, 2013. Table 6.11: JEDEC Standard DDR4 Module (284-PIN DIMM) Speeds and Transfer Rate
  50. ^ Comparison of AMD graphics processing units
  51. ^ Comparison of Nvidia graphics processing units
  52. ^ High Definition Audio Specification, Revision 1.0a, 2010
  53. ^ Videsignline.com, Panel display interfaces and bandwidth: From TTL, LVDS, TDMS to DisplayPort
  54. ^ Octavainc.com
  55. ^ a b c Displayport Technical Overview, May 2010
  56. ^ HDMI.org
  57. ^ HDMI.org

External links[edit]