Solar air conditioning

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Solar air conditioning refers to any air conditioning (cooling) system that uses solar power.

This can be done through passive solar, solar thermal energy conversion and photovoltaic conversion (sunlight to electricity). The U.S. Energy Independence and Security Act of 2007[1] created 2008 through 2012 funding for a new solar air conditioning research and development program, which should develop and demonstrate multiple new technology innovations and mass production economies of scale. Solar air conditioning might play an increasing role in zero-energy and energy-plus buildings design.[who?]


In the late 19th century, the most common fluid for absorption cooling was a solution of ammonia and water. Today, the combination of lithium bromide and water is also in common use. One end of the system of expansion/condensation pipes is heated, and the other end gets cold enough to make ice. Originally, natural gas was used as a heat source in the late 19th century. Today, propane is used in recreational vehicle absorption chiller refrigerators. Innovative hot water solar thermal energy collectors can also be used as the modern "free energy" heat source. In 2013, a leap forward in solar HVAC technology occurred, and a U.S patent was issued to James Hammond (Patent No. 8,448,458 B2), for the principle of super-heating (compressing) refrigerant directly through solar thermal transfer.

Photovoltaic (PV) solar cooling[edit]

Photovoltaics can provide the power for any type of electrically powered cooling be it conventional compressor-based or adsorption/absorption-based, though the most common implementation is with compressors. For small residential and small commercial cooling (less than 5 MWh/a) PV-powered cooling has been the most frequently implemented solar cooling technology. The reason for this is debated, but commonly suggested reasons include incentive structuring, lack of residential-sized equipment for other solar-cooling technologies, the advent of more efficient electrical coolers, or ease of installation compared to other solar-cooling technologies (like radiant cooling).

Since PV cooling's cost effectiveness depends largely on the cooling equipment and given the poor efficiencies in electrical cooling methods until recently it has not been cost effective without subsidies. Using more efficient electrical cooling methods and allowing longer payback schedules is changing that scenario.

For example, a 100,000 BTU U.S. Energy Star rated[note 1] air conditioner with a high seasonal energy efficiency ratio (SEER) of 14 requires around 7 kW of electric power for full cooling output on a hot day. This would require over a 7 kW solar photovoltaic electricity generation system (with morning-to-evening, and seasonal solar tracker capability to handle the 47-degree summer-to-winter difference in Sun elevation angle). The photovoltaics would only produce full output during the sunny part of clear days.

A solar-tracking 7 kW photovoltaic system would probably have an installed price well over $20,000 USD (with PV equipment prices currently falling at roughly 17% per year). Infrastructure, wiring, mounting, and NEC code costs may add up to an additional cost; for instance a 3120 watt solar panel grid tie system has a panel cost of $0.99/watt peak, but still costs ~$2.2/watt hour peak. Other systems of different capacity cost even more, let alone battery backup systems, which cost even more. Due to the advent of net metering allowed by utility companies, a photovoltaic system can produce enough energy in the course of the year to completely offset the cost of the electricity used to run air conditioning, depending on the amount of electric costs one wishes to offset.

A more efficient air conditioning system would require a smaller, less-expensive photovoltaic system. A high-quality geothermal heat pump installation can have a SEER in the range of 20 (±). A 100,000 BTU SEER 20 air conditioner would require less than 5 kW while operating.

Newer and lower power technology including reverse inverter DC heat pumps can achieve SEER ratings up to 26.

There are new non-compressor-based electrical air conditioning systems with a SEER above 20 coming on the market. New versions of phase-change indirect evaporative coolers use nothing but a fan and a supply of water to cool buildings without adding extra interior humidity (such as at McCarran Airport Las Vegas Nevada). In dry arid climates with relative humidity below 45% (about 40% of the continental U.S.) indirect evaporative coolers can achieve a SEER above 20, and up to SEER 40. A 100,000 BTU indirect evaporative cooler would only need enough photovoltaic power for the circulation fan (plus a water supply).

A less-expensive partial-power photovoltaic system can reduce (but not eliminate) the monthly amount of electricity purchased from the power grid for air conditioning (and other uses). With American state government subsidies of $2.50 to $5.00 USD per photovoltaic watt,[2] the amortized cost of PV-generated electricity can be below $0.15 per kWh. This is currently cost effective in some areas where power company electricity is now $0.15 or more. Excess PV power generated when air conditioning is not required can be sold to the power grid in many locations, which can reduce (or eliminate) annual net electricity purchase requirement. (See Zero-energy building)

Superior energy efficiency can be designed into new construction (or retrofitted to existing buildings). Since the U.S. Department of Energy was created in 1977, their Weatherization Assistance Program[3] has reduced heating-and-cooling load on 5.5 million low-income affordable homes an average of 31%. A hundred million American buildings still need improved weatherization. Careless conventional construction practices are still producing inefficient new buildings that need weatherization when they are first occupied.

It is fairly simple to reduce the heating-and-cooling requirement for new construction by one half. This can often be done at no additional net cost, since there are cost savings for smaller air conditioning systems and other benefits.

Geothermal cooling[edit]

Earth sheltering or Earth cooling tubes can take advantage of the ambient temperature of the Earth to reduce or eliminate conventional air conditioning requirements. In many climates where the majority of humans live, they can greatly reduce the build up of undesirable summer heat, and also help remove heat from the interior of the building. They increase construction cost, but reduce or eliminate the cost of conventional air conditioning equipment.

Earth cooling tubes are not cost effective in hot humid tropical environments where the ambient Earth temperature approaches human temperature comfort zone. A solar chimney or photovoltaic-powered fan can be used to exhaust undesired heat and draw in cooler, dehumidified air that has passed by ambient Earth temperature surfaces. Control of humidity and condensation are important design issues.

A geothermal heat pump uses ambient Earth temperature to improve SEER for heat and cooling. A deep well recirculates water to extract ambient Earth temperature (typically at 2 gallons of water per ton per minute). These "open loop" systems were the most common in early systems, however water quality could cause damage to the coils in the heat pump and shorten the life of the equipment. Another method is a closed loop system, in which a loop of tubing is run down a well or wells, or in trenches in the lawn, to cool an intermediate fluid. When wells are used, they are back-filled with Bentonite or another grout material to ensure good thermal conductivity to the earth.

In the past the fluid of choice was a 50/50 mixture of propylene glycol because it is non-toxic unlike ethylene glycol (which is used in car radiators). Propylene glycol is viscous, and would eventually gum up some parts in the loop(s), so it has fallen out of favor. Today, the most common transfer agent is a mixture of water and ethyl alcohol (ethanol).

Ambient earth temperature is much lower than peak summer air temperature, and much higher than the lowest extreme winter air temperature. Water is 25 times more thermally conductive than air, so it is much more efficient than an outside air heat pump, (which becomes less effective when the outside temperature drops in Winter).

The same type of geothermal well can be used without a heat pump but with greatly diminished results. Ambient Earth temperature water is pumped through a shrouded radiator (like an automobile radiator). Air is blown across the radiator, which cools without a compressor-based air conditioner. Photovoltaic solar electric panels produce electricity for the water pump and fan, eliminating conventional air-conditioning utility bills. This concept is cost-effective, as long as the location has ambient Earth temperature below the human thermal comfort zone. (Not the tropics.)

Solar Thermal Compression Technology[edit]

Extracted from (Patent No. 8,448,458 B2): A solar air conditioning system and method of super heating working fluid is provided: The solar air conditioning system super heats the working fluid using radiant energy from the sun, and then delivers the working fluid as a superheated and higher-pressured gas to a condenser within the solar air con­ditioning system. This method of solar air conditioning system includes a solar collector within which the working fluid is super­ heated.

Working fluid arrives at the solar compressor as a cool, low-pressure gas. The solar compressor is powered by electricity to mechanically squeeze the working fluid, and the squeezing results in packing the molecules of the working fluid closer together. The closer the molecules of the working fluid are together, the higher the working fluid's energy and temperature. After compression by the compressor, the working fluid leaves the solar compressor as a hot, high-pressure gas and enters into a solar collector. The solar collector super heats the working fluid, further increasing the temperature and pressure of the working fluid. In the solar collector, the temperature of the working fluid is increased by using the energy from the sun's radiation, and this absorbed heat in a closed loop environment produces pressure which compresses the working fluid into a super­ heated gas of high pressure. The working fluid in this state may be in the form of a high temperature vapor. The working fluid leaves the solar collector as a superheated gas of high-pressure, and flows into a condenser. The gaseous working fluid enters the condenser and begins cooling and changing back into a liquid at the very top of the coils of the condenser. This accelerated condensation is possible due to the phenomenon that conden­sation of the working fluid starts to occur quicker at high temperatures and pressures, and less heat removal is required for condensation at the higher temperatures and pressures. The higher temperature and pressure, and greater temperature difference between the coils of the condenser and the ambient temperature, allow for a better heat exchange throughout the entire system of the solar air conditioning system.

In comparison, the temperature difference between the coils of the condenser the related art air conditioning system and the ambient temperature is smaller, and the gaseous working fluid entering the condenser is a lower temperature than the gaseous working fluid entering the condenser, and thus the gaseous working fluid in the con­denser only begins cooling and changing back into a liquid at the bottom one-third of the coils of the condenser in the related art air conditioning system. In the solar air conditioning system, the entire coil face of the condenser is utilized in the condensing process, allow­ing for better heat exchange throughout the entire system. When the working fluid leaves the condenser as a semi-liquid, its temperature is much cooler and its state has changed from a gas to a liquid under high pressure. The working fluid leaving the condenser is in a sub-cooled liquid state under compression. In the solar air conditioning system, because the working fluid is superheated by the solar collector, the working fluid is in a hotter, higher­ pressured gas state when entering the condenser, and thus leaves the condenser in a colder and more liquid state as compared to the process in the related air condi­tioning system.

Due to the increased temperature dif­ference between the working fluid entering the condenser and the ambient temperature, heat exchange is improved throughout the entire system of the solar air condi­tioning system, more of the working fluid is changed from a gas to a liquid by the condenser, and the colder and more liquidous state of the working fluid entering the evaporator enables more heat and humidity to be removed in the evaporation process. For example, a 5 °F increase in temperature of the working fluid entering the condenser results in approximately 20% more humidity removal in the solar air conditioning system. In addition, the temperature of the working fluid leaving the evaporator and entering the solar compressor also becomes colder as compared to the temperature of the working fluid at the inlet of the compressor of the related art air conditioning system. This is because the working fluid enters the evaporator in the colder and more liquidous state. Furthermore, the additional heating of the working fluid by the solar collector reduces the work done by the solar compressor, such that the more energy the solar collec­tor transfers to the working fluid, the less the solar compressor needs to work. See External Link Below.

Solar open-loop Air Conditioning using desiccants[edit]

Air can be passed over common, solid desiccants (like silica gel or zeolite) or liquid desiccants (like lithium bromide/chloride) to draw moisture from the air to allow an efficient mechanical or evaporative cooling cycle. The desiccant is then regenerated by using solar thermal energy to dehumidfy, in a cost-effective, low-energy-consumption, continuously repeating cycle.[4] A photovoltaic system can power a low-energy air circulation fan, and a motor to slowly rotate a large disk filled with desiccant.

Energy recovery ventilation systems provide a controlled way of ventilating a home while minimizing energy loss. Air is passed through an "enthalpy wheel" (often using silica gel) to reduce the cost of heating ventilated air in the winter by transferring heat from the warm inside air being exhausted to the fresh (but cold) supply air. In the summer, the inside air cools the warmer incoming supply air to reduce ventilation cooling costs.[5] This low-energy fan-and-motor ventilation system can be cost-effectively powered by photovoltaics, with enhanced natural convection exhaust up a solar chimney - the downward incoming air flow would be forced convection (advection).

A desiccant like calcium chloride can be mixed with water to create an attractive recirculating waterfall, that dehumidifies a room using solar thermal energy to regenerate the liquid, and a PV-powered low-rate water pump[6]

Active solar cooling wherein solar thermal collectors provide input energy for a desiccant cooling system. There are several commercially available systems that blow air through a desiccant impregnated medium for both the dehumidification and the regeneration cycle. The solar heat is one way that the regeneration cycle is powered. In theory packed towers can be used to form a counter-current flow of the air and the liquid desiccant but are not normally employed in commercially available machines. Preheating of the air is shown to greatly enhance desiccant regeneration. The packed column yields good results as a dehumidifier/regenerator, provided pressure drop can be reduced with the use of suitable packing.[7]

Passive solar cooling[edit]

In this type of cooling solar thermal energy is not used directly to create a cold environment or drive any direct cooling processes. Instead, solar building design aims at slowing the rate of heat transfer into a building in the summer, and improving the removal of unwanted heat. It involves a good understanding of the mechanisms of heat transfer: heat conduction, convective heat transfer, and thermal radiation, the latter primarily from the sun.

For example, a sign of poor thermal design is an attic that gets hotter in summer than the peak outside air temperature. This can be significantly reduced or eliminated with a cool roof or a green roof, which can reduce the roof surface temperature by 70 °F (40 °C) in summer. A radiant barrier and an air gap below the roof will block about 97% of downward radiation from roof cladding heated by the sun.

Passive solar cooling is much easier to achieve in new construction than by adapting existing buildings. There are many design specifics involved in passive solar cooling. It is a primary element of designing a zero energy building in a hot climate.

Solar closed-loop adsorption cooling[edit]

The following are common technologies in use for solar thermal closed-loop air conditioning.

  • Absorption: NH
    or Ammonia/Water
  • Absorption: Water/Lithium Bromide
  • Absorption: Water/Lithium Chloride
  • Adsorption: Water/Silica Gel or Water/Zeolite
  • Adsorption: Methanol/Activated Carbon[8]

Active solar cooling uses solar thermal collectors to provide solar energy to thermally driven chillers (usually adsorption or absorption chillers).[9] Solar energy heats a fluid that provides heat to the generator of an absorption chiller and is recirculated back to the collectors. The heat provided to the generator drives a cooling cycle that produces chilled water. The chilled water produced is used for large commercial and industrial cooling.

Solar thermal energy can be used to efficiently cool in the summer, and also heat domestic hot water and buildings in the winter. Single, double or triple iterative absorption cooling cycles are used in different solar-thermal-cooling system designs. The more cycles, the more efficient they are. Absorption chillers operate with less noise and vibration than compressor-based chillers, but their capital costs are relatively high.[10]

Efficient absorption chillers nominally require water of at least 190 °F (88 °C). Common, inexpensive flat-plate solar thermal collectors only produce about 160 °F (71 °C) water. High temperature flat plate, concentrating or evacuated tube collectors are needed to produce the higher temperature water required. In large scale installations there are several projects successful both technical and economical in operation world wide including, for example, at the headquarters of Caixa Geral de Depósitos in Lisbon with 1,579 square metres (17,000 sq ft) solar collectors and 545 kW cooling power or on the Olympic Sailing Village in Qingdao/China. In 2011 the most powerful plant at Singapore's new constructed United World College will be commissioned (1500 kW).

These projects have shown that flat plate solar collectors specially developed for temperatures over 200 °F (93 °C) (featuring double glazing, increased backside insulation, etc.) can be effective and cost efficient.[11] Where water can be heated well above 190 °F (88 °C), it can be stored and used when the sun is not shining.

The Audubon Environmental Center in Los Angeles has an example solar air conditioning installation,[12] which failed fairly soon after commissioning and is no longer being maintained.[citation needed] The Southern California Gas Co. (The Gas Company) is also testing the practicality of solar thermal cooling systems at their Energy Resource Center (ERC) in Downey, California. Solar Collectors from Sopogy and Cogenra were installed on the rooftop at the ERC and are producing cooling for the building’s air conditioning system.[13] Masdar City in the United Arab Emirates is also testing a double-effect absorption cooling plant using Sopogy parabolic trough collectors,[14] Mirroxx Fresnel array and TVP Solar high-vacuum solar thermal panels.[15]

For 150 years, absorption chillers have been used to make ice (before the electric light bulbs were invented).[16] This ice can be stored and used as an "ice battery" for cooling when the sun is not shining, as it was in the 1995 Hotel New Otani in Tokyo Japan.[17] Mathematical models are available in the public domain for ice-based thermal energy storage performance calculations.[18]

The ISAAC Solar Icemaker is an intermittent solar ammonia-water absorption cycle. The ISAAC uses a parabolic trough solar collector and a compact and efficient design to produce ice with no fuel or electric input, and with no moving parts.[19]

Providers of solar cooling systems include SOLID,[20] Sopogy,[21] Cogenra,[22] Mirroxx [23] and TVP Solar [24] for commercial installations and ClimateWell,[25] Fagor-Rotartica, SorTech and Daikin mostly for residential systems. Cogenra uses solar co-generation to produce both thermal and electric energy that can be used for cooling.[26]

Zero-energy buildings[edit]

Goals of zero-energy buildings include sustainable, green building technologies that can significantly reduce, or eliminate, net annual energy bills. The supreme achievement is the totally off-the-grid autonomous building that does not have to be connected to utility companies. In hot climates with significant degree days of cooling requirement, leading-edge solar air conditioning will be an increasingly important critical success factor.

See also[edit]


  1. ^ BTU rating implies an hourly rate so a 100,000 BTU rated air conditioner provides a heat removal rate of 100,000 BTU/h or 29 kW under standardized conditions.


  1. ^ "U.S. Energy Independence and Security Act of 2007". Retrieved 2007-12-23. 
  2. ^ Dsire: Dsire Home
  3. ^ EERE: Department of Energy Weatherization Assistance Program Home Page
  4. ^ San, J. Y., Lavan, Z., Worek, W. M., Jean-Baptiste Monnier, Franta, G. E., Haggard, K., Glenn, B. H., Kolar, W. A., Howell, J. R. (1982). "Exergy analysis of solar powered desiccant cooling system". Proc. of the American Section of the Intern. Solar Energy Society: 567-572
  5. ^ EERE Consumer's Guide: Energy Recovery Ventilation Systems
  6. ^ See Liquid Desiccant Waterfall for attractive building dehumidification
  7. ^ A packed bed dehumidifier/regenerator for solar air conditioning with liquid desiccants (by Factor, H. M. and Grossman, G., Technion – Israel Institute of Technology)
  8. ^ Solar Powered Air Conditioning
  9. ^ George O. G. Löf (1993). Active solar systems. MIT Press. p. 682. ISBN 978-0-262-12167-5. 
  10. ^ Otanicar, T., Taylor, R.A., Phelan, P., Prospects for solar cooling – An economic and environmental assessment,Solar Energy Volume 86, Issue 5, May 2012, Pages 1287–1299
  11. ^ "Solar Cooling". Accessed on 1 July 2008
  12. ^ Les Hamasaki. "10 Ton Solar Air Conditioning at the Debs Park Audubon Environmental Center in Los Angeles (6 minute video)". Retrieved 2007-12-23. 
  13. ^ "SoCalGas Tests Unusual Solar Air Conditioner". Los Angeles Times. 2012-05-25. 
  14. ^ "HH General Sheikh Mohammed bin Zayed Al Nahyan Crown Prince of Abu Dhabi and Deputy Supreme Commander of UAE Armed Forces visit to Masdar". Zawya. 2011-10-20. Retrieved 2011-10-25. 
  15. ^ "Masdar City Testing TVP Solar High-Vacuum Flat Solar Thermal Panels for Air Conditioning". Masdar. 2012-02-16. Retrieved 2012-01-16. 
  16. ^ Gearoid Foley, Robert DeVault, Richard Sweetser. "The Future of Absorption Technology in America". U.S. DOE Energy Efficiency and Renewable Energy (EERE). Retrieved 2007-11-08. 
  17. ^ "Ice-cooling System Reduces Environmental Burden". The New Otani News. New Otani Co.,Ltd. 2000-06-28. Retrieved 2007-11-08. 
  18. ^ "Development of a thermal energy storage model for EnergyPlus". 2004. Retrieved 2008-04-06. 
  19. ^ "ISAAC Solar Icemaker". 
  20. ^ "Solar installation+design". 
  21. ^ "Sopogy solar heat generation technology". 
  22. ^ "Cogenra- cogeneration". 
  23. ^
  24. ^ "TVP Solar SA". 
  25. ^
  26. ^ Andrew Burger (2012-05-24). "Solar Cogeneration adds Cooling Capability". TriplePundit. 

External links[edit]