Jump to content

Philosophy of mathematics: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Jon Awbrey (talk | contribs)
m →‎Formalism: format-ism
rv changes by known vandal rather than hunt through them for mislabeled links and other vandalism; go troll elsewhere, please
Line 11: Line 11:
The terms ''philosophy of mathematics'' and ''mathematical philosophy'' are often taken to be synonymous, but others distinguish between them. The latter may be used to mean at least three distinct things. One sense refers to a project of formalizing a philosophical subject matter, say, [[aesthetics]], [[ethics]], [[logic]], [[metaphysics]], or [[theology]], in a purportedly more exact and rigorous form, as for example the labors of [[Scholastic]] theologians, or the systematic aims of [[Leibniz]] and [[Spinoza]]. Another sense refers to the working philosophy of an individual practitioner or a like-minded community of practicing mathematicians. Additionally, some understand the term mathematical philosophy to be an allusion to the approach taken by [[Bertrand Russell]] in his book [[Introduction to Mathematical Philosophy]].
The terms ''philosophy of mathematics'' and ''mathematical philosophy'' are often taken to be synonymous, but others distinguish between them. The latter may be used to mean at least three distinct things. One sense refers to a project of formalizing a philosophical subject matter, say, [[aesthetics]], [[ethics]], [[logic]], [[metaphysics]], or [[theology]], in a purportedly more exact and rigorous form, as for example the labors of [[Scholastic]] theologians, or the systematic aims of [[Leibniz]] and [[Spinoza]]. Another sense refers to the working philosophy of an individual practitioner or a like-minded community of practicing mathematicians. Additionally, some understand the term mathematical philosophy to be an allusion to the approach taken by [[Bertrand Russell]] in his book [[Introduction to Mathematical Philosophy]].


==History of the Philosophy of Mathematics==
==Historical overview==
Western philosophizing about mathematics has a history that goes at least as far back as [[Plato]], who considered the ontological status of mathematical objects, and [[Aristotle]], who considered [[logic]] and issues related to [[infinity]] (actual versus potential). [[Greek]] views of quantity strongly influenced their views of other areas of mathematics. At one time, the Greeks held the opinion that 1 (one) was not a [[number]], but rather a unit of arbitrary length (so that 3, for example, represented 3 such units and truly ''was'' a number). At another point, a similar argument was made that 2 was not a number but a fundamental notion of a pair. Of course, this was well before 0 was considered a number. These views come from the heavily geometric straight-edge-and-compass viewpoint of the Greeks: The first line drawn had unit length, and numbers represented multiples of it. Greek ideas of number were upended by the discovery of the [[Irrational number|irrationality]] of the square root of two, showing that the diagonal of a unit square was incommensurable with its (unit-length) edge: There was no number that represented how much longer the diagonal was than an edge. This caused a significant re-evaluation of Greek philosophy of mathematics, as [[non-Euclidean geometry]] would do to European philosophy of mathematics two millenia later.


Beginning with [[Leibniz]], the focus shifted strongly to mathematics-as-logic. This view dominated the philosophy of mathematics through the time of [[Frege]] and of [[Russell]], but was brought into question by developments in the late 19th and early 20th century.
Western philosophizing about mathematics has a history that goes at least as far back as [[Plato]], who considered the ontological status of mathematical objects, and [[Aristotle]], who considered [[logic]] and issues related to [[infinity]] (actual versus potential). [[Greek]] views of quantity strongly influenced their views of other areas of mathematics. At one time, the Greeks held the opinion that 1 (one) was not a [[number]], but rather a unit of arbitrary length (so that 3, for example, represented 3 such units and truly ''was'' a number). At another point, a similar argument was made that 2 was not a number but a fundamental notion of a pair. Of course, this was well before 0 was considered a number. These views come from the heavily geometric straight-edge-and-compass viewpoint of the Greeks: The first line drawn had unit length, and numbers represented multiples of it. Greek ideas of number were upended by the discovery of the [[Irrational number|irrationality]] of the square root of two, showing that the diagonal of a unit square was incommensurable with its (unit-length) edge: There was no number that represented how much longer the diagonal was than an edge. This caused a significant re-evaluation of Greek philosophy of mathematics, as [[non-Euclidean geometry]] would do to European philosophy of mathematics two millenia later. {{fact}}


==Modern schools of thought==
Beginning with [[Leibniz]], the focus shifted strongly to mathematics-as-logic. This view dominated the philosophy of mathematics through the time of [[Frege]] and of [[Russell]], but was brought into question by developments in the late 19th and early 20th century.{{fact}}


The modern philosophy of mathematics consists of various schools of thought, distinguished by their pictures of mathematical [[metaphysics]] and [[epistemology]]. Important questions these schools have considered include, "What ''are'' mathematical objects?" and "How and why does mathematics work?". Other important questions include "How do we know mathematical truths?" and "What do statements about mathematics mean?" as well as questions concerning logic and the foundations of mathematics, which is currently the topic of greatest interest to philosophers of mathematics.
==Philosophy of mathematics in the 20th century==


Three schools, [[intuitionism]], [[logicism]], and [[formalism]], emerged around the start of the [[20th century]] in response to the increasingly widespread realisation that mathematics (as it stood), and [[analysis]] in particular, did not live up to the standards of [[certainty]] and [[rigour|rigor]] with which it had traditionally been credited. Each school addresses the issues that came to the fore at that time, either attempting to resolve them or claiming that mathematics is not entitled to its status as our most trusted knowledge.
Philosophical reflection on mathematics naturally brings to light a very broad slate of questions. One of the most salient concerns the relation between logic and mathematics at their respective foundations, historically among the topics of greatest interest to philosophers of mathematics. More concrete questions that typically arise are "How and why does mathematics work?" and "What does it mean to speak of a [[mathematical object]]?" Other important questions include "What is the character of a mathematical proposition?", "How do we come to know a mathematical truth?", and "What do we know when we know it?"


Surprising and counterintuitive developments in [[formal logic]] and [[set theory]] early in the 20th century led to new questions concerning what was traditionally called the ''[[foundations of mathematics]]''. As the century unfolded, the initial focus of concern expanded to an open exploration of the fundamental axioms of mathematics, the axiomatic approach having been taken for granted for millenia as the natural basis for mathematics. In mathematics as in physics, new and unexpected ideas had arisen and significant changes were coming. Gradually, an interdisciplinary field between mathematics and philosophy that came to be called ''[[metamathematics]]'' emerged to address the task of more rigorously formalizing the very methods of mathematical reasoning. Core concepts such as [[axiom]], [[order]], and [[set]] were given renewed emphasis.
At the start of the [[20th century]], philosophers of mathematics were already beginning to divide into various schools of thought about these and many other questions, broadly distinguished by their pictures of mathematical [[epistemology]] and [[ontology]]. Three schools, [[formalism]], [[intuitionism]], and [[logicism]], emerged at this time, partly in response to the increasingly widespread worry that mathematics as it stood, and [[analysis]] in particular, did not live up to the standards of [[certainty]] and [[rigor]] that had been taken for granted. Each school addressed the issues that came to the fore at that time, either attempting to resolve them or claiming that mathematics is not entitled to its status as our most trusted knowledge.

Surprising and counterintuitive developments in [[formal logic]] and [[set theory]] early in the 20th century led to new questions concerning what was traditionally called the ''[[foundations of mathematics]]''. Conceptual anomalies began to appear in what had been considered the fairly secure territories of simple intuitions, for instance, those about classes, collections, or [[set]]s. The tenor of the times is well conveyed by the following remark of [[Julius König]].


At the midpoint of the century, a new mathematical theory known as [[category theory]] arose as a new contender for the natural language of mathematical thinking (Mac Lane 1998). As the 20th century progressed, however, philosophical opinions diverged as to just how well-founded were the questions about foundations that were raised at its opening. [[Hilary Putnam]] (1967) summed up one common view of the situation in the last third of the century by saying:
<blockquote>
That the word "set" is being used indiscriminately for completely different notions and that this is the source of the apparent paradoxes of this young branch of science, that, moreover, set theory itself can no more dispense with axiomatic assumptions than can any other exact science and that these assumptions, just as in other disciplines, are subject to a certain arbitrariness, even if they lie much deeper here — I do not want to represent any of this as something new. (König 1905, 145).
</blockquote>

As the century unfolded, the initial focus of concern expanded to an open exploration of the fundamental axioms of mathematics, the axiomatic approach having been taken for granted for millenia as the natural basis for mathematics. In mathematics as in physics, new and unexpected ideas had arisen and significant changes were coming. Gradually, an interdisciplinary field between mathematics and philosophy that came to be called ''[[metamathematics]]'' emerged to address the task of more rigorously formalizing the very methods of mathematical reasoning. Core concepts such as [[axiom]], [[order]], and [[set]] were given renewed emphasis.

At the midpoint of the century, mathematical [[category theory]] arose as a new contender for the natural language of mathematical thinking (Mac Lane 1998). As the 20th century entered retirement, philosophical opinions diverged once again, with a sugnificant contingent beginning to reconsider just how well founded were the questions about foundations that were raised at its opening. [[Hilary Putnam]] (1967) summed up one common view of the situation in the last third of the century by saying:
<blockquote>
<blockquote>
When philosophy discovers something wrong with science, sometimes science has to be changed — [[Russell's paradox]] comes to mind, as does [[George Berkeley|Berkeley]]'s attack on the actual [[infinitesimal]] — but more often it is philosophy that has to be changed. I do not think that the difficulties that philosophy finds with classical mathematics today are genuine difficulties; and I think that the philosophical interpretations of mathematics that we are being offered on every hand are wrong, and that 'philosophical interpretation' is just what mathematics doesn't need. (Putnam 1967/1996, 169–170).
When philosophy discovers something wrong with science, sometimes science has to be changed — [[Russell's paradox]] comes to mind, as does [[George Berkeley|Berkeley]]'s attack on the actual [[infinitesimal]] — but more often it is philosophy that has to be changed. I do not think that the difficulties that philosophy finds with classical mathematics today are genuine difficulties; and I think that the philosophical interpretations of mathematics that we are being offered on every hand are wrong, and that 'philosophical interpretation' is just what mathematics doesn't need. (Putnam 1967/1996, 169–170).
</blockquote>
</blockquote>

Philosophy of mathematics today proceeds along several different lines of inquiry, by philosophers of mathematics, logicians, and mathematicians, and there are many schools of thought on the subject. The schools are addressed separately below, and their assumptions explained:
Philosophy of mathematics today proceeds along several different lines of inquiry, by philosophers of mathematics, logicians, and mathematicians, and there are many schools of thought on the subject. The schools are addressed separately below, and their assumptions explained:


Line 80: Line 72:
For a philosophy of mathematics that attempts to overcome some of the shortcomings of Quine and Gödel's approaches by taking aspects of each see [[Penelope Maddy]]'s ''Realism in Mathematics''. Another example of a realist theory is the [[embodied mind theory]] (see below).
For a philosophy of mathematics that attempts to overcome some of the shortcomings of Quine and Gödel's approaches by taking aspects of each see [[Penelope Maddy]]'s ''Realism in Mathematics''. Another example of a realist theory is the [[embodied mind theory]] (see below).


===Formalism===
=== Formalism ===


''Formalism'' holds that mathematical statements may be thought of as statements about the consequences of certain string manipulation rules. For example, in the "game" of [[Euclidean geometry]] (which is seen as consisting of some strings called "axioms", and some "rules of inference" to generate new strings from given ones), one can prove that the [[Pythagorean theorem]] holds (that is, you can generate the string corresponding to the Pythagorean theorem). Mathematical truths are not about numbers and sets and triangles and the like - in fact, they aren't "about" anything at all!
''Formalism'' holds that mathematical statements may be thought of as statements about the consequences of certain string manipulation rules. For example, in the "game" of [[Euclidean geometry]] (which is seen as consisting of some strings called "axioms", and some "rules of inference" to generate new strings from given ones), one can prove that the [[Pythagorean theorem]] holds (that is, you can generate the string corresponding to the Pythagorean theorem). Mathematical truths are not about numbers and sets and triangles and the like - in fact, they aren't "about" anything at all!
Line 94: Line 86:
Formalists are usually very tolerant and inviting to new approaches to logic, non-standard number systems, new set theories etc. The more games we study, the better. However, in all three of these examples, motivation is drawn from existing mathematical or philosophical concerns. The "games" are never arbitrarily chosen.
Formalists are usually very tolerant and inviting to new approaches to logic, non-standard number systems, new set theories etc. The more games we study, the better. However, in all three of these examples, motivation is drawn from existing mathematical or philosophical concerns. The "games" are never arbitrarily chosen.


The main critique of formalism is that the actual mathematical ideas that occupy mathematicians are far removed from the minute string manipulation games mentioned above. While published proofs (if correct) could in principle be formulated in terms of these games, the effort required in space and time would be prohibitive (witness ''[[Principia Mathematica]]''). In addition, the rules are certainly not substantial to the initial creation of those proofs. Formalism is also silent to the question of which axiom systems ought to be studied.
The main critique of formalism is that the actual mathematical ideas that occupy mathematicians are far removed from the minute string manipulation games mentioned above. While published proofs (if correct) could in principle be formulated in terms of these games, the effort required in space and time would be prohibitive (witness '''''[[Principia Mathematica]]'''''.) In addition, the rules are certainly not substantial to the initial creation of those proofs. Formalism is also silent to the question of which axiom systems ought to be studied.


===Constructivism and intuitionism===
===Constructivism and intuitionism===
Line 116: Line 108:
By this account, there are no metaphysical or epistemological problems special to mathematics. The only worries left are the general worries about non-mathematical physics, and about [[fiction]] in general. Although intriguing, Field's approach has not been very influential.
By this account, there are no metaphysical or epistemological problems special to mathematics. The only worries left are the general worries about non-mathematical physics, and about [[fiction]] in general. Although intriguing, Field's approach has not been very influential.


==Embodied mind theories==
== Embodied mind theories ==


These theories hold that mathematical thought is a natural outgrowth of the human cognitive apparatus which finds itself in our physical universe. For example, the abstract concept of [[number]] springs from the experience of counting discrete objects. It is held that mathematics is not universal and does not exist in any real sense, other than in human brains. Humans construct, but do not discover, mathematics.
These theories hold that mathematical thought is a natural outgrowth of the human cognitive apparatus which finds itself in our physical universe. For example, the abstract concept of [[number]] springs from the experience of counting discrete objects. It is held that mathematics is not universal and does not exist in any real sense, other than in human brains. Humans construct, but do not discover, mathematics.


With this view, the physical universe can thus be seen as the ultimate foundation of mathematics: it guided the evolution of the brain and later determined which questions this brain would find worthy of investigation. However, the human mind has no special claim on reality or approaches to it built out of math. If such constructs as [[Euler's identity]] are true then they are true as a map of the human mind and [[cognition]].
With this view, the physical universe can thus be seen as the ultimate foundation of mathematics: it guided the evolution of the brain and later determined which questions this brain would find worthy of investigation. However, the human mind has no special claim on reality or approaches to it built out of math. If such constructs as [[Euler's Identity]] are true then they are true as a map of the human mind and [[cognition]].


Embodied mind theorists thus explain the effectiveness of mathematics- mathematics was constructed by the brain in order to be effective in this universe.
Embodied mind theorists thus explain the effectiveness of mathematics- mathematics was constructed by the brain in order to be effective in this universe.


The most accessible, famous, and infamous treatment of this perspective is ''[[Where Mathematics Comes From]]'', by [[George Lakoff]] and [[Rafael E. Núñez]]. In addition, mathemetician [[Keith Devlin]] has investigated similar concepts with his book ''[[The Math Instinct]]''. For more on the science that inspired this perspective, see [[cognitive science of mathematics]].
The most accessible, famous, and infamous treatment of this perspective is ''[[Where Mathematics Comes From]]'', by [[George Lakoff]] and [[Rafael E. Núñez]]. In addition, mathemetician [[Keith Devlin]] has investigated similar concepts with his book [[The Math Instinct]]. For more on the science that inspired this perspective, see [[cognitive science of mathematics]].


== Social constructivism or social realism ==
== Social constructivism or social realism ==
Line 166: Line 158:
See also [[language education]], [[philosophy of language]].
See also [[language education]], [[philosophy of language]].


==Aesthetics==
== Aesthetics ==


Many practicising mathemeticians have been drawn to their subject because of a perceived sense of [[mathematical beauty|beauty]] in thein the subject. One sometimes hears the sentiment that mathemeticians would like to leave philosophy to the philosophers and get back to mathematics where, presumably, the beauty lies.
Many practicising mathemeticians have been drawn to their subject because of a perceived sense of [[mathematical beauty|beauty]] in thein the subject. One sometimes hears the sentiment that mathemeticians would like to leave philosophy to the philosophers and get back to mathematics- where, presumably, the beauty lies.


In his work on the [[divine proportion]], [[H.E. Huntley]] relates the feeling of reading and understanding someone else's proof of a theorem of mathematics to that of a viewer of a masterpiece of art - the reader of a proof has a similar sense of exhileration at understanding as the original author of the proof, much as, he argues, the viewer of a masterpiece has a sense of exhilaration similar to the original painter or sculpture. Indeed, one can study mathematical and scientific writings as [[literature]].
In his work on the [[divine proportion]], H. E. Huntley relates the feeling of reading and understanding someone else's proof of a theorem of mathematics to that of a viewer of a masterpiece of art - the reader of a proof has a similar sense of exhileration at understanding as the original author of the proof, much as, he argues, the viewer of a masterpiece has a sense of exhilaration similar to the original painter or sculpture. Indeed, one can study mathematical and scientific writings as [[literature]].


Philip Davis and Reuben Hersh have commented that the sense of mathematical beauty is universal amongst practicing mathemeticians. By way of example, they provide two proofs of the irrationality of the [[Square root of 2|√2]]. The first is the traditional proof by [[contradiction]], ascribed to [[Euclid]]; the second is a more direct proof involving the [[fundamental theorem of arithmetic]] that, they argue, gets to the heart of the issue. Davis and Hersh argue that mathemeticians find the second proof more aesthetically appealing because it gets closer to the nature of the problem.
Philip Davis and Reuben Hersh have commented that the sense of mathematical beauty is universal amongst practicing mathemeticians. By way of example, they provide two proofs of the irrationality of the [[Square root of 2|√2]]. The first is the traditional proof by [[contradiction]], ascribed to [[Euclid]]; the second is a more direct proof involving the [[fundamental theorem of arithmetic]] that, they argue, gets to the heart of the issue. Davis and Hersh argue that mathemeticians find the second proof more aesthetically appealing because it gets closer to the nature of the problem.
Line 178: Line 170:
Philosophers have sometimes criticized mathematicians' sense of beauty or elegance as being, at best, vaguely stated. By the same token, however, philosophers of mathematics have sought to characterize what makes one proof more desriable than another when both are logically sound.
Philosophers have sometimes criticized mathematicians' sense of beauty or elegance as being, at best, vaguely stated. By the same token, however, philosophers of mathematics have sought to characterize what makes one proof more desriable than another when both are logically sound.


Another aspect of aesthetics concerning mathematics is mathematicians' views towards the possible uses of mathematics for purposes deemed unethical or inappropriate. The best-known exposition of this view occurs in [[G.H. Hardy]]'s book ''[[A Mathematician's Apology]]'', in which Hardy argues that pure mathematics is superior in beauty to [[applied mathematics]] precisely because it cannot be used for war and similar ends. Some later mathemeticians have characterized Hardy's views as mildly dated{{fact}}, with the applicablility of number theory to modern-day [[cryptography]]. While this would force Hardy to change his primary example if he were writing today, many practicing mathematicians still subscribe to Hardy's general sentiments.{{fact}}
Another aspect of aesthetics concerning mathematics is mathematicians' views towards the possible uses of mathematics for purposes deemed unethical or inappropriate. The best-known exposition of this view occurs in [[G.H. Hardy]]'s book [[A Mathematician's Apology]], in which Hardy argues that pure mathematics is superior in beauty to [[applied mathematics]] precisely because it cannot be used for war and similar ends. Some later mathemeticians have characterized Hardy's views as mildly dated, with the applicablility of number theory to modern-day [[cryptography]]. While this would force Hardy to change his primary example if he were writing today, many practicing mathematicians still subscribe to Hardy's general sentiments.

See also [[Mathematical beauty]]


==References==
==References==
Line 276: Line 270:
* [[Formal system]]
* [[Formal system]]
* [[Foundations of mathematics]]
* [[Foundations of mathematics]]
* [[Golden ratio]]
* [[Intuitionistic logic]]
* [[Intuitionistic logic]]
{{col-break}}
* [[Language education]]
* [[Logic]]
* [[Logic]]
* [[Mathematical beauty]]
* [[Mathematical constructivism]]
* [[Mathematical constructivism]]
* [[Mathematical proof]]
* [[Mathematical proof]]
{{col-break}}
* [[Model theory]]
* [[Model theory]]
* [[Naive set theory]]
* [[Naive set theory]]
* [[New Foundations]]
* [[New Foundations]]
{{col-break}}
* [[Non-standard analysis]]
* [[Non-standard analysis]]
* [[Philosophy of language]]
* [[Philosophy of language]]
Line 295: Line 285:
* [[Science studies]]
* [[Science studies]]
* [[Set theory]]
* [[Set theory]]
* [[Truth]]
{{col-end}}
{{col-end}}



Revision as of 06:06, 24 May 2006

You must add a |reason= parameter to this Cleanup template – replace it with {{Cleanup|May 2006|reason=<Fill reason here>}}, or remove the Cleanup template.

Philosophy of mathematics is the branch of philosophy that considers questions regarding the nature and practice of mathematics. Issues addressed include the nature of the reality of mathematical objects, why mathematical models seem to work so well in describing empirical phenomena and what the limitations of those models are, issues of proof, aesthetics, and mathematical beauty, the relation of formal logic to mathematics, and other questions.

Context

Many thinkers down through the ages have contributed their ideas concerning the conduct of mathematical inquiry and the nature of mathematical objects and knowledge. Today, many philosophers of mathematics aim to give accounts of this form of inquiry and its products as they stand, while others emphasize a role for themselves that goes beyond simple interpretation to critical analysis.

The terms philosophy of mathematics and mathematical philosophy are often taken to be synonymous, but others distinguish between them. The latter may be used to mean at least three distinct things. One sense refers to a project of formalizing a philosophical subject matter, say, aesthetics, ethics, logic, metaphysics, or theology, in a purportedly more exact and rigorous form, as for example the labors of Scholastic theologians, or the systematic aims of Leibniz and Spinoza. Another sense refers to the working philosophy of an individual practitioner or a like-minded community of practicing mathematicians. Additionally, some understand the term mathematical philosophy to be an allusion to the approach taken by Bertrand Russell in his book Introduction to Mathematical Philosophy.

History of the Philosophy of Mathematics

Western philosophizing about mathematics has a history that goes at least as far back as Plato, who considered the ontological status of mathematical objects, and Aristotle, who considered logic and issues related to infinity (actual versus potential). Greek views of quantity strongly influenced their views of other areas of mathematics. At one time, the Greeks held the opinion that 1 (one) was not a number, but rather a unit of arbitrary length (so that 3, for example, represented 3 such units and truly was a number). At another point, a similar argument was made that 2 was not a number but a fundamental notion of a pair. Of course, this was well before 0 was considered a number. These views come from the heavily geometric straight-edge-and-compass viewpoint of the Greeks: The first line drawn had unit length, and numbers represented multiples of it. Greek ideas of number were upended by the discovery of the irrationality of the square root of two, showing that the diagonal of a unit square was incommensurable with its (unit-length) edge: There was no number that represented how much longer the diagonal was than an edge. This caused a significant re-evaluation of Greek philosophy of mathematics, as non-Euclidean geometry would do to European philosophy of mathematics two millenia later.

Beginning with Leibniz, the focus shifted strongly to mathematics-as-logic. This view dominated the philosophy of mathematics through the time of Frege and of Russell, but was brought into question by developments in the late 19th and early 20th century.

Modern schools of thought

The modern philosophy of mathematics consists of various schools of thought, distinguished by their pictures of mathematical metaphysics and epistemology. Important questions these schools have considered include, "What are mathematical objects?" and "How and why does mathematics work?". Other important questions include "How do we know mathematical truths?" and "What do statements about mathematics mean?" as well as questions concerning logic and the foundations of mathematics, which is currently the topic of greatest interest to philosophers of mathematics.

Three schools, intuitionism, logicism, and formalism, emerged around the start of the 20th century in response to the increasingly widespread realisation that mathematics (as it stood), and analysis in particular, did not live up to the standards of certainty and rigor with which it had traditionally been credited. Each school addresses the issues that came to the fore at that time, either attempting to resolve them or claiming that mathematics is not entitled to its status as our most trusted knowledge.

Surprising and counterintuitive developments in formal logic and set theory early in the 20th century led to new questions concerning what was traditionally called the foundations of mathematics. As the century unfolded, the initial focus of concern expanded to an open exploration of the fundamental axioms of mathematics, the axiomatic approach having been taken for granted for millenia as the natural basis for mathematics. In mathematics as in physics, new and unexpected ideas had arisen and significant changes were coming. Gradually, an interdisciplinary field between mathematics and philosophy that came to be called metamathematics emerged to address the task of more rigorously formalizing the very methods of mathematical reasoning. Core concepts such as axiom, order, and set were given renewed emphasis.

At the midpoint of the century, a new mathematical theory known as category theory arose as a new contender for the natural language of mathematical thinking (Mac Lane 1998). As the 20th century progressed, however, philosophical opinions diverged as to just how well-founded were the questions about foundations that were raised at its opening. Hilary Putnam (1967) summed up one common view of the situation in the last third of the century by saying:

When philosophy discovers something wrong with science, sometimes science has to be changed — Russell's paradox comes to mind, as does Berkeley's attack on the actual infinitesimal — but more often it is philosophy that has to be changed. I do not think that the difficulties that philosophy finds with classical mathematics today are genuine difficulties; and I think that the philosophical interpretations of mathematics that we are being offered on every hand are wrong, and that 'philosophical interpretation' is just what mathematics doesn't need. (Putnam 1967/1996, 169–170).

Philosophy of mathematics today proceeds along several different lines of inquiry, by philosophers of mathematics, logicians, and mathematicians, and there are many schools of thought on the subject. The schools are addressed separately below, and their assumptions explained:

Mathematical realism

Mathematical realism, like realism in general, holds that mathematical entities exist independently of the human mind. Thus humans do not invent mathematics, but rather discover it, and any other intelligent beings in the universe would presumably do the same. In this point of view, there is really one one sort of mathematics that can be discovered: Triangles, for example, are real entities, not the creations of the human mind.

Many working mathematicians have been mathematical realists; they see themselves as discoverers of naturally occurring objects. Examples include Paul Erdős and Kurt Gödel. Gödel believed in an objective mathematical reality that could be perceived in a manner analogous to sense perception. Certain principles (e.g., for any two objects, there is a collection of objects consisting of precisely those two objects) could be directly seen to be true, but some conjectures, like the continuum hypothesis, might prove undecidable just on the basis of such principles. Gödel suggested that quasi-empirical methodology could be used to provide sufficient evidence to be able to reasonably assume such a conjecture.

Within realism, there are distinctions depending on what sort of existence one takes mathematical entities to have, and how we know about them.

Platonism

Platonism is the form of realism that suggests that mathematical entities are abstract, have no spatiotemporal or causal properties, and are eternal and unchanging. This is often claimed to be the naive view most people have of numbers. The term Platonism is used because such a view is seen to parallel Plato's belief in a "World of Ideas", an unchanging ultimate reality that the everyday world can only imperfectly approximate. Plato's view probably derives from Pythagoras, and his followers the Pythagoreans, who believed that the world was, quite literally, built up by the numbers.

It should be noted that this reading of "Platonism" is rejected by modern philosopher Alain Badiou, who considers the "empiricist" relationship between object and subject (where objects external to one's mind act, through the senses, on an internal subjective realm) utterly foreign to Platonic thought, according to which this location of mathematical entities is irrelevant to their ontological status. Badiou, in fact, identifies mathematics with ontology, considering mathematical discovery to be the scientific investigation of Being qua Being.

The major problem of mathematical platonism is this: precisely where and how do the mathematical entities exist, and how do we know about them? Is there a world, completely separate from our physical one, which is occupied by the mathematical entities? How can we gain access to this separate world and discover truths about the entities?

Gödel's platonism postulates a special kind of mathematical intuition that lets us perceive mathematical objects directly. (This view bears resemblances to many things Husserl said about mathematics, and supports Kant's idea that mathematics is synthetic a priori.) Davis and Hersh have suggested in their book The Mathematical Experience that most mathematicians act as though they are Platonists, even though, if pressed to defend the position carefully, they may retreat to formalism (see below).

Some mathematicians hold opinions that amount to more nuanced versions of Platonism. These ideas are sometimes described as Neo-Platonism.

Logicism

Logicism agrees with Gödel that mathematics can be known a priori, but suggests instead that our knowledge of mathematics is just part of our knowledge of logic in general, and is thus analytic, and doesn't require any special faculty. Logic is the proper foundation of mathematics, and all mathematical statements are necessary logical truths. For instance, the statement "If Socrates is a human, and every human is mortal, then Socrates is mortal" is a necessary logical truth.

Gottlob Frege was the founder of logicism. In his seminal Die Grundgesetze der Arithmetik (Basic Laws of Arithmetic) he built up arithmetic from a system of logic with a general principle of comprehension, which he called "Basic Law V" (for concepts F and G, the extension of F equals the extension of G if and only if for all objects a, Fa if and only if Ga), a principle that he took to be acceptable as part of logic.

But Frege's construction was flawed. Russell discovered that Basic Law V is inconsistent (this is Russell's paradox). Frege abandoned his logicist program soon after this, but it was continued by Russell and Whitehead. They attributed the paradox to "vicious circularity" and built up what they called ramified type theory to deal with it. In this system, they were eventually able to build up much of modern mathematics but in an altered, and excessively complex, form (for example, there were different natural numbers in each type, and there were infinitely many types). They also had to make several compromises in order to develop so much of mathematics, such as an "axiom of reducibility". Even Russell said that this axiom did not really belong to logic.

Modern logicists (like Bob Hale, Crispin Wright, and perhaps others) have returned to a program closer to Frege's. They have abandoned Basic Law V in favour of abstraction principles such as Hume's Principle (the number of objects falling under the concept F equals the number of objects falling under the concept G if and only if the extension of F and the extension of G can be put into one-to-one correspondence). Frege required Basic Law V to be able to give an explicit definition of the numbers, but all the properties of numbers can be derived from Hume's Principle. This would not have been enough for Frege because (to paraphrase him) it does not exclude the possibility that the number 3 is in fact Julius Caesar. In addition, many of the weakened principles that they have had to adopt to replace Basic Law V no longer seem so obviously analytic, and thus purely logical.

Empiricism

Empiricism is a form of realism that denies that mathematics can be known a priori at all. It says that we discover mathematical facts by empirical research, just like facts in any of the other sciences. It is not one of the classical three positions advocated in the early 20th century, but primarily arose in the middle of the century. However, an important early proponent of a view like this was John Stuart Mill. Mill's view was widely criticized, because it makes statements like "2+2=4" come out as uncertain, contingent truths, which we can only learn by observing instances of two pairs coming together and forming a quartet.

Contemporary mathematical empiricism, formulated by Quine and Putnam, is primarily supported by the Indispensability Argument: mathematics is indispensable to all empirical sciences, and if we want to believe in the reality of the phenomena described by the sciences, we ought also believe in the reality of those entities required for this description. That is, since physics needs to talk about electrons to say why light bulbs behave as they do, then electrons must exist. Since physics needs to talk about numbers in offering any of its explanations, then numbers must exist. In keeping with Quine and Putnam's overall philosophies, this is a naturalistic argument. It argues for the existence of mathematical entities as the best explanation for experience, thus stripping mathematics of some of its distinctness from the other sciences.

Putnam strongly rejected the term "Platonist" as implying an overly-specific ontology that was not necessary to mathematical practice in any real sense. He advocated a form of "pure realism" that rejected mystical notions of truth and accepted much quasi-empiricism in mathematics. Putnam was involved in coining the term "pure realism" (see below).

The most important criticism of empirical views of mathematics is approximately the same as that raised against Mill. If mathematics is just as empirical as the other sciences, then this suggests that its results are just as fallible as theirs, and just as contingent. In Mill's case the empirical justification comes directly, while in Quine's case it comes indirectly, through the coherence of our scientific theory as a whole. Quine suggests that mathematics seems completely certain because the role it plays in our web of belief is incredibly central, and that it would be extremely difficult for us to revise it, though not impossible.

For a philosophy of mathematics that attempts to overcome some of the shortcomings of Quine and Gödel's approaches by taking aspects of each see Penelope Maddy's Realism in Mathematics. Another example of a realist theory is the embodied mind theory (see below).

Formalism

Formalism holds that mathematical statements may be thought of as statements about the consequences of certain string manipulation rules. For example, in the "game" of Euclidean geometry (which is seen as consisting of some strings called "axioms", and some "rules of inference" to generate new strings from given ones), one can prove that the Pythagorean theorem holds (that is, you can generate the string corresponding to the Pythagorean theorem). Mathematical truths are not about numbers and sets and triangles and the like - in fact, they aren't "about" anything at all!

Another version of formalism is often known as deductivism. In deductivism, the Pythagorean theorem is not an absolute truth, but a relative one: if you assign meaning to the strings in such a way that the rules of the game become true (ie, true statements are assigned to the axioms and the rules of inference are truth-preserving), then you have to accept the theorem, or, rather, the interpretation you have given it must be a true statement. The same is held to be true for all other mathematical statements. Thus, formalism need not mean that mathematics is nothing more than a meaningless symbolic game. It is usually hoped that there exists some interpretation in which the rules of the game hold. (Compare this position to structuralism.) But it does allow the working mathematician to continue in his or her work and leave such problems to the philosopher or scientist. Many formalists would say that in practice, the axiom systems to be studied will be suggested by the demands of science or other areas of mathematics.

A major early proponent of formalism was David Hilbert, whose program was a complete and consistent axiomatization of all of mathematics. ("Consistent" here means that no contradictions can be derived from the system.) Hilbert aimed to show the consistency of mathematical systems from the assumption that the "finitary arithmetic" (a subsystem of the usual arithmetic of the positive integers, chosen to be philosophically uncontroversial) was consistent. Hilbert's goals of creating a system of mathematics that is both complete and consistent was dealt a fatal blow by the second of Gödel's incompleteness theorems, which states that sufficiently expressive consistent axiom systems can never prove their own consistency. Since any such axiom system would contain the finitary arithmetic as a subsystem, Gödel's theorem implied that it would be impossible to prove the system's consistency relative to that (since it would then prove its own consistency, which Gödel had shown was impossible). Thus, in order to show that any axiomatic system of mathematics is in fact consistent, one needs to first assume the consistency of a system of mathematics that is in a sense stronger than the system to be proven consistent.

Hilbert was initially a deductivist, but, as may be clear from above, he considered certain metamathematical methods to yield intrinsically meaningful results and was a realist with respect to the finitary arithmetic. Later, he held the opinion that there was no other meaningful mathematics whatsoever, regardless of interpretation.

Other formalists, such as Rudolf Carnap, Alfred Tarski and Haskell Curry, considered mathematics to be the investigation of formal axiom systems. Mathematical logicians study formal systems but are just as often realists as they are formalists.

Formalists are usually very tolerant and inviting to new approaches to logic, non-standard number systems, new set theories etc. The more games we study, the better. However, in all three of these examples, motivation is drawn from existing mathematical or philosophical concerns. The "games" are never arbitrarily chosen.

The main critique of formalism is that the actual mathematical ideas that occupy mathematicians are far removed from the minute string manipulation games mentioned above. While published proofs (if correct) could in principle be formulated in terms of these games, the effort required in space and time would be prohibitive (witness Principia Mathematica.) In addition, the rules are certainly not substantial to the initial creation of those proofs. Formalism is also silent to the question of which axiom systems ought to be studied.

Constructivism and intuitionism

These schools maintain that only mathematical entities which can be explicitly constructed should be admitted in mathematical discourse. Mathematics is properly part of the human intuition, and is neither a meaningless game with symbols, nor about some inaccessible realm of platonic entities. Instead, it is about entities that we can create directly through mental activity. In addition, some adherents of these schools reject non-constructive proofs, such as a proof by contradiction.

Leopold Kronecker said: "The natural numbers come from God, everything else is man's work." A major force behind Intuitionism was L.E.J. Brouwer, who rejected the usefulness of formalized logic of any sort for mathematics. His student Arend Heyting, postulated an intuitionistic logic, different from the classical Aristotelian logic; this logic does not contain the law of the excluded middle and therefore frowns upon proofs by contradiction. The axiom of choice is also rejected in most intuitionistic set theories, though in some versions it is accepted. Important work was later done by Errett Bishop, who managed to prove versions of the most important theorems in real analysis within this framework.

In Intuitionism, the term "explicit construction" is not cleanly defined, and that has led to criticisms. Attempts have been made to use the concepts of Turing machine or recursive function to fill this gap, leading to the claim that only questions regarding the behavior of finite algorithms are meaningful and should be investigated in mathematics. This has led to the study of the computable numbers, first introduced by Alan Turing. Not surprisingly, then, constructive mathematics is sometimes associated with theoretical computer science.

Intuitionism is the classic example of an anti-realist philosophy of mathematics. Indeed, Michael Dummett has argued that anti-realism of any sort and intuitionist logic are closely tied together.

Fictionalism

In 1980, Hartry Field published Science Without Numbers, which rejected and in fact reversed Quine's indispensability argument. Where Quine suggested that mathematics was indispensable for our best scientific theories, and therefore should be accepted as true, Field suggested that mathematics was dispensable, and therefore should be rejected as false. He did this by giving a complete axiomatization of Newtonian mechanics that didn't reference numbers or functions at all. He started with the "betweenness" axioms of Hilbert geometry to characterize space without coordinatizing it, and then added extra relations between points to do the work formerly done by vector fields.

Having shown how to do science without using mathematics, he proceeded to rehabilitate mathematics as a kind of "useful fiction". He showed that mathematical physics is a conservative extension of his non-mathematical physics (that is, every physical fact provable in mathematical physics is already provable from his system), so that the mathematics is a reliable process whose physical applications are all true, even though its own statements are false. Thus, when doing mathematics, we can see ourselves as telling a sort of story, talking "as if" numbers existed.

By this account, there are no metaphysical or epistemological problems special to mathematics. The only worries left are the general worries about non-mathematical physics, and about fiction in general. Although intriguing, Field's approach has not been very influential.

Embodied mind theories

These theories hold that mathematical thought is a natural outgrowth of the human cognitive apparatus which finds itself in our physical universe. For example, the abstract concept of number springs from the experience of counting discrete objects. It is held that mathematics is not universal and does not exist in any real sense, other than in human brains. Humans construct, but do not discover, mathematics.

With this view, the physical universe can thus be seen as the ultimate foundation of mathematics: it guided the evolution of the brain and later determined which questions this brain would find worthy of investigation. However, the human mind has no special claim on reality or approaches to it built out of math. If such constructs as Euler's Identity are true then they are true as a map of the human mind and cognition.

Embodied mind theorists thus explain the effectiveness of mathematics- mathematics was constructed by the brain in order to be effective in this universe.

The most accessible, famous, and infamous treatment of this perspective is Where Mathematics Comes From, by George Lakoff and Rafael E. Núñez. In addition, mathemetician Keith Devlin has investigated similar concepts with his book The Math Instinct. For more on the science that inspired this perspective, see cognitive science of mathematics.

Social constructivism or social realism

This theory sees mathematics primarily as a social construct, as a product of culture, subject to correction and change. Like the other sciences, mathematics is viewed as an empirical endeavor whose results are constantly evaluated and may be discarded. However, while on an empiricist view the evaluation is some sort of comparison with 'reality', social constructivists emphasize that the direction of mathematical research is dictated by the fashions of the social group performing it or by the needs of the society financing it. However, although such external forces may change the direction of some mathematical research, there are strong internal constraints- the mathematical traditions, methods, problems, meanings and values into which mathematicians are enculturated- that work to conserve the historically defined discipline.

This runs counter to the traditional beliefs of working mathematicians, that mathematics is somehow pure or objective. But social constructivists argue that mathematics is in fact grounded by much uncertainty: as mathematical practice evolves, the status of previous mathematics is cast into doubt, and is corrected to the degree it is required or desired by the current mathematical community. This can be seen in the development of analysis from reexamination of the calculus of Leibniz and Newton. They argue further that finished mathematics is often accorded too much status, and folk mathematics not enough, due to an over-emphasis on axiomatic proof and peer review as practices.

The social nature of mathematics is highlighted in its subcultures. Major discoveries can be made in one branch of mathematics and be relevant to another, yet the relationship goes undiscovered for lack of social contact between mathematicians. Social constructivists argue each speciality forms its own epistemic community and often has great difficulty communicating, or motivating the investigation of unifying conjectures that might relate different areas of mathematics. Social constructivists see the process of 'doing mathematics' as actually creating the meaning, while social realists see a deficiency either of human capacity to abstractify, or of human's cognitive bias, or of mathemetician's collective intelligence as preventing the comprehension of a real universe of mathematical objects. Social constructivists sometimes reject the search for foundations of mathematics as bound to fail, as pointless or even meaningless. Some social scientists also argue that mathematics is not real or objective at all, but is affected by racism and ethnocentrism. Some of these ideas are close to postmodernism.

Contributions to this school have been made by Imre Lakatos and Thomas Tymoczko, although it is not clear that either would endorse the title. More recently Paul Ernest has explicitly formulated a social constructivist philosophy of mathematics. Some consider the work of Paul Erdős as a whole to have advanced this view (although he personally rejected it) because of his uniquely broad collaborations, which prompted others to see and study "mathematics as a social activity", e.g. via the Erdős number. Reuben Hersh has also promoted the social view of mathematics, calling it a 'humanistic' approach [1], similar to but not quite the same as that associated with Alvin White [2]; one of Hersh's co-authors, Philip J. Davis, has expressed sympathy for the social view as well.

Beyond the traditional schools

Rather than focus on narrow debates about the true nature of mathematical truth, or even on practices unique to mathematicians such as the proof, a growing movement from the 1960s to the 1990s began to question the idea of seeking foundations or finding any one right answer to why mathematics works. The starting point for this was Eugene Wigner's famous 1960 paper The Unreasonable Effectiveness of Mathematics in the Natural Sciences, in which he argued that the happy coincidence of mathematics and physics being so well matched seemed to be unreasonable and hard to explain.

The embodied-mind or cognitive school and the social school were responses to this challenge, but the debates raised were difficult to confine to those.

Quasi-empiricism

One parallel concern that does not actually challenge the schools directly but instead questions their focus is the notion of quasi-empiricism in mathematics. This grew from the increasingly popular assertion in the late 20th century that no one foundation of mathematics could be ever proven to exist. It is also sometimes called 'postmodernism in mathematics' although that term is considered overloaded by some and insulting by others. Quasi-empricism is a very minimal form of social realism/constructivism that accepts that quasi-empirical methods and even sometimes empirical methods can be part of modern mathematical practice.

Such methods have always been part of folk mathematics by which great feats of calculation and measurement are sometimes achieved. Indeed, such methods may be the only notion of proof a culture has.

Hilary Putnam has argued that any theory of mathematical realism would include quasi-empirical methods. He proposed that an alien species doing mathematics might well rely on quasi-empirical methods primarily, being willing often to forgo rigorous and axiomatic proofs, and still be doing mathematics - at perhaps a somewhat greater risk of failure of their calculations. He gave a detailed argument for this in New Directions (ed. Tymockzo, 1998).

Action

Some practitioners and scholars who are not engaged primarily in proof-oriented approaches have suggested an interesting and important theory about the nature of mathematics. For example, Judea Pearl claimed that all of mathematics as presently understood was based on an algebra of seeing - and proposed an algebra of doing to complement it - this is a central concern of the philosophy of action and other studies of how knowledge relates to action. The most important output of this was new theories of truth, notably those appropriate to activism and grounding empirical methods.

Unification

The notion of a philosophy of mathematics separate from philosophy as such has been criticized as leading to "good mathematicians doing bad philosophy" [citation needed], with few philosophers being able to penetrate mathematical notations and culture to relate conventional notions of metaphysics to the more specialized metaphysical notions of the schools above. This may lead to a disconnection in which some mathematicians continue to profess discredited philosophy as a justification for their continued belief in a world-view promoting their work.

Although the social theories and quasi-empiricism, and especially the embodied mind theory, have focused more attention on the epistemology implied by current mathematical practices, they fall far short of actually relating this to ordinary human perception and everyday understandings of knowledge.

Language

Innovations in the philosophy of language during the 20th century renewed interest in the question as to whether mathematics is, as if often said, the language of science. Although most mathematicians and physicists (and many philosophers) would accept the statement "mathematics is a language", linguists believe that the implications of such a statement must be considered. For example, the tools of linguistics are not generally applied to the symbol systems of mathematics, that is, mathematics is studied in a markedly different way than other languages. If mathematics is a language, it is a different type of language than natural languages. Indeed, because of the need for clarity and specificity, the language of mathematics is far more constrained than natural languages studied by linguists. However, the methods developed by Gottlob Frege and Alfred Tarski for the study of mathematical language have been extended greatly by Tarski's student Richard Montague and other linguists working in formal semantics to show that the distinction between mathematical language and natural language may not be as great as it seems.

See also language education, philosophy of language.

Aesthetics

Many practicising mathemeticians have been drawn to their subject because of a perceived sense of beauty in thein the subject. One sometimes hears the sentiment that mathemeticians would like to leave philosophy to the philosophers and get back to mathematics- where, presumably, the beauty lies.

In his work on the divine proportion, H. E. Huntley relates the feeling of reading and understanding someone else's proof of a theorem of mathematics to that of a viewer of a masterpiece of art - the reader of a proof has a similar sense of exhileration at understanding as the original author of the proof, much as, he argues, the viewer of a masterpiece has a sense of exhilaration similar to the original painter or sculpture. Indeed, one can study mathematical and scientific writings as literature.

Philip Davis and Reuben Hersh have commented that the sense of mathematical beauty is universal amongst practicing mathemeticians. By way of example, they provide two proofs of the irrationality of the √2. The first is the traditional proof by contradiction, ascribed to Euclid; the second is a more direct proof involving the fundamental theorem of arithmetic that, they argue, gets to the heart of the issue. Davis and Hersh argue that mathemeticians find the second proof more aesthetically appealing because it gets closer to the nature of the problem.

Paul Erdős was well-known for his notion of a hypothetical "Book" containing the most elegant or beautiful mathematical proofs. Gregory Chaitin rejected Erdős's book. By way of example, he provided three separate proofs of the infinitude of primes. The first was Euclid's, the second was based on the Euler zeta function, and the third was Chaitin's own, derived from algorithmic information theory. Chaitin then argued that each one was as beautiful as the others, because all three reveal different aspects of the same problem.

Philosophers have sometimes criticized mathematicians' sense of beauty or elegance as being, at best, vaguely stated. By the same token, however, philosophers of mathematics have sought to characterize what makes one proof more desriable than another when both are logically sound.

Another aspect of aesthetics concerning mathematics is mathematicians' views towards the possible uses of mathematics for purposes deemed unethical or inappropriate. The best-known exposition of this view occurs in G.H. Hardy's book A Mathematician's Apology, in which Hardy argues that pure mathematics is superior in beauty to applied mathematics precisely because it cannot be used for war and similar ends. Some later mathemeticians have characterized Hardy's views as mildly dated, with the applicablility of number theory to modern-day cryptography. While this would force Hardy to change his primary example if he were writing today, many practicing mathematicians still subscribe to Hardy's general sentiments.

See also Mathematical beauty

References

  • Benacerraf, Paul, and Putnam, Hilary (eds., 1983), Philosophy of Mathematics, Selected Readings, 1st edition, Prentice–Hall, Englewood Cliffs, NJ, 1964. 2nd edition, Cambridge University Press, Cambridge, UK, 1983.
  • Berkeley, George (1734), The Analyst; or, a Discourse Addressed to an Infidel Mathematician. Wherein It is examined whether the Object, Principles, and Inferences of the modern Analysis are more distinctly conceived, or more evidently deduced, than Religious Mysteries and Points of Faith, London & Dublin. Online text, David R. Wilkins (ed.), Eprint.
  • Bourbaki, N., Elements of the History of Mathematics, John Meldrum (trans.), Springer-Verlag, Berlin, Germany, 1994.
  • Hadamard, Jacques (1949), The Psychology of Invention in the Mathematical Field, 1st edition, Princeton University Press, Princeton, NJ. 2nd edition, 1949. Reprinted, Dover Publications, New York, NY, 1954.
  • Hardy, G.H. (1940), A Mathematician's Apology, 1st published, 1940. Reprinted, C.P. Snow (foreword), 1967. Reprinted, Cambridge University Press, Cambridge, UK, 1992.
  • Hart, W.D. (ed., 1996), The Philosophy of Mathematics, Oxford University Press, Oxford, UK.
  • Huntley, H.E. (1970), The Divine Proportion: A Study in Mathematical Beauty, Dover Publications, New York, NY.
  • Kleene, S.C. (1971), Introduction to Metamathematics, North–Holland Publishing Company, Amsterdam, Netherlands.
  • Kline, Morris (1959), Mathematics and the Physical World, Thomas Y. Crowell Company, New York, NY, 1959. Reprinted, Dover Publications, Mineola, NY, 1981.
  • Kline, Morris (1972), Mathematical Thought from Ancient to Modern Times, Oxford University Press, New York, NY.
  • König, Julius (1905), "Über die Grundlagen der Mengenlehre und das Kontinuumproblem", Mathematische Annalen 61, 156–160. Reprinted, "On the Foundations of Set Theory and the Continuum Problem", Stefan Bauer-Mengelberg (trans.), pp. 145–149 in Jean van Heijenoort (ed., 1967).
  • Maddy, Penelope (1990), Realism in Mathematics, Oxford University Press, Oxford, UK.
  • Maddy, Penelope (1997), Naturalism in Mathematics, , Oxford University Press, Oxford, UK.
  • Peirce, C.S. (c. 1896), "The Logic of Mathematics; An Attempt to Develop My Categories from Within", 1st published as CP 1.417–519 in Collected Papers.
  • Putnam, Hilary (1967), "Mathematics Without Foundations", Journal of Philosophy 64/1, 5–22. Reprinted, pp. 168–184 in W.D. Hart (ed., 1996).
  • Russell, Bertrand (1919), Introduction to Mathematical Philosophy, George Allen and Unwin, London, UK. Reprinted, John G. Slater (intro.), Routledge, London, UK, 1993.
  • Steiner, Mark (1998), The Applicability of Mathematics as a Philosophical Problem, Harvard University Press, Cambridge, MA.
  • van Heijenoort, Jean (ed. 1967), From Frege To Gödel: A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge, MA.
  • Wilder, Raymond L. (1952), Introduction to the Foundations of Mathematics, John Wiley and Sons, New York, NY.

Further reading

  • Colyvan, Mark (2004), "Indispensability Arguments in the Philosophy of Mathematics", Stanford Encyclopedia of Philosophy, Edward N. Zalta (ed.), Eprint.
  • Devlin, Keith (2005), The Math Instinct: Why You're a Mathematical Genius (Along with Lobsters, Birds, Cats, and Dogs), Thunder's Mouth Press, New York, NY.
  • Dummett, Michael (1991 a), Frege, Philosophy of Mathematics, Harvard University Press, Cambridge, MA.
  • Dummett, Michael (1991 b), Frege and Other Philosophers, Oxford University Press, Oxford, UK.
  • Dummett, Michael (1993), Origins of Analytical Philosophy, Harvard University Press, Cambridge, MA.
  • Ernest, Paul (1998), Social Constructivism as a Philosophy of Mathematics, State University of New York Press, Albany, NY.
  • George, Alexandre (ed., 1994), Mathematics and Mind, Oxford University Press, Oxford, UK.
  • Kline, Morris (1972), Mathematical Thought from Ancient to Modern Times, Oxford University Press, New York, NY.
  • Raymond, Eric S. (1993), "The Utility of Mathematics", Eprint.
  • Shapiro, Stewart (2000), Thinking About Mathematics: The Philosophy of Mathematics, Oxford University Press, Oxford, UK.
  • Strohmeier, John, and Westbrook, Peter (1999), Divine Harmony, The Life and Teachings of Pythagoras, Berkeley Hills Books, Berkeley, CA.

Journals

See also

Historical topics

Major contributors

Template:Link FA