Jump to content

Prostate cancer: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Rin3guy (talk | contribs)
Prognosis: low-fat dairy & retinyl palmitate~~~~
Rin3guy (talk | contribs)
Diet: synthetic vitamin A~~~~
Line 50: Line 50:
===Diet===
===Diet===
Dietary amounts of certain [[food]]s, [[vitamin]]s, and [[dietary mineral|minerals]] can contribute to prostate cancer risk. Men with higher serum levels of the short-chain [[omega-6 fatty acid]] [[linoleic acid]] have higher rates of prostate cancer. However, the same series of studies showed that men with elevated levels of long-chain [[omega-3 fatty acid]]s ([[eicosapentaenoic acid|EPA]] and [[docosahexaenoic acid|DHA]], found in fatty fishes like [[salmon]]) had lowered incidence.<ref>{{cite web|author=Gann, PH and Giovannucci|title=Prostate Cancer and Nutrition|year=2005|dateformat=mdy |accessdate=February 20 2006 |url= http://www.prostatecancerfoundation.org/atf/cf/%7B705B3273-F2EF-4EF6-A653-E15C5D8BB6B1%7D/Nutrition_Guide.pdf|format=PDF}} in .pdf format.</ref> A long-term study reports that "blood levels of trans fatty acids, in particular [[trans fats]] resulting from the hydrogenation of vegetable oils, are associated with an increased prostate cancer risk."<ref>Chavarro et al., "A prospective study of blood trans fatty acid levels and risk of prostate cancer," Proc. Amer. Assoc. Cancer Res., Volume 47, 2006 [http://www.aacrmeetingabstracts.org/cgi/content/abstract/2006/1/943]. See also [http://www.cancersupportivecare.com/nutritionprostate.pdf Ledesma 2004 Nutrition & prostate cancer].</ref> Other dietary factors that may increase prostate cancer risk include low intake of [[vitamin E]] (Vitamin E is found in [[green, leafy vegetables]]), and the mineral [[selenium]]. A study in 2007 cast doubt on the effectiveness of [[lycopene]] (found in tomatoes) in reducing the risk of prostate cancer.<ref name="pmid17507623">{{cite journal | author = Peters U, Leitzmann MF, Chatterjee N, Wang Y, Albanes D, Gelmann EP, Friesen MD, Riboli E, Hayes RB | title = Serum lycopene, other carotenoids, and prostate cancer risk: a nested case-control study in the prostate, lung, colorectal, and ovarian cancer screening trial | journal = Cancer Epidemiol. Biomarkers Prev. | volume = 16 | issue = 5 | pages = 962–8 | year = 2007 | pmid = 17507623 | doi = 10.1158/1055-9965.EPI-06-0861 | url = http://cebp.aacrjournals.org/cgi/pmidlookup?view=long&pmid=17507623| accessdate = 2007-12-17}}</ref> Lower [[blood]] levels of [[vitamin D]] also may increase the risk of developing prostate cancer. This may be linked to lower exposure to [[ultraviolet radiation|ultraviolet (UV) light]], since UV light exposure can increase vitamin D in the body.<ref>{{cite journal| last=Schulman| first=CC| coauthors=Ekane S; Zlotta AR| title=Nutrition and prostate cancer: evidence or suspicion?| journal=Urology| year=2001| month=September| volume=58| issue=3| pages=318–34| pmid=11549473| doi=10.1016/S0090-4295(01)01262-6}}</ref>
Dietary amounts of certain [[food]]s, [[vitamin]]s, and [[dietary mineral|minerals]] can contribute to prostate cancer risk. Men with higher serum levels of the short-chain [[omega-6 fatty acid]] [[linoleic acid]] have higher rates of prostate cancer. However, the same series of studies showed that men with elevated levels of long-chain [[omega-3 fatty acid]]s ([[eicosapentaenoic acid|EPA]] and [[docosahexaenoic acid|DHA]], found in fatty fishes like [[salmon]]) had lowered incidence.<ref>{{cite web|author=Gann, PH and Giovannucci|title=Prostate Cancer and Nutrition|year=2005|dateformat=mdy |accessdate=February 20 2006 |url= http://www.prostatecancerfoundation.org/atf/cf/%7B705B3273-F2EF-4EF6-A653-E15C5D8BB6B1%7D/Nutrition_Guide.pdf|format=PDF}} in .pdf format.</ref> A long-term study reports that "blood levels of trans fatty acids, in particular [[trans fats]] resulting from the hydrogenation of vegetable oils, are associated with an increased prostate cancer risk."<ref>Chavarro et al., "A prospective study of blood trans fatty acid levels and risk of prostate cancer," Proc. Amer. Assoc. Cancer Res., Volume 47, 2006 [http://www.aacrmeetingabstracts.org/cgi/content/abstract/2006/1/943]. See also [http://www.cancersupportivecare.com/nutritionprostate.pdf Ledesma 2004 Nutrition & prostate cancer].</ref> Other dietary factors that may increase prostate cancer risk include low intake of [[vitamin E]] (Vitamin E is found in [[green, leafy vegetables]]), and the mineral [[selenium]]. A study in 2007 cast doubt on the effectiveness of [[lycopene]] (found in tomatoes) in reducing the risk of prostate cancer.<ref name="pmid17507623">{{cite journal | author = Peters U, Leitzmann MF, Chatterjee N, Wang Y, Albanes D, Gelmann EP, Friesen MD, Riboli E, Hayes RB | title = Serum lycopene, other carotenoids, and prostate cancer risk: a nested case-control study in the prostate, lung, colorectal, and ovarian cancer screening trial | journal = Cancer Epidemiol. Biomarkers Prev. | volume = 16 | issue = 5 | pages = 962–8 | year = 2007 | pmid = 17507623 | doi = 10.1158/1055-9965.EPI-06-0861 | url = http://cebp.aacrjournals.org/cgi/pmidlookup?view=long&pmid=17507623| accessdate = 2007-12-17}}</ref> Lower [[blood]] levels of [[vitamin D]] also may increase the risk of developing prostate cancer. This may be linked to lower exposure to [[ultraviolet radiation|ultraviolet (UV) light]], since UV light exposure can increase vitamin D in the body.<ref>{{cite journal| last=Schulman| first=CC| coauthors=Ekane S; Zlotta AR| title=Nutrition and prostate cancer: evidence or suspicion?| journal=Urology| year=2001| month=September| volume=58| issue=3| pages=318–34| pmid=11549473| doi=10.1016/S0090-4295(01)01262-6}}</ref>

Other studies have implicated dairy, specifically low-fat milk and other dairy products to which [[vitamin A palmitate]] has been added. This form of synthetic vitamin A has been linked to prostate cancer because it reacts with zinc and milk protein to form an unabsorbable complex.<ref>http://yedda.com/questions/Low_fat_milk_causes_prostate_cancer_7351021963170/</ref>


Prostate cancer risk can be decreased by modifying known risk factors for prostate cancer, such as decreasing intake of animal fat.<ref>{{cite journal | author= | title=Position of the American Dietetic Association and Dietitians of Canada: Vegetarian diets | journal=J Am Diet Assoc | year=2003 | pages=748–65 | volume=103 | issue=6 | pmid=12778049| doi=10.1053/jada.2003.50142}}</ref>
Prostate cancer risk can be decreased by modifying known risk factors for prostate cancer, such as decreasing intake of animal fat.<ref>{{cite journal | author= | title=Position of the American Dietetic Association and Dietitians of Canada: Vegetarian diets | journal=J Am Diet Assoc | year=2003 | pages=748–65 | volume=103 | issue=6 | pmid=12778049| doi=10.1053/jada.2003.50142}}</ref>

Revision as of 21:18, 5 April 2009

Prostate cancer
SpecialtyOncology, urology Edit this on Wikidata

Prostate cancer is a disease in which cancer develops in the prostate, a gland in the male reproductive system. It occurs when cells of the prostate mutate and begin to multiply out of control. These cells may spread (metastasize) from the prostate to other parts of the body, especially the bones and lymph nodes. Prostate cancer may cause pain, difficulty in urinating, problems during sexual intercourse, erectile dysfunction and other symptoms. However those symptoms are present only in an advanced stage of the disease.

Rates of prostate cancer vary widely across the world. Although the rates vary widely between countries, it is least common in South and East Asia, more common in Europe, and most common in the United States.[1] Prostate cancer develops most frequently in men over fifty. This cancer can occur only in men, as the prostate is exclusively of the male reproductive tract. It is one of the most common types of cancer in men. However, many men who develop prostate cancer never have symptoms, undergo no therapy, and eventually die of other causes. That is because malignant neoplasms of the prostate are, in most cases, slow-growing, and because most of those affected are over 60. Hence they often die of causes unrelated to the prostate cancer, such as heart/circulatory disease, pneumonia, other unconnected cancers, or old age. Many factors, including genetics and diet, have been implicated in the development of prostate cancer.

Prostate cancer is most often discovered by PSA (prostate specific antigen) screening and less commonly by physical examination or by symptoms. There is some current concern about the accuracy of the PSA test and its usefulness. Suspected prostate cancer is typically confirmed by taking a biopsy of the prostate and examining it under a microscope. Further tests, such as CT scans and bone scans, may be performed to determine whether prostate cancer has spread.

Treatment options for prostate cancer with intent to cure are primarily surgery and radiation therapy. Other treatments such as hormonal therapy, chemotherapy, proton therapy, cryosurgery, high intensity focused ultrasound (HIFU) also exist depending on the clinical scenario and desired outcome.

The age and underlying health of the man as well as the extent of spread, appearance under the microscope and response of the cancer to initial treatment are important in determining the outcome of the disease. The decision whether or not to treat localized prostate cancer (a tumor that is contained within the prostate) with curative intent is a patient trade-off between the expected beneficial and harmful effects in terms of patient survival and quality of life.

Prostate

The prostate is a part of the male reproductive organ which helps make and store seminal fluid. In adult men a typical prostate is about three centimeters long and weighs about twenty grams.[2] It is located in the pelvis, under the urinary bladder and in front of the rectum. The prostate surrounds part of the urethra, the tube that carries urine from the bladder during urination and semen during ejaculation.[3] Because of its location, prostate diseases often affect urination, ejaculation, and rarely defecation. The prostate contains many small glands which make about twenty percent of the fluid constituting semen.[4] In prostate cancer the cells of these prostate glands mutate into cancer cells. The prostate glands require male hormones, known as androgens, to work properly. Androgens include testosterone, which is made in the testes; dehydroepiandrosterone, made in the adrenal glands; and dihydrotestosterone, which is converted from testosterone within the prostate itself. Androgens are also responsible for secondary sex characteristics such as facial hair and increased muscle mass.

Classification

An important part of evaluating prostate cancer is determining the stage, or how far the cancer has spread. Knowing the stage helps define prognosis and is useful when selecting therapies. The most common system is the four-stage TNM system (abbreviated from Tumor/Nodes/Metastases). Its components include the size of the tumor, the number of involved lymph nodes, and the presence of any other metastases.

The most important distinction made by any staging system is whether or not the cancer is still confined to the prostate. In the TNM system, clinical T1 and T2 cancers are found only in the prostate, while T3 and T4 cancers have spread elsewhere. Several tests can be used to look for evidence of spread. These include computed tomography to evaluate spread within the pelvis, bone scans to look for spread to the bones, and endorectal coil magnetic resonance imaging to closely evaluate the prostatic capsule and the seminal vesicles. Bone scans should reveal osteoblastic appearance due to increased bone density in the areas of bone metastasis - opposite to what is found in many other cancers that metastasize.

Computed tomography (CT) and magnetic resonance imaging (MRI) currently do not add any significant information in the assessment of possible lymph node metastases in patients with prostate cancer according to a meta-analysis.[5] The sensitivity of CT was 42% and specificity of CT was 82%. The sensitivity of MRI was 39% and the specificity of MRI was 82%. For patients at similar risk to those in this study (17% had positive pelvic lymph nodes in the CT studies and 30% had positive pelvic lymph nodes in the MRI studies), this leads to a positive predictive value (PPV) of 32.3% with CT, 48.1% with MRI, and negative predictive value (NPV) of 87.3% with CT, 75.8% with MRI.It is easy to treat if found early After a prostate biopsy, a pathologist looks at the samples under a microscope. If cancer is present, the pathologist reports the grade of the tumor. The grade tells how much the tumor tissue differs from normal prostate tissue and suggests how fast the tumor is likely to grow. The Gleason system is used to grade prostate tumors from 2 to 10, where a Gleason score of 10 indicates the most abnormalities. The pathologist assigns a number from 1 to 5 for the most common pattern observed under the microscope, then does the same for the second most common pattern. The sum of these two numbers is the Gleason score. The Whitmore-Jewett stage is another method sometimes used. Proper grading of the tumor is critical, since the grade of the tumor is one of the major factors used to determine the treatment recommendation.

Symptoms

Early prostate cancer usually causes no symptoms. Often it is diagnosed during the workup for an elevated PSA noticed during a routine checkup. Sometimes, however, prostate cancer does cause symptoms, often similar to those of diseases such as benign prostatic hypertrophy. These include frequent urination, increased urination at night, difficulty starting and maintaining a steady stream of urine, blood in the urine, and painful urination. Prostate cancer is associated with urinary dysfunction as the prostate gland surrounds the prostatic urethra. Changes within the gland therefore directly affect urinary function. Because the vas deferens deposits seminal fluid into the prostatic urethra, and secretions from the prostate gland itself are included in semen content, prostate cancer may also cause problems with sexual function and performance, such as difficulty achieving erection or painful ejaculation.[6]

Advanced prostate cancer can spread to other parts of the body and this may cause additional symptoms. The most common symptom is bone pain, often in the vertebrae (bones of the spine), pelvis or ribs. Spread of cancer into other bones such as the femur is usually to the proximal part of the bone. Prostate cancer in the spine can also compress the spinal cord, causing leg weakness and urinary and fecal incontinence.[7]

Causes

The specific causes of prostate cancer remain unknown.[8] A man's risk of developing prostate cancer is related to his age, genetics, race, diet, lifestyle, medications, and other factors. The primary risk factor is age. Prostate cancer is uncommon in men less than 45, but becomes more common with advancing age. The average age at the time of diagnosis is 70.[9] However, many men never know they have prostate cancer. Autopsy studies of Chinese, German, Israeli, Jamaican, Swedish, and Ugandan men who died of other causes have found prostate cancer in thirty percent of men in their 50s, and in eighty percent of men in their 70s.[10] In the year 2005 in the United States, there were an estimated 230,000 new cases of prostate cancer and 30,000 deaths due to prostate cancer.[11]

Genetics

A man's genetic background contributes to his risk of developing prostate cancer. This is suggested by an increased incidence of prostate cancer found in certain racial groups, in identical twins of men with prostate cancer, and in men with certain genes. In the United States, prostate cancer more commonly affects black men than white or Hispanic men, and is also more deadly in black men.[12] Men who have a brother or father with prostate cancer have twice the usual risk of developing prostate cancer.[13] Studies of twins in Scandinavia suggest that forty percent of prostate cancer risk can be explained by inherited factors.[14] However, no single gene is responsible for prostate cancer; many different genes have been implicated. Two genes (BRCA1 and BRCA2) that are important risk factors for ovarian cancer and breast cancer in women have also been implicated in prostate cancer.[15]

Diet

Dietary amounts of certain foods, vitamins, and minerals can contribute to prostate cancer risk. Men with higher serum levels of the short-chain omega-6 fatty acid linoleic acid have higher rates of prostate cancer. However, the same series of studies showed that men with elevated levels of long-chain omega-3 fatty acids (EPA and DHA, found in fatty fishes like salmon) had lowered incidence.[16] A long-term study reports that "blood levels of trans fatty acids, in particular trans fats resulting from the hydrogenation of vegetable oils, are associated with an increased prostate cancer risk."[17] Other dietary factors that may increase prostate cancer risk include low intake of vitamin E (Vitamin E is found in green, leafy vegetables), and the mineral selenium. A study in 2007 cast doubt on the effectiveness of lycopene (found in tomatoes) in reducing the risk of prostate cancer.[18] Lower blood levels of vitamin D also may increase the risk of developing prostate cancer. This may be linked to lower exposure to ultraviolet (UV) light, since UV light exposure can increase vitamin D in the body.[19]

Other studies have implicated dairy, specifically low-fat milk and other dairy products to which vitamin A palmitate has been added. This form of synthetic vitamin A has been linked to prostate cancer because it reacts with zinc and milk protein to form an unabsorbable complex.[20]

Prostate cancer risk can be decreased by modifying known risk factors for prostate cancer, such as decreasing intake of animal fat.[21]

Medication exposure

There are also some links between prostate cancer and medications, medical procedures, and medical conditions. Daily use of anti-inflammatory medicines such as aspirin, ibuprofen, or naproxen may decrease prostate cancer risk.[22] Use of the cholesterol-lowering drugs known as the statins may also decrease prostate cancer risk.[23] More frequent ejaculation also may decrease a man's risk of prostate cancer. One study showed that men who ejaculated five times a week in their 20s had a decreased rate of prostate cancer, though others have shown no benefit.[24][25] Infection or inflammation of the prostate (prostatitis) may increase the chance for prostate cancer. In particular, infection with the sexually transmitted infections chlamydia, gonorrhea, or syphilis seems to increase risk.[26] Finally, obesity[27] and elevated blood levels of testosterone[28] may increase the risk for prostate cancer.

Research released in May 2007, found that US war veterans who had been exposed to Agent Orange had a 48% increased risk of prostate cancer recurrence following surgery.[29]

Ejaculation

One research study, by the Cancer Council Victoria, has shown that men who report that they regularly ("more than five times per week") masturbate have up to one third fewer occurrences of prostate cancer.[30][24] The researchers hypothesize that this could be because regular ejaculation reduces the buildup of carcinogenic deposits such as 3-methylcholanthrene, produced from the breakdown of cholesterol, which could damage the cells lining the prostate. The researchers also speculated that frequent ejaculation may cause the prostate to mature fully, making it less susceptible to carcinogens. It is also possible that there is another factor (such as hormone levels) that is a common cause of both a reduced susceptibility to prostate cancer and a tendency toward frequent masturbation. There is also some evidence that frequent sexual intercourse is associated with reduced risk of prostate cancer, although contrarily the risks associated with STDs have been shown to increase the risk of prostate cancer.[30][24] Once the lining of the prostate is affected with cancer, the only known treatments are surgery and radiation therapy. Both may limit the ability to have erections afterward.

Pathophysiology

File:Normal cancer cell division from NIH-2.svg
When normal cells are damaged beyond repair, they are eliminated by apoptosis. Cancer cells avoid apoptosis and continue to multiply in an unregulated manner.

Prostate cancer is classified as an adenocarcinoma, or glandular cancer, that begins when normal semen-secreting prostate gland cells mutate into cancer cells. The region of prostate gland where the adenocarcinoma is most common is the peripheral zone. Initially, small clumps of cancer cells remain confined to otherwise normal prostate glands, a condition known as carcinoma in situ or prostatic intraepithelial neoplasia (PIN). Although there is no proof that PIN is a cancer precursor, it is closely associated with cancer. Over time these cancer cells begin to multiply and spread to the surrounding prostate tissue (the stroma) forming a tumor. Eventually, the tumor may grow large enough to invade nearby organs such as the seminal vesicles or the rectum, or the tumor cells may develop the ability to travel in the bloodstream and lymphatic system. Prostate cancer is considered a malignant tumor because it is a mass of cells which can invade other parts of the body. This invasion of other organs is called metastasis. Prostate cancer most commonly metastasizes to the bones, lymph nodes, rectum, and bladder.

Diagnosis

Normal prostate (A) and prostate cancer (B). In prostate cancer, the regular glands of the normal prostate are replaced by irregular glands and clumps of cells, as seen in these pictures taken through a microscope.

When a man has symptoms of prostate cancer, or a screening test indicates an increased risk for cancer, more invasive evaluation is offered.

The only test which can fully confirm the diagnosis of prostate cancer is a biopsy, the removal of small pieces of the prostate for microscopic examination. However, prior to a biopsy, several other tools may be used to gather more information about the prostate and the urinary tract. Cystoscopy shows the urinary tract from inside the bladder, using a thin, flexible camera tube inserted down the urethra. Transrectal ultrasonography creates a picture of the prostate using sound waves from a probe in the rectum.

Biopsy

If cancer is suspected, a biopsy is offered. During a biopsy a urologist or radiologist obtains tissue samples from the prostate via the rectum. A biopsy gun inserts and removes special hollow-core needles (usually three to six on each side of the prostate) in less than a second. Prostate biopsies are routinely done on an outpatient basis and rarely require hospitalization. Fifty-five percent of men report discomfort during prostate biopsy. [31]

Gleason score

The tissue samples are then examined under a microscope to determine whether cancer cells are present, and to evaluate the microscopic features (or Gleason score) of any cancer found.

Tumor markers

Tissue samples can be stained for the presence of PSA and other tumor markers in order to determine the origin of maligant cells that have metastasized.[32]


Diagnostic tools under investigation

Currently, an active area of research involves non-invasive methods of prostate tumor detection. Adenoviruses modified to transfect tumor cells with harmless yet distinct genes (such as luciferase) have proven capable of early detection. So far, though, this area of research has only been tested in animal and LNCaP models.[33]

PCA3

Another potential non-invasive method of early prostate tumor detection is through a molecular test that detects the presence of cell-associated PCA3 mRNA in urine. PCA3 mRNA is expressed almost exclusively by prostate cells and has been shown to be highly over-expressed in prostate cancer cells. PCA3 is not a replacement for PSA but an additional tool to help decide if, in men suspected of having prostate cancer, a biopsy is really needed. The higher the expression of PCA3 in urine, the greater the likelihood of a positive biopsy, i.e. the presence of cancer cells in the prostate.

Early prostate cancer

It was reported in April 2007 that a new blood test for early prostate cancer antigen-2 (EPCA-2) is being researched that may alert men if they have prostate cancer and how aggressive it will be.[34][35]

Prostate mapping

Prostate Mapping is a method of diagnosis which may be accurate in determining the precise location and aggressiveness of cancer. It uses a combination of multi-sequence MRI imaging techniques and a template guided biopsy system and involves taking multiple biopsies through the skin that lies in front of the back passage rather than through the back passage. The procedure is carried out under general anaesthetic.[36]

Prostasomes

Epithelial cells of the prostate secrete prostasomes as well as PSA. Prostasomes are membrane –surrounded, prostate-derived organelles that appear extracellularly and one of their physiological functions is to protect the sperm from attacks by the female immune system. Cancerous prostate cells continue to synthesize and secrete prostasomes and may be shielded against immunological attacks by these prostasomes. Research of several aspects of prostasomal involvement in prostate cancer has been performed.[37]

Prevention

Vitamins and medication

Evidence from epidemiological studies supports protective roles in reducing prostate cancer for dietary selenium, vitamin E, lycopene, and soy foods. High plasma levels of Vitamin D may also have a protective effect.[38] Estrogens from fermented soybeans and other plant sources (called phytoestrogens) may also help prevent prostate cancer.[39] The selective estrogen receptor modulator drug toremifene has shown promise in early trials.[40][41] Two medications which block the conversion of testosterone to dihydrotestosterone, finasteride[42] and dutasteride,[43] have also shown some promise. The use of these medications for primary prevention is still in the testing phase, and they are not widely used for this purpose. The initial problem with these medications is that they may preferentially block the development of lower-grade prostate tumors, leading to a relatively greater chance of higher grade cancers, and negating any overall survival improvement. More recent research found that finasteride did not increase the percentage of higher grade cancers. A 2008 study update found that finasteride reduces the incidence of prostate cancer by 30%. In the original study it turns that that the smaller prostate caused by finasteride means that a doctor is more likely to hit upon cancer nests and more likely to find aggressive-looking cells. Most of the men in the study who had cancer — aggressive or not — chose to be treated and many had their prostates removed. A pathologist then carefully examined every one of those 500 prostates and compared the kinds of cancers found at surgery to those initially diagnosed at biopsy. Finasteride did not increase the risk of High-Grade prostate cancer.[44][45]

Green tea may be protective (due to its polyphenol content),[46] although the most comprehensive clinical study indicates that it has no protective effect.[47] A 2006 study of green tea derivatives demonstrated promising prostate cancer prevention in patients at high risk for the disease.[48] Recent research published in the Journal of the National Cancer Institute suggests that taking multivitamins more than seven times a week can increase the risks of contracting the disease.[49][50] This research was unable to highlight the exact vitamins responsible for this increase (almost double), although they suggest that vitamin A, vitamin E and beta-carotene may lie at its heart. It is advised that those taking multivitamins never exceed the stated daily dose on the label. Scientists recommend a healthy, well balanced diet rich in fiber, and to reduce intake of meat. A 2007 study published in the Journal of the National Cancer Institute found that men eating cauliflower, broccoli, or one of the other cruciferous vegetables, more than once a week were 40% less likely to develop prostate cancer than men who rarely ate those vegetables.[51][52] The phytochemicals indole-3-carbinol and diindolylmethane, found in cruciferous vegetables, has antiandrogenic and immune modulating properties.[53][54]

Ejaculation frequency

In 2003, an Australian research team led by Graham Giles of The Cancer Council Australia concluded that frequent masturbation by males appears to help prevent the development of prostate cancer.[55][30] Australian research concluded that the more men ejaculate between the ages of 20 and 50, the less likely they are to develop prostate cancer. The protective effect is greatest while men are in their twenties: those who had ejaculated more than five times per week in their twenties, for instance, were one-third less likely to develop aggressive prostate cancer later in life. The results contradict those of previous studies, which have suggested that having had many sexual partners, or a high frequency of sexual activity, increases the risk of prostate cancer by up to 40 percent. The key difference is that these earlier studies defined sexual activity as sexual intercourse, whereas this study focused on the number of ejaculations, whether or not intercourse was involved.[56] Another study completed in 2004 reported that "Most categories of ejaculation frequency were unrelated to risk of prostate cancer. However, high ejaculation frequency was related to decreased risk of total prostate cancer." The report abstract concluded, "Our results suggest that ejaculation frequency is not related to increased risk of prostate cancer." [57]

A 2008 study showed that frequent masturbation, of about two to seven times a week, at the ages of 20s and 30s, increases the risk of having prostate cancer. While frequent masturbation, once a week, at the age of 50s decreases the disease risk.[58]

Oils and fatty acids

In experimental models using mice, omega-6 polyunsaturated fatty acids (PUFAs), which are found in most types of vegetable oil (corn oil, soybean oil, sunflower oil), increased prostate tumor growth, sped up histopathological progression, and decreased survival, while the omega-3 fatty acids (fish oil) had the opposite, beneficial effect.[59]

Some researches have indicated that some specific saturated fatty acids (myristic acid[60][61][62] and palmitic acid[61][62] are associated with increased risk of prostate cancer in a dose-dependent manner. Another study further investigated these and other saturated fatty acids.[62] However it's still uncertain if this association is a cause or consequence of the disease.

Screening

Prostate cancer screening is an attempt to find unsuspected cancers. Screening tests may lead to more specific follow-up tests such as a biopsy, where small cores of the prostate are removed for closer study. Prostate cancer screening options include the digital rectal exam and the prostate specific antigen (PSA) blood test. Screening for prostate cancer is controversial because it is not clear if the benefits of screening outweigh the risks of follow-up diagnostic tests and cancer treatments.

Prostate cancer is usually a slow-growing cancer, very common among older men. In fact, most prostate cancers never grow to the point where they cause symptoms, and most men with prostate cancer die of other causes before prostate cancer has an impact on their lives. The PSA screening test may detect these small cancers that would never become life threatening. Doing the PSA test in these men may lead to overdiagnosis, including additional testing and treatment. Follow-up tests, such as prostate biopsy, may cause pain, bleeding and infection. Prostate cancer treatments may cause urinary incontinence and erectile dysfunction. A large randomized study in which 76,000 men were randomized to receive either PSA screening or conventional care found that more men who underwent PSA screening were diagnosed with prostate cancer, but that there was no difference in mortality between the two groups. [63]

The results from two of the largest randomized trials regarding the efficacy of screening have now been published. [64] In one of these trials, the death rate from prostate cancer was actually higher in the group that had total screening compared to the control group which had only normal rates of screening. The other showed some benefit from screening but the reduction in deaths was minor compared to the level of intervention needed to prevent it.

In the European Randomized Study of Screening for Prostate Cancer initiated in the early 1990s the intention was to evaluate the effect of screening with prostate-specific antigen (PSA) testing on death rates from prostate cancer. The trial involved 182,000 men between the ages of 50 and 74 years in seven European countries randomly assigned to a group that was offered PSA screening at an average of once every 4 years or to a control group that did not receive such screening. During a median follow-up of almost 9 years, the cumulative detected incidence of prostate cancer was 820 per 10,000 in the screening group and 480 per 10,000 in the control group. Deaths from these cancers in this time was much lower. There were 214 prostate cancer deaths in the screening group and 326 in the control group, a difference of 71 men per 10,000 in the tested group compared to the control. The researchers concluded that PSA-based screening did reduce the rate of death from prostate cancer by 20% but that this was associated with a high risk of overdiagnosis. Statistically, it means that 1410 men would need to be screened and 48 additional cases of prostate cancer would need to be treated to prevent just one death from prostate cancer. [65]

A US study looked at the general effectiveness of a screening program involving both PSA and DRE methods. This was conducted between 1993 thu 2001, in which 76,693 men at 10 U.S. study centers 38,343 subjects received screening (an annual PSA testing for 6 years and DRE for 4 years) and a control group of 38,350 subjects reveived 'usual care' with subjects and health care providers receiving the results and deciding on the type of follow-up evaluation. 'Usual care' means that some in this group would have received some screening, as some organizations have recommended. After 7 years of follow-up, the incidence of prostate cancer per 10,000 person-years was 116 (2,820 cancers) in the screening group and 95 (2,322 cancers) in the control group. The incidence of death attributed to prostate cancer per 10,000 person-years was 2.0 (50 deaths) in the screening group and 1.7 (44 deaths) in the control group (rate ratio, 1.13; 95% CI, 0.75 to 1.70). The data at 10 years were 67% complete and consistent with these overall findings. The researchers concluded that after 7 to 10 years of follow-up, the rate of death from prostate cancer was very low and did not differ significantly between the two study groups.[66]

Commenting on the findings, the Chief Medical Officer of the American Cancer Society, Otis W. Brawley, MD, said

many experts had anticipated these studies would show a small number of men will benefit from prostate screening, but a large number of men will be treated unnecessarily. And that's what these studies show. However, the question is not as simple as: 'does prostate cancer screening work?' What we need to know is: what are benefits of prostate cancer screening and are they large enough to outweigh the harms associated with it? And despite the release of this early data, we still cannot say whether the benefits outweigh the risk.[67]"

His Deputy chief medical officer, Len Lichtenfeld, MD, MACP said

"When one considers all of the problems associated with treatment for prostate cancer -- urine incontinence, impotence, pain and bleeding among others -- that is a lot of men left with a lot of symptoms to save one life."

The American Urological Association said that "The decision to screen is one that a man should make in conjunction with his physician, and should incorporate known prostate cancer risk factors, such as family history of prostate cancer, age, ethnicity/race and whether or not a man has had a previous negative prostate biopsy. These factors are different for every man and, therefore, the benefits of screening should be considered in the broader perspective."[68] The organization will review its best practice guidlines later this year.

  • In 2002, the U.S. Preventive Services Task Force (USPSTF) concluded that the evidence was insufficient to recommend for or against routine screening for prostate cancer using PSA testing or digital rectal examination (DRE).[69] The previous 1995 USPSTF recommendation was against routine screening.
  • In 1997, American Cancer Society (ACS) guidelines began recommending that beginning at age 50 (age 45 for African-American men and men with a family history of prostate cancer, and since 2001, age 40 for men with a very strong family history of prostate cancer), PSA testing and DRE be offered annually to men who have a life-expectancy of 10 or more years (average life expectancy is 10 years or more for U.S. men under age 76)[70] along with information on the risks and benefits of screening.[71] The previous ACS recommendations since 1980 had been for routine screening for prostate cancer with DRE annually beginning at age 40, and since 1992 had been for routine screening with DRE and PSA testing annually beginning at age 50.[72]
  • The 2007 National Comprehensive Cancer Network (NCCN) guideline recommends offering a baseline PSA test and DRE at ages 40 and 45 and annual PSA testing and DRE beginning at age 50 (with annual PSA testing and DRE beginning at age 40 for African-American men, men with a family history of prostate cancer, and men with a PSA ≥ 0.6 ng/mL at age 40 or PSA > 0.6 ng/mL at age 45) through age 80, along with information on the risks and benefits of screening. Biopsy is recommended if DRE is positive or PSA ≥ 4 ng/mL, and biopsy considered if PSA > 2.5 ng/mL or PSA velocity ≥ 0.35 ng/mL/year when PSA ≤ 2.5 ng/mL.[73]
  • Some U.S. radiation oncologists and medical oncologists who specialize in treating prostate cancer recommend obtaining a baseline PSA in all men at age 35[74] or beginning annual PSA testing in high risk men at age 35.[75]
  • The American Urological Association Patient Guide to Prostate Cancer.[76]

Since there is no general agreement that the benefits of PSA screening outweigh the harms, the consensus is that clinicians use a process of shared decision-making that includes discussing with patients the risks of prostate cancer, the potential benefits and harms of screening, and involving the patients in the decision.[77]

However, because PSA screening is widespread in the United States, following the recommendations of major scientific and medical organizations to use shared decision-making is legally perilous in some U.S. states.[78] In 2003, a Virginia jury found a family practice residency program guilty of malpractice and liable for $1 million for following national guidelines and using shared decision-making, thereby allowing a patient (subsequently found to have a high PSA and incurable advanced prostate cancer) to decline a screening PSA test, instead of routinely ordering without discussion PSA tests in all men ≥ 50 years of age as four local physicians testified was their practice, and was accepted by the jury as the local standard of care.[79]

An estimated 20 million PSA tests are done per year in North America and possibly 20 million more outside of North America.[80]

  • In 2000, 34.1% of all U.S. men age ≥ 50 had a screening PSA test within the past year and 56.8% reported ever having a PSA test.[77]
  • In 2000, 33.6% of all U.S. men age 50–64 and 51.3% of men age ≥ 65 had a PSA test within the past year.[81]
  • In 2005, 33.5% of all U.S. men age 50–64 had a PSA test in the past year.
  • In 2000–2001, 34.1% of all Canadian men age ≥ 50 had a screening PSA test within the past year and 47.5% reported ever having a screening PSA test.[83]
  • Canadian men in Ontario were most likely to have had a PSA test within the past year and men in Alberta were least likely to have had a PSA test with the past year or ever.[84]

Digital rectal examination

Digital rectal examination (DRE) is a procedure where the examiner inserts a gloved, lubricated finger into the rectum to check the size, shape, and texture of the prostate. Areas which are irregular, hard or lumpy need further evaluation, since they may contain cancer. Although the DRE only evaluates the back of the prostate, 85% of prostate cancers arise in this part of the prostate. Prostate cancer which can be felt on DRE is generally more advanced.[85] The use of DRE has never been shown to prevent prostate cancer deaths when used as the only screening test.[86]

Prostate specific antigen

The PSA test measures the blood level of prostate-specific antigen, an enzyme produced by the prostate. Specifically, PSA is a serine protease similar to kallikrein. Its normal function is to liquify gelatinous semen after ejaculation, allowing spermatozoa to more easily navigate through the uterine cervix.

The risk of prostate cancer increases with increasing PSA levels.[87] 4 ng/mL was chosen arbitrarily as a decision level for biopsies in the clinical trial upon which the FDA in 1994 based adding prostate cancer detection in men age 50 and over as an approved indication for the first commercially available PSA test.[88] 4 ng/mL was used as the biopsy decision level in the PLCO trial, 3 ng/mL was used in the ERSPC and ProtecT trials, and 2.5 ng/mL is used in the 2007 NCCN guideline.

PSA levels can change for many reasons other than cancer. Two common causes of high PSA levels are enlargement of the prostate (benign prostatic hypertrophy (BPH)) and infection in the prostate (prostatitis). It can also be raised for 24 hours after ejaculation and several days after catheterization. PSA levels are lowered in men who use medications used to treat BPH or baldness. These medications, finasteride (marketed as Proscar or Propecia) and dutasteride (marketed as Avodart), may decrease the PSA levels by 50% or more.

Several other ways of evaluating the PSA have been developed to avoid the shortcomings of simple PSA screening. The use of age-specific reference ranges improves the sensitivity and specificity of the test. The rate of rise of the PSA over time, called the PSA velocity, has been used to evaluate men with PSA levels between 4 and 10 ng/ml, but it has not proven to be an effective screening test.[89] Comparing the PSA level with the size of the prostate, as measured by ultrasound or magnetic resonance imaging, has also been studied. This comparison, called PSA density, is both costly and has not proven to be an effective screening test.[90] PSA in the blood may either be free or bound to other proteins. Measuring the amount of PSA which is free or bound may provide additional screening information, but questions regarding the usefulness of these measurements limit their widespread use.[91][92]

Treatment

Treatment for prostate cancer may involve active surveillance, surgery, radiation therapy including brachytherapy (prostate brachytherapy) and external beam radiation, High Intensity Focused Ultrasound (HIFU), chemotherapy, cryosurgery, hormonal therapy, or some combination. Which option is best depends on the stage of the disease, the Gleason score, and the PSA level. Other important factors are the man's age, his general health, and his feelings about potential treatments and their possible side effects. Because all treatments can have significant side effects, such as erectile dysfunction and urinary incontinence, treatment discussions often focus on balancing the goals of therapy with the risks of lifestyle alterations.

The selection of treatment options may be a complex decision involving many factors. For example, radical prostatectomy after primary radiation failure is a very technically challenging surgery and may not be an option.[93] This may enter into the treatment decision.

If the cancer has spread beyond the prostate, treatment options significantly change, so most doctors who treat prostate cancer use a variety of nomograms to predict the probability of spread. Treatment by watchful waiting, HIFU, radiation therapy, cryosurgery, and surgery are generally offered to men whose cancer remains within the prostate. Hormonal therapy and chemotherapy are often reserved for disease which has spread beyond the prostate. However, there are exceptions: radiation therapy may be used for some advanced tumors, and hormonal therapy is used for some early stage tumors. Cryotherapy (the process of freezing the tumor), hormonal therapy, and chemotherapy may also be offered if initial treatment fails and the cancer progresses.[94]

Active surveillance

Active surveillance refers to observation and regular monitoring without invasive treatment. Active surveillance is often used when an early stage, slow-growing prostate cancer is suspected. Conversely watchful waiting may also be suggested when the risks of surgery, radiation therapy, or hormonal therapy outweigh the possible benefits. Other treatments can be started if symptoms develop, or if there are signs that the cancer growth is accelerating (e.g., rapidly rising PSA, increase in Gleason score on repeat biopsy, etc.). Approximately one-third of men who choose active surveillance for early stage tumors eventually have signs of tumor progression, and they may need to begin treatment within three years.[95] Men who choose active surveillance avoid the risks of surgery, radiation, and other treatments. The risk of disease progression and metastasis (spread of the cancer) may be increased, but this increase risk appears to be small if the program of surveillance is followed closely, generally including serial PSA assessments and repeat prostate biopsies every 1-2 years depending on the PSA trends.

For younger men, a trial of active surveillance may not mean avoiding treatment altogether, but may reasonably allow a delay of a few years or more, during which time the quality of life impact of active treatment can be avoided. Published data to date suggest that carefully selected men will not miss a window for cure with this approach. Additional health problems that develop with advancing age during the observation period can also make it harder to undergo surgery and radiation therapy.

Hormonal therapy

Hormonal therapy in prostate cancer. Diagram shows the different organs (purple text), hormones (black text and arrows), and treatments (red text and arrows) important in hormonal therapy.

Hormonal therapy uses medications or surgery to block prostate cancer cells from getting dihydrotestosterone (DHT), a hormone produced in the prostate and required for the growth and spread of most prostate cancer cells. Blocking DHT often causes prostate cancer to stop growing and even shrink. However, hormonal therapy rarely cures prostate cancer because cancers which initially respond to hormonal therapy typically become resistant after one to two years. Hormonal therapy is therefore usually used when cancer has spread from the prostate. It may also be given to certain men undergoing radiation therapy or surgery to help prevent return of their cancer.[96]

Hormonal therapy for prostate cancer targets the pathways the body uses to produce DHT. A feedback loop involving the testicles, the hypothalamus, and the pituitary, adrenal, and prostate glands controls the blood levels of DHT. First, low blood levels of DHT stimulate the hypothalamus to produce gonadotropin releasing hormone (GnRH). GnRH then stimulates the pituitary gland to produce luteinizing hormone (LH), and LH stimulates the testicles to produce testosterone. Finally, testosterone from the testicles and dehydroepiandrosterone from the adrenal glands stimulate the prostate to produce more DHT. Hormonal therapy can decrease levels of DHT by interrupting this pathway at any point. There are several forms of hormonal therapy:

  • Orchiectomy is surgery to remove the testicles. Because the testicles make most of the body's testosterone, after orchiectomy testosterone levels drop. Now the prostate not only lacks the testosterone stimulus to produce DHT, but also it does not have enough testosterone to transform into DHT.
  • Antiandrogens are medications such as flutamide, bicalutamide, nilutamide, and cyproterone acetate which directly block the actions of testosterone and DHT within prostate cancer cells.
  • Medications which block the production of adrenal androgens such as DHEA include ketoconazole and aminoglutethimide. Because the adrenal glands only make about 5% of the body's androgens, these medications are generally used only in combination with other methods that can block the 95% of androgens made by the testicles. These combined methods are called total androgen blockade (TAB). TAB can also be achieved using antiandrogens.
  • GnRH action can be interrupted in one of two ways. GnRH antagonists suppress the production of LH directly, while GnRH agonists suppress LH through the process of downregulation after an initial stimulation effect. Abarelix is an example of a GnRH antagonist, while the GnRH agonists include leuprolide, goserelin, triptorelin, and buserelin. Initially, GnRH agonists increase the production of LH. However, because the constant supply of the medication does not match the body's natural production rhythm, production of both LH and GnRH decreases after a few weeks.[97]
  • A very recent Trial I study (N=21) found that Abiraterone Acetate caused dramatic reduction in PSA levels and Tumor sizes in aggressive end-stage prostate cancer for 70% of patients. This is prostate cancer that resists all other treatments (e.g., castration, other hormones, etc.). Officially the impacts on life-span are not yet known because subjects have not been taking the drug very long. Larger Trial III Clinical Studies are in the works. If successful an approved treatment is hoped for around 2011.[98][99]

The most successful hormonal treatments are orchiectomy and GnRH agonists. Despite their higher cost, GnRH agonists are often chosen over orchiectomy for cosmetic and emotional reasons. Eventually, total androgen blockade may prove to be better than orchiectomy or GnRH agonists used alone.

Each treatment has disadvantages which limit its use in certain circumstances. Although orchiectomy is a low-risk surgery, the psychological impact of removing the testicles can be significant. The loss of testosterone also causes hot flashes, weight gain, loss of libido, enlargement of the breasts (gynecomastia), impotence and osteoporosis. GnRH agonists eventually cause the same side effects as orchiectomy but may cause worse symptoms at the beginning of treatment. When GnRH agonists are first used, testosterone surges can lead to increased bone pain from metastatic cancer, so antiandrogens or abarelix are often added to blunt these side effects. Estrogens are not commonly used because they increase the risk for cardiovascular disease and blood clots. The antiandrogens do not generally cause impotence and usually cause less loss of bone and muscle mass. Ketoconazole can cause liver damage with prolonged use, and aminoglutethimide can cause skin rashes.

Surgery

Surgical removal of the prostate, or prostatectomy, is a common treatment either for early stage prostate cancer, or for cancer which has failed to respond to radiation therapy. The most common type is radical retropubic prostatectomy, when the surgeon removes the prostate through an abdominal incision. Another type is radical perineal prostatectomy, when the surgeon removes the prostate through an incision in the perineum, the skin between the scrotum and anus. Radical prostatectomy can also be performed laparoscopically, through a series of small (1cm) incisions in the abdomen, with or without the assistance of a surgical robot.

Radical prostatectomy

Radical prostatectomy is effective for tumors which have not spread beyond the prostate;[100] cure rates depend on risk factors such as PSA level and Gleason grade. However, it may cause nerve damage that significantly alters the quality of life of the prostate cancer survivor.

Radical prostatectomy has traditionally been used alone when the cancer is small. In the event of positive margins or locally advanced disease found on pathology, adjuvant radiation therapy may offer improved survival. Surgery may also be offered when a cancer is not responding to radiation therapy. However, because radiation therapy causes tissue changes, prostatectomy after radiation has a higher risk of complications.

Laparoscopic radical prostatectomy, LRP, is a new way to approach the prostate surgically with intent to cure. Contrasted with the open surgical form of prostate cancer surgery, laparoscopic radical prostatectomy does not require a large incision. Relying on modern technology, such as miniaturization, fiber optics, and the like, laparoscopic radical prostatectomy is a minimally invasive prostate cancer treatment.

In the hands of an experienced surgeon, robotic assisted laparoscopic prostatectomy (RALP) may reduce positive surgical margins when compared to radical retropubic prostatectomy (RRP) among patients with prostate cancer according to a retrospective study.[5] The relative risk reduction was 57.7%. For patients at similar risk to those in this study (35.5% of patients had positive surgical margins following RRP), this leads to an absolute risk reduction of 20.5%. 4.9 patients must be treated for one to benefit (number needed to treat = 4.9). The relative merits of RALP and benefits over open radical prostatectomy are an area of intense research currently in urology and no definitive data, that has been widely accepted by the broader urological community, exists to say it is superior to a open radical retropubic prostatectomy.

Transurethral resection of the prostate

Transurethral resection of the prostate, commonly called a "TURP," is a surgical procedure performed when the tube from the bladder to the penis (urethra) is blocked by prostate enlargement. TURP is generally for benign disease and is not meant as definitive treatment for prostate cancer. During a TURP, a small instrument (cystoscope) is placed into the penis and the blocking prostate is cut away.

Orchiectomy

In metastatic disease, where cancer has spread beyond the prostate, removal of the testicles (called orchiectomy) may be done to decrease testosterone levels and control cancer growth. (See hormonal therapy, below).

Cryosurgery

Cryosurgery is another method of treating prostate cancer in which the prostate gland is exposed to freezing temperatures.[101] It is less invasive than radical prostatectomy, and general anesthesia is less commonly used. Under ultrasound guidance, a method invented by Dr. Gary Onik,[102] metal rods are inserted through the skin of the perineum into the prostate. Highly purified Argon gas is used to cool the rods, freezing the surrounding tissue at −186 °C (−302 °F). As the water within the prostate cells freeze, the cells die. The urethra is protected from freezing by a catheter filled with warm liquid. Cryosurgery generally causes fewer problems with urinary control than other treatments, but impotence occurs up to ninety percent of the time. When used as the initial treatment for prostate cancer and in the hands of an experienced cryosurgeon, cryosurgery has a 10 year biochemical disease free rate superior to all other treatments including radical prostatectomy and any form of radiation.[103] Cryosurgery has also been demonstrated to be superior to radical prostatectomy for recurrent cancer following radiation therapy.

Complications of surgery

The most common serious complications of surgery are loss of urinary control and impotence. Reported rates of both complications vary widely depending on how they are assessed, by whom, and how long after surgery, as well as the setting (e.g., academic series vs. community-based or population-based data). Although penile sensation and the ability to achieve orgasm usually remain intact, erection and ejaculation are often impaired. Medications such as sildenafil (Viagra), tadalafil (Cialis), or vardenafil (Levitra) may restore some degree of potency. For most men with organ-confined disease, a more limited "nerve-sparing" technique may help reduce urinary incontinence and impotence.[104]

Radiation therapy

Overview

Brachytherapy for prostate cancer is administered using "seeds," small radioactive rods implanted directly into the tumor.

Radiation therapy, also known as radiotherapy, is often used to treat all stages of prostate cancer, or when surgery fails. Radiotherapy uses ionizing radiation to kill prostate cancer cells. When absorbed in tissue, Ionizing radiation such as Gamma and x-rays damage the DNA in cancer cells, which increases the probability of apoptosis (cell death). Normal cells are able to repair radiation damage, while cancer cells are not. Radiation therapy exploits this fact to treat cancer. Two different kinds of radiation therapy are used in prostate cancer treatment: external beam radiation therapy and brachytherapy (specifically prostate brachytherapy).

External beam radiation therapy uses a linear accelerator to produce high-energy x-rays which are directed in a beam towards the prostate. A technique called Intensity Modulated Radiation Therapy (IMRT) may be used to adjust the radiation beam to conform with the shape of the tumor, allowing higher doses to be given to the prostate and seminal vesicles with less damage to the bladder and rectum. External beam radiation therapy is generally given over several weeks, with daily visits to a radiation therapy center. New types of radiation therapy such as IMRT have fewer side effects than traditional treatment.

External beam radiation therapy for prostate cancer is delivered by a linear accelerator, such as this one.

Permanent implant brachytherapy is a popular treatment choice for patients with low to intermediate risk features, can be performed on an outpatient basis, and is associated with good 10-year outcomes with relatively low morbidity[105] It involves the placement of about 100 small "seeds" containing radioactive material (such as iodine-125 or palladium-103) with a needle through the skin of the perineum directly into the tumor while under spinal or general anesthetic. These seeds emit lower-energy X-rays which are only able to travel a short distance. Although the seeds eventually become inert, they remain in the prostate permanently. The risk of exposure to others from men with implanted seeds is generally accepted to be insignificant.[106]

Uses

Radiation therapy is commonly used in prostate cancer treatment. It may be used instead of surgery or after surgery in early stage prostate cancer (adjuvant radiotherapy). Radiation treatments also can be combined with hormonal therapy for intermediate risk disease, when surgery or radiation therapy alone is less likely to cure the cancer. Some radiation oncologists combine external beam radiation and brachytherapy for intermediate to high risk situations. Radiation therapy is often used in conjuntion with hormone therapy for high risk patients.[107] Others use a "triple modality" combination of external beam radiation therapy, brachytherapy, and hormonal therapy. In advanced stages of prostate cancer, radiation is used to treat painful bone metastases or reduce spinal cord compression.

Radiation therapy is also used after radical prostatectomy for either cancer recurrence or if multiple risk factors are found during surgery. Radiation therapy delivered immediately after surgery when risk factors are present (positive surgical margin, extracapsular extension, seminal vessicle involvement) has been demonstrated to reduce cancer recurrence, decrease distant metastasis, and increase overall survival in two separate randomized trials.[108]

Side Effects

Side effects of radiation therapy might occur after a few weeks into treatment. Both types of radiation therapy may cause diarrhea and mild rectal bleeding due to radiation proctitis, as well as potential urinary incontinence and impotence. Symptoms tend to improve over time.

Comparison to surgery

Multiple retrospective analyses have demonstrated that overall survival and disease free survival outcomes are similar between radical prostatectomy, external beam radiation therapy, and brachytherapy.[109] Rates for impotence when comparing radiation to nerve-sparing surgery are similar. Radiation has lower rates of incontinence compared with surgery, but has higher rates of occasional mild rectal bleeding.[110] Men who have undergone external beam radiation therapy may have a slightly higher risk of later developing colon cancer and bladder cancer.[111]

High intensity focused ultrasound (HIFU)

HIFU for prostate cancer utilizes high intensity focused ultrasound to ablate/destroy the tissue of the prostate. During the HIFU procedure, sound waves are used to heat the prostate tissue thus destroying the cancerous cells. Essentially, ultrasonic waves are precisely focused on specific areas of the prostate to eliminate the prostate cancer with minimal risks of affecting other tissue or organs. Temperatures at the focal point of the sound waves can exceed 100 °C (212 °F).[112] The ability to focus the ultrasonic waves leads to a relatively low occurrence of both incontinence and impotence. (0.6% and 0-20%, respectively)[113] According to preliminary international studies, HIFU has a high success rate with a reduced risk of side effects. Studies using HIFU machine have shown that 94% of patients with a pretreatment PSA (Prostate Specific Antigen) of less than 10 ng/mL were cancer-free after three years.[113] However, many studies of HIFU were performed by manufacturers of HIFU devices, or members of manufacturers' advisory panels.[114]

HIFU was first used in the 1940s and 1950s in efforts to destroy tumors in the central nervous system. Since then, HIFU has been shown to be effective at destroying malignant tissue in the brain, prostate, spleen, liver, kidney, breast, and bone.[112] Today, the HIF procedure for prostate cancer is performed using a transrectal probe. This procedure has been performed for over ten years and is currently approved for use in Japan, Europe, Canada, and parts of Central and South America.

HIFU is currently not approved for medical use in the United States. Current NCCN guidelines for the treatment of prostate cancer do not include HIFU as part of standard of care, though many promising clinical trials exist. Many patients have received the HIFU procedure at facilities in Canada, and Central and South America.

Palliative care

Palliative care for advanced stage prostate cancer focuses on extending life and relieving the symptoms of metastatic disease. As noted above Abiraterone Acetate is showing some promise in treating advance stage prostate cancer. It causes a dramatic reduction in PSA levels and Tumor sizes in aggressive advanced-stage prostate cancer for 70% of patients. Chemotherapy may be offered to slow disease progression and postpone symptoms. The most commonly used regimen combines the chemotherapeutic drug docetaxel with a corticosteroid such as prednisone.[115] Bisphosphonates such as zoledronic acid have been shown to delay skeletal complications such as fractures or the need for radiation therapy in patients with hormone-refractory metastatic prostate cancer.[116]

Bone pain due to metastatic disease is treated with opioid pain relievers such as morphine and oxycodone. External beam radiation therapy directed at bone metastases may provide pain relief. Injections of certain radioisotopes, such as strontium-89, phosphorus-32, or samarium-153, also target bone metastases and may help relieve pain.

Alternative therapies

As an alternative to active surveillance or definitive treatments, alternative therapies are also under investigation for the management of prostate cancer. PSA has been shown to be lowered in men with apparent localized prostate cancer using a vegan diet (fish allowed), regular exercise, and stress reduction.[117] These results have so far proven durable after two-years' treatment. However, this study did not compare the vegan diet to either active surveillance or definitive treatment, and thus cannot comment on the comparative efficacy of the vegan diet in treating prostate cancer.[118]

Many other single agents have been shown to reduce PSA, slow PSA doubling times, or have similar effects on secondary markers in men with localized cancer in short term trials, such as pomegranate juice or genistein, an isoflavone found in various legumes.[119][120]

The potential of using multiple such agents in concert, let alone combining them with lifestyle changes, has not yet been studied. A more thorough review of natural approaches to prostate cancer has been published.[121]

Prognosis

Prostate cancer rates are higher and prognosis poorer in developed countries than the rest of the world. Many of the risk factors for prostate cancer are more prevalent in the developed world, including longer life expectancy and diets high in red meat and reduced-fat dairy products to which vitamin A palmitate has been added[122] (although it must be noted, that people who consume larger amounts of meat and dairy also tend to consume fewer portions of fruits and vegetables. It is not currently clear whether both of these factors, or just one of them, contributes to the occurrence of prostate cancer).[123] Also, where there is more access to screening programs, there is a higher detection rate. Prostate cancer is the ninth most common cancer in the world, but is the number one non-skin cancer in United States men. Prostate cancer affected eighteen percent of American men and caused death in three percent in 2005.[124] In Japan, death from prostate cancer was one-fifth to one-half the rates in the United States and Europe in the 1990s.[125] In India in the 1990s, half of the people with prostate cancer confined to the prostate died within ten years.[126] African-American men have 50–60 times more prostate cancer and prostate cancer deaths than men in Shanghai, China.[127] In Nigeria, two percent of men develop prostate cancer and 64% of them are dead after two years.[128]

In patients who undergo treatment, the most important clinical prognostic indicators of disease outcome are stage, pre-therapy PSA level and Gleason score. In general, the higher the grade and the stage, the poorer the prognosis. Nomograms can be used to calculate the estimated risk of the individual patient. The predictions are based on the experience of large groups of patients suffering from cancers at various stages.[129]

In 1941, Charles Huggins reported that androgen ablation therapy causes regression of primary and metastatic androgen-dependent prostate cancer.[130] Androgen ablation therapy causes remission in 80-90% of patients undergoing therapy, resulting in a median progression-free survival of 12 to 33 months. After remission an androgen-independent phenotype typically emerges, where the median overall survival is 23–37 months from the time of initiation of androgen ablation therapy.[131] The actual mechanism contributes to the progression of prostate cancer is not clear and may vary between individual patient. A few possible mechanisms have been proposed.[132] Androgen at a concentration of 10-fold higher than the physiological concentration has also been shown to cause growth suppression and reversion of androgen-independent prostate cancer xenografts or androgen-independent prostate tumors derived in vivo model to an androgen-stimulated phenotype in athymic mice.[133][134] These observation suggest the possibility to use androgen to treat the development of relapsed androgen-independent prostate tumors in patients. Oral infusion of green tea polyphenols, a potential alternative therapy for prostate cancer by natural compounds, has been shown to inhibit the development, progression, and metastasis as well in autochthonous transgenic adenocarcinoma of the mouse prostate (TRAMP) model, which spontaneously develops prostate cancer.[135]

Many prostate cancers are not destined to be lethal, and most men will ultimately die from causes other than of the disease. Decisions about treatment type and timing may therefore be informed by an estimation of the risk that the tumor will ultimately recur after treatment and/or progress to metastases and mortality. Several tools are available to help predict outcomes such as pathologic stage and recurrence after surgery or radiation therapy. Most combine stage, grade, and PSA level, and some also add the number or percent of biopsy cores positive, age, and/or other information.

The D’Amico classification stratifies men to low, intermediate, or high risk based on stage, grade, and PSA. It is used widely in clinical practice and research settings. The major downside to the 3-level system is that it does not account for multiple adverse parameters (e.g., high Gleason score and high PSA) in stratifying patients.

The Partin tables predict pathologic outcomes (margin status, extraprostatic extension, and seminal vesicle invasion) based on the same 3 variables, and are published as lookup tables.

The Kattan nomograms predict recurrence after surgery and/or radiation therapy, based on data available either at time of diagnosis or after surgery. The nomograms can be calculated using paper graphs, or using software available on a website or for handheld computers. The Kattan score represents the likelihood of remaining free of disease at a given time interval following treatment.

The UCSF Cancer of the Prostate Risk Assessment (CAPRA) score predicts both pathologic status and recurrence after surgery. It offers comparable accuracy as the Kattan preoperative nomogram, and can be calculated without paper tables or a calculator. Points are assigned based on PSA, Grade, stage, age, and percent of cores positive; the sum yields a 0–10 score, with every 2 points representing roughly a doubling of risk of recurrence. The CAPRA score was derived from community-based data in the CaPSURE database. It has been validated among over 10,000 prostatectomy patients, including patients from CaPSURE[136]; the SEARCH registry, representing data from several Veterans Administration and active military medical centers[137]; a multi-institutional cohort in Germany[138]; and the prostatectomy cohort at Johns Hopkins University.[139]

Epidemiology

Rates of prostate cancer vary widely across the world. Although the rates vary widely between countries, it is least common in South and East Asia, more common in Europe, and most common in the United States.[1] According to the American Cancer Society, prostate cancer is least common among Asian men and most common among black men, with figures for white men in-between.[140][141] However, these high rates may be affected by increasing rates of detection.[142]

Prostate cancer develops most frequently in men over fifty. This cancer can occur only in men, as the prostate is exclusively of the male reproductive tract. It is the most common type of cancer in men in the United States, where it is responsible for more male deaths than any other cancer, except lung cancer. In the United Kingdom it is also the second most common cause of cancer death after lung cancer, where around 35,000 cases are diagnosed every year and of which around 10,000 die of it. However, many men who develop prostate cancer never have symptoms, undergo no therapy, and eventually die of other causes. That is because malignant neoplasms of the prostate are, in most cases, slow-growing, and because most of those affected are over 60. Hence they often die of causes unrelated to the prostate cancer, such as heart/circulatory disease, pneumonia, other unconnected cancers or old age. Many factors, including genetics and diet, have been implicated in the development of prostate cancer. The Prostate Cancer Prevention Trial found that finasteride reduces the incidence of prostate cancer rate by 30%. There had been a controversy about this also increasing the risk of more aggressive cancers, but more recent research showed this was not the case.[143][45]

History

File:Andrzej W. Schally.jpg
Andrzej W. Schally was awarded the 1977 Nobel Prize in Medicine for his research relating to prostate cancer.

Although the prostate was first described by Venetian anatomist Niccolò Massa in 1536, and illustrated by Flemish anatomist Andreas Vesalius in 1538, prostate cancer was not identified until 1853.[144] Prostate cancer was initially considered a rare disease, probably because of shorter life expectancies and poorer detection methods in the 19th century. The first treatments of prostate cancer were surgeries to relieve urinary obstruction.[145] Removal of the entire gland (radical perineal prostatectomy) was first performed in 1904 by Hugh H. Young at Johns Hopkins Hospital.[146] Surgical removal of the testes (orchiectomy) to treat prostate cancer was first performed in the 1890s, but with limited success. Transurethral resection of the prostate (TURP) replaced radical prostatectomy for symptomatic relief of obstruction in the middle of the 20th century because it could better preserve penile erectile function. Radical retropubic prostatectomy was developed in 1983 by Patrick Walsh.[147] This surgical approach allowed for removal of the prostate and lymph nodes with maintenance of penile function.

In 1941 Charles B. Huggins published studies in which he used estrogen to oppose testosterone production in men with metastatic prostate cancer. This discovery of "chemical castration" won Huggins the 1966 Nobel Prize in Physiology or Medicine.[148] The role of the hormone GnRH in reproduction was determined by Andrzej W. Schally and Roger Guillemin, who both won the 1977 Nobel Prize in Physiology or Medicine for this work. Receptor agonists, such as leuprolide and goserelin, were subsequently developed and used to treat prostate cancer.[149][150]

Radiation therapy for prostate cancer was first developed in the early 20th century and initially consisted of intraprostatic radium implants. External beam radiation became more popular as stronger radiation sources became available in the middle of the 20th century. Brachytherapy with implanted seeds was first described in 1983.[151] Systemic chemotherapy for prostate cancer was first studied in the 1970s. The initial regimen of cyclophosphamide and 5-fluorouracil was quickly joined by multiple regimens using a host of other systemic chemotherapy drugs.[152]

Prostate cancer models

Scientists have established a few prostate cancer cell lines to investigate the mechanism involved in the progression of prostate cancer. LNCaP, PC-3(PC3), and DU-145(DU145) are commonly used prostate cancer cell lines. The LNCaP cancer cell line was established from a human lymph node metastatic lesion of prostatic adenocarcinoma. PC-3 and DU-145 cells were established from human prostatic adenocarcinoma metastatic to bone and to brain, respectively. LNCaP cells express androgen receptor (AR), however, PC-3 and DU-145 cells express very little or no AR. AR, an androgen-activated transcription factor, belongs to the steroid nuclear receptor family. Development of the prostate is dependent on androgen signaling mediated through AR, and AR is also important during the development of prostate cancer. The proliferation of LNCaP cells is androgen-dependent but the proliferation of PC-3 and DU-145 cells is androgen-insensitive.Elevation of AR expression is often observed in advanced prostate tumors in patients.[153][154] Some androgen-independent LNCaP sublines have been developed from the ATCC androgen-dependent LNCaP cells after androgen deprivation for study of prostate cancer progression. These androgen-independent LNCaP cells have elevated AR expression and express prostate specific antigen upon androgen treatment. Androgens paradoxically inhibit the proliferation of these androgen-independent prostate cancer cells.[155][156][157]

References

  1. ^ a b "IARC Worldwide Cancer Incidence Statistics—Prostate". JNCI Cancer Spectrum. Oxford University Press. December 19, 2001. Retrieved on 2007-04-05 through the Internet Archive
  2. ^ Aumüller, G. (1979). Prostate Gland and Seminal Vesicles. Berlin-Heidecool.lberg: Springer-Verlag.
  3. ^ Moore, K. (1999). Clinically Oriented Anatomy. Baltimore, Maryland: Lippincott Williams & Wilkins. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  4. ^ Steive, H. (1930). "Männliche Genitalorgane". Handbuch der mikroskopischen Anatomie des Menschen. Vol. VII Part 2. Berlin: Springer. pp. 1–399.
  5. ^ a b Smith JA, Chan RC, Chang SS; et al. (2007). "A comparison of the incidence and location of positive surgical margins in robotic assisted laparoscopic radical prostatectomy and open retropubic radical prostatectomy". J. Urol. 178 (6): 2385–9, discussion 2389–90. doi:10.1016/j.juro.2007.08.008. PMID 17936849. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  6. ^ Miller, DC (2003). "Prostate carcinoma presentation, diagnosis, and staging: an update from the National Cancer Data Base". Cancer. 98: 1169. doi:10.1002/cncr.11635. PMID 12973840. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  7. ^ van der Cruijsen-Koeter, IW (2005). "Comparison of screen detected and clinically diagnosed prostate cancer in the European randomized study of screening for prostate cancer, section rotterdam". Urol. 174 (1): 121–5. doi:10.1097/01.ju.0000162061.40533.0f. PMID 15947595. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  8. ^ Hsing, Ann W. (2006). "Prostate cancer epidemiology". Frontiers in Bioscience. 11: 1388–1413. doi:10.2741/1891. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  9. ^ Hankey, BF (1999). "Cancer surveillance series: interpreting trends in prostate cancer—part I: Evidence of the effects of screening in recent prostate cancer incidence, mortality, and survival rates". J Natl Cancer Inst. 91 (12): 1017–24. doi:10.1093/jnci/91.12.1017. PMID 10379964. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  10. ^ Breslow, N (1977). "Latent carcinoma of prostate at autopsy in seven areas. The International Agency for Research on Cancer, Lyons, France". Int J Cancer. 20 (5): 680–8. doi:10.1002/ijc.2910200506. PMID 924691. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  11. ^ Jemal A (2005). "Cancer statistics, 2005". CA Cancer J Clin. 55 (1): 10–30. PMID 15661684. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help) Erratum in: CA Cancer J Clin. 2005 Jul-Aug;55(4):259
  12. ^ Hoffman, RM (2001). "Racial and ethnic differences in advanced-stage prostate cancer: the Prostate Cancer Outcomes Study". J Natl Cancer Inst. 93 (5): 388–95. doi:10.1093/jnci/93.5.388. PMID 11238701. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  13. ^ Steinberg, GD (1990). "Family history and the risk of prostate cancer". Prostate. 17 (4): 337–47. doi:10.1002/pros.2990170409. PMID 2251225. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  14. ^ Lichtenstein, P (2000). "Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland". N Engl J Med. 343 (2): 78–85. doi:10.1056/NEJM200007133430201. PMID 10891514. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  15. ^ Struewing, JP (1997). "The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews". N Engl J Med. 336 (20): 1401–8. doi:10.1056/NEJM199705153362001. PMID 9145676. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  16. ^ Gann, PH and Giovannucci (2005). "Prostate Cancer and Nutrition" (PDF). Retrieved February 20 2006. {{cite web}}: Check date values in: |accessdate= (help); Unknown parameter |dateformat= ignored (help) in .pdf format.
  17. ^ Chavarro et al., "A prospective study of blood trans fatty acid levels and risk of prostate cancer," Proc. Amer. Assoc. Cancer Res., Volume 47, 2006 [1]. See also Ledesma 2004 Nutrition & prostate cancer.
  18. ^ Peters U, Leitzmann MF, Chatterjee N, Wang Y, Albanes D, Gelmann EP, Friesen MD, Riboli E, Hayes RB (2007). "Serum lycopene, other carotenoids, and prostate cancer risk: a nested case-control study in the prostate, lung, colorectal, and ovarian cancer screening trial". Cancer Epidemiol. Biomarkers Prev. 16 (5): 962–8. doi:10.1158/1055-9965.EPI-06-0861. PMID 17507623. Retrieved 2007-12-17.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. ^ Schulman, CC (2001). "Nutrition and prostate cancer: evidence or suspicion?". Urology. 58 (3): 318–34. doi:10.1016/S0090-4295(01)01262-6. PMID 11549473. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  20. ^ http://yedda.com/questions/Low_fat_milk_causes_prostate_cancer_7351021963170/
  21. ^ "Position of the American Dietetic Association and Dietitians of Canada: Vegetarian diets". J Am Diet Assoc. 103 (6): 748–65. 2003. doi:10.1053/jada.2003.50142. PMID 12778049.
  22. ^ Jacobs, EJ (2005). "A large cohort study of aspirin and other nonsteroidal anti-inflammatory drugs and prostate cancer incidence". J Natl Cancer Inst. 97 (13): 975–80. PMID 15998950. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  23. ^ Shannon, J (2005). "Statins and prostate cancer risk: a case-control study". Am J Epidemiol. 162 (4): 318–25. doi:10.1093/aje/kwi203. PMID 16014776. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help) Epub 2005 July 13
  24. ^ a b c Giles GG, Severi G, English DR, McCredie MR, Borland R, Boyle P, Hopper JL (2003). "Sexual factors and prostate cancer". BJU Int. 92 (3): 211–6. doi:10.1046/j.1464-410X.2003.04319.x. PMID 12887469. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  25. ^ Leitzmann, Michael F. (2004). "Ejaculation Frequency and Subsequent Risk of Prostate Cancer". JAMA. 291 (13): 1578–86. doi:10.1001/jama.291.13.1578. PMID 15069045. 2004;291:1578-1586. {{cite journal}}: Cite has empty unknown parameter: |unused_data= (help); Text "Elizabeth A. Platz, ScD; Meir J. Stampfer, MD; Walter C. Willett, MD; Edward Giovannucci, MD" ignored (help)PMID: 15069045
  26. ^ Dennis, LK (2002). "Epidemiologic association between prostatitis and prostate cancer". Urology. 60 (1): 78–83. doi:10.1016/S0090-4295(02)01637-0. PMID 12100928. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  27. ^ Calle, EE (2003). "Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults". N Engl J Med. 348 (17): 1625–38. doi:10.1056/NEJMoa021423. PMID 12711737. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  28. ^ Gann, PH (1996). "Prospective study of sex hormone levels and risk of prostate cancer". J Natl Cancer Inst. 88 (16): 1118–26. doi:10.1093/jnci/88.16.1118. PMID 8757191. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  29. ^ "Veterans exposed to Agent Orange have higher rates of prostate cancer recurrence". Medical College of Georgia News. May 20, 2007.
  30. ^ a b c "Masturbation 'cuts cancer risk'". Health. BBC NEWS. 2003-07-16. Retrieved 2008-04-24. {{cite web}}: Cite has empty unknown parameter: |coauthors= (help)
  31. ^ Essink-Bot, ML (1998). "Short-term effects of population-based screening for prostate cancer on health-related quality of life". J Natl Cancer Inst. 90 (12): 925–31. doi:10.1093/jnci/90.12.925. PMID 9637143. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  32. ^ Chuang AY, Demarzo AM, Veltri RW, Sharma RB, Bieberich CJ, Epstein JI (2007). "Immunohistochemical Differentiation of High-grade Prostate Carcinoma From Urothelial Carcinoma". The American Journal of Surgical Pathology. 31 (8): 1246–1255. doi:10.1097/PAS.0b013e31802f5d33. PMID 17667550.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. ^ Iyer M, Salazar FB, Lewis X, Zhang L, Wu L, Carey M and Gambhir SS. Non-invasive imaging of a transgenic mouse model using a prostate-specific two-step transcriptional amplification strategy. Transg Res.2005; 14(1): 47–55
  34. ^ A Prostate Cancer Revolution. Newsweek, April 26, 2007.
  35. ^ Hansel DE, DeMarzo AM, Platz EA; et al. (2007). "Early prostate cancer antigen expression in predicting presence of prostate cancer in men with histologically negative biopsies". J. Urol. 177 (5): 1736–40. doi:10.1016/j.juro.2007.01.013. PMID 17437801. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  36. ^ Sartor AO, Hricak H, Wheeler TM; et al. (2008). "Evaluating localized prostate cancer and identifying candidates for focal therapy". Urology. 72 (6 Suppl): S12–24. doi:10.1016/j.urology.2008.10.004. PMID 19095124. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  37. ^ Ronquist G, Carlsson L, Larsson A, Nilsson BO: "Prostasomes: Proceedings from a symposium held at the Wenner-Gren Centre, Stockholm, June 2001" pp. 1-9. Portland Press , London
  38. ^ Wigle DT, Turner MC, Gomes J, Parent ME (2008). "Role of hormonal and other factors in human prostate cancer". J Toxicol Environ Health B Crit Rev. 11 (3–4): 242–59. doi:10.1080/10937400701873548. PMID 18368555. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  39. ^ Strom, SS (1999). "Phytoestrogen intake and prostate cancer: a case-control study using a new database". Nutr Cancer. 33 (1): 20–5. PMID 10227039. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help) Erratum in: Nutr Cancer 2000;36(2):243.
  40. ^ Steiner, MS (2002). "Acapodene (GTx-006) reduces high-grade prostatic intraepithelial neoplasia in phase II clinical trial (abstract)". Proc Am Soc Clin Oncol. 21: 180a. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  41. ^ Price, D (2005). "Double-blind, placebo-controlled trial of toremifene for the prevention of prostate cancer in men with high-grade prostatic intrapeithelial neoplasia (abstract)". J Clin Oncol. 23: 106s. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  42. ^ Thompson, IM (2003). "The influence of finasteride on the development of prostate cancer". N Engl J Med. 349 (3): 215–24. doi:10.1056/NEJMoa030660. PMID 12824459. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  43. ^ Andriole, GL (2004). "Effect of dutasteride on the detection of prostate cancer in men with benign prostatic hyperplasia". Urology. 64 (3): 537–41, discussion 542–3. doi:10.1016/j.urology.2004.04.084. PMID 15351586. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  44. ^ Gine Kolata. "New Take on a Prostate Drug, and a New Debate". NY Times date = June 15, 2008. Retrieved 2008-06-15. {{cite news}}: Missing pipe in: |publisher= (help)
  45. ^ a b Potosky A, Miller B, Albertsen P, Kramer B (2008). "Finasteride Does Not Increase the Risk of High-Grade Prostate Cancer: A Bias-Adjusted Modeling Approach". Cancer Prevention Research. Published Online First on May 18, 2008 as 10.1158/1940-6207.CAPR-08-0092: 174. doi:10.1158/1940-6207.CAPR-08-0092.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  46. ^ Lee AH, Fraser ML, Meng X, Binns CW (2006). "Protective effects of green tea against prostate cancer". Expert Rev Anticancer Ther. 6 (4): 507–13. doi:10.1586/14737140.6.4.507. PMID 16613539. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  47. ^ Kikuchi N, Ohmori K, Shimazu T; et al. (2006). "No association between green tea and prostate cancer risk in Japanese men: the Ohsaki Cohort Study". Br. J. Cancer. 95 (3): 371–3. doi:10.1038/sj.bjc.6603230. PMID 16804523. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  48. ^ Bettuzzi S, Brausi M, Rizzi F, Castagnetti G, Peracchia G, Corti A (2006). "Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study". Cancer Res. 66 (2): 1234–40. doi:10.1158/0008-5472.CAN-05-1145. PMID 16424063.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  49. ^ "Multivitamin prostate warning". Health. BBC NEWS. 2007-05-16. Retrieved 2008-04-23. {{cite web}}: Cite has empty unknown parameter: |coauthors= (help)
  50. ^ Lawson KA, Wright ME, Subar A, Mouw T, Hollenbeck A, Schatzkin A, Leitzmann MF (2007). "Multivitamin use and risk of prostate cancer in the National Institutes of Health-AARP Diet and Health Study". J. Natl. Cancer Inst. 99 (10): 754–64. doi:10.1093/jnci/djk177. PMID 17505071. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  51. ^ "Broccoli May Help Cut Prostate Cancer, Broccoli, Cauliflower May Make Aggressive Prostate Cancer Less Likely". CBS News. 2007-07-24. Retrieved 2008-04-23. {{cite web}}: Cite has empty unknown parameter: |coauthors= (help)
  52. ^ Kirsh VA, Peters U, Mayne ST, Subar AF, Chatterjee N, Johnson CC, Hayes RB (2007). "Prospective study of fruit and vegetable intake and risk of prostate cancer". J. Natl. Cancer Inst. 99 (15): 1200–9. doi:10.1093/jnci/djm065. PMID 17652276. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  53. ^ Sarkar FH, Li Y (2004). "Indole-3-carbinol and prostate cancer". J. Nutr. 134 (12 Suppl): 3493S–3498S. PMID 15570059. {{cite journal}}: Unknown parameter |month= ignored (help)
  54. ^ Hsu JC, Zhang J, Dev A, Wing A, Bjeldanes LF, Firestone GL (2005). "Indole-3-carbinol inhibition of androgen receptor expression and downregulation of androgen responsiveness in human prostate cancer cells". Carcinogenesis. 26 (11): 1896–904. doi:10.1093/carcin/bgi155. PMID 15958518. Retrieved 2008-09-12. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  55. ^ [2]Giles, et al., Sexual factors and prostate cancer, BJU International, Volume 92 Issue 3, Ausust 2003, pp. 211-216
  56. ^ Douglas Fox (2003-07-16). "Masturbating may protect against prostate cancer". New Scientist. Retrieved 2008-04-23. {{cite web}}: Cite has empty unknown parameter: |coauthors= (help)
  57. ^ Leitzmann MF, Platz EA, Stampfer MJ, Willett WC, Giovannucci E (2004). "Ejaculation frequency and subsequent risk of prostate cancer". JAMA. 291 (13): 1578–86. doi:10.1001/jama.291.13.1578. PMID 15069045. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  58. ^ Dimitropoulou, Polyxeni (Nov 11 2008). "Sexual activity and prostate cancer risk in men diagnosed at a younger age". BJU International. 103 (2): 178–185. OCLC 10.1111/j.1464-410X.2008.08030.x. {{cite journal}}: Check |oclc= value (help); Check date values in: |date= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  59. ^ Berquin IM, Min Y, Wu R; et al. (2007). "Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids". J. Clin. Invest. 117 (7): 1866–75. doi:10.1172/JCI31494. PMC 1890998. PMID 17607361. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  60. ^ Männistö S, Pietinen P, Virtanen MJ, Salminen I, Albanes D, Giovannucci E, Virtamo J (2003). "Fatty acids and risk of prostate cancer in a nested case-control study in male smokers" (PDF). Cancer Epidemiol. Biomarkers Prev. 12 (12): 1422–8. PMID 14693732. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  61. ^ a b Kurahashi N, Inoue M, Iwasaki M, Sasazuki S, Tsugane AS (2008). "Dairy product, saturated fatty acid, and calcium intake and prostate cancer in a prospective cohort of Japanese men". Cancer Epidemiol. Biomarkers Prev. 17 (4): 930–7. doi:10.1158/1055-9965.EPI-07-2681. PMID 18398033. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  62. ^ a b c Crowe FL, Allen NE, Appleby PN, Overvad K, Aardestrup IV, Johnsen NF, Tjønneland A, Linseisen J, Kaaks R, Boeing H, Kröger J, Trichopoulou A, Zavitsanou A, Trichopoulos D, Sacerdote C, Palli D, Tumino R, Agnoli C, Kiemeney LA, Bueno-de-Mesquita HB, Chirlaque MD, Ardanaz E, Larrañaga N, Quirós JR, Sánchez MJ, González CA, Stattin P, Hallmans G, Bingham S, Khaw KT, Rinaldi S, Slimani N, Jenab M, Riboli E, Key TJ (2008). "Fatty acid composition of plasma phospholipids and risk of prostate cancer in a case-control analysis nested within the European Prospective Investigation into Cancer and Nutrition". Am. J. Clin. Nutr. 88 (5): 1353–63. PMID 18996872. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  63. ^ Gerald L. Andriole, M.D., Robert L. Grubb, III, M.D., Saundra S. Buys, M.D., David Chia, Ph.D., Timothy R. Church, Ph.D., Mona N. Fouad, M.D., Edward P. Gelmann, M.D.; et al. (2009-03-18). "Mortality Results from a Randomized Prostate-Cancer Screening Trial". The New England Journal of Medicine. Retrieved 2009-03-19. {{cite journal}}: Check date values in: |date= (help); Explicit use of et al. in: |last= (help)CS1 maint: multiple names: authors list (link)
  64. ^ http://www.nytimes.com/2009/03/19/health/19cancer.html?em
  65. ^ Schröder,, Fritz H. (March 18, 2009). "Screening and Prostate-Cancer Mortality in a Randomized European Study". NEJM. Retrieved 20090324. {{cite journal}}: Check date values in: |accessdate= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: extra punctuation (link)
  66. ^ Andriole, Gerald L. (March 18, 2009). "Mortality Results from a Randomized Prostate-Cancer Screening Trial". NEJM. Retrieved 20090324. {{cite journal}}: Check date values in: |accessdate= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  67. ^ http://www.cancer.org/docroot/NWS/content/NWS_1_1x_Prostate_Cancer_Screening_Weigh_Risks_Benefits_With_Your_Doctor.asp
  68. ^ http://www.auanet.org/content/press/press_releases/article.cfm?articleNo=106 AUA statement March 2009 following publication of U.S. and European large scale screening effectiveness trial results
  69. ^ USPSTF (2002). "Screening for Prostate Cancer". Agency for Healthcare Research and Quality. {{cite web}}: Unknown parameter |month= ignored (help) USPSTF (2002). "Screening for prostate cancer: recommendation and rationale" (PDF). Ann Intern Med. 137 (11): 915–6. PMID 12458992. {{cite journal}}: Unknown parameter |month= ignored (help)
    Harris R, Lohr KN (2002). "Screening for prostate cancer: an update of the evidence for the U.S. Preventive Services Task Force" (PDF). Ann Intern Med. 137 (11): 917–29. PMID 12458993. {{cite journal}}: Unknown parameter |month= ignored (help)
  70. ^ Arias E (2006). "United States Life Tables, 2003" (PDF). Natl Vital Stat Rep. 54 (14): 1–40. PMID 16681183. {{cite journal}}: Unknown parameter |month= ignored (help)
  71. ^ von Eschenbach A, Ho R, Murphy GP, Cunningham M, Lins N (1997). "American Cancer Society guideline for the early detection of prostate cancer: update 1997" (PDF). CA Cancer J Clin. 47 (5): 261–4. doi:10.3322/canjclin.47.5.261. PMID 9314820. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) ACS (2007). "Prostate Cancer: Early Detection". Retrieved 2007-11-19. {{cite web}}: Unknown parameter |month= ignored (help)
    Smith RA, Cokkinides V, Eyre HJ (2007). "Cancer screening in the United States, 2007: a review of current guidelines, practices, and prospects" (PDF). CA Cancer J Clin. 57 (2): 90–104. PMID 17392386. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
    Smith RA, Cokkinides V, Eyre HJ (2006). "American Cancer Society guidelines for the early detection of cancer, 2006" (PDF). CA Cancer J Clin. 56 (1): 11–25. PMID 16449183. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  72. ^ ACS (2007). "Chronological History of ACS Recommendations on Early Detection of Cancer". {{cite web}}: Unknown parameter |month= ignored (help)
  73. ^ NCCN (2007). "Prostate Cancer Early Detection V.2.2007" (PDF). NCCN Clinical Practice Guidelines in Oncology. {{cite web}}: Unknown parameter |month= ignored (help)
  74. ^ "Study suggests value of regular PSA tests for tracking prostate cancer". Dana-Farber Cancer Institute. 2004. {{cite web}}: Unknown parameter |month= ignored (help) Kladko B (2005). "Prostate cancer test gets another look". The Boston Globe. {{cite journal}}: Unknown parameter |month= ignored (help)
  75. ^ Strum SB, Pogliano D (2005). "What every doctor who treats male patients should know" (PDF). PCRI Insights. 8 (2): 4–5. {{cite journal}}: Unknown parameter |month= ignored (help)
  76. ^ AUA (2008). "Prostate Cancer Patient Guide" (PDF). AUA Patient Guidelines.
  77. ^ a b Ross LE, Coates RJ, Breen N, Uhler RJ, Potosky AL, Blackman D (2004). "Prostate-specific antigen test use reported in the 2000 National Health Interview Survey". Prev Med. 38 (6): 732–44. doi:10.1016/j.ypmed.2004.01.005. PMID 15193893.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  78. ^ Lewis MH, Gohagan JK, Merenstein DJ (2007). "The locality rule and the physician's dilemma: local medical practices vs the national standard of care". JAMA. 297 (23): 2633–7. doi:10.1001/jama.297.23.2633. PMID 17579232.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  79. ^ Merenstein D (2004). "Winners and losers". JAMA. 291 (1): 15–6. doi:10.1001/jama.291.1.15. PMID 14709561.
  80. ^ De Angelis G, Rittenhouse HG, Mikolajczyk SD, Blair Shamel L, Semjonow A (2007). "Twenty years of PSA: from prostate antigen to tumor marker". Rev Urol. 9 (3): 113–23. PMID 17934568.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  81. ^ Swan J, Breen N, Coates RJ, Rimer BK, Lee NC (2003). "Progress in cancer screening practices in the United States: results from the 2000 National Health Interview Survey". Cancer. 97 (6): 1528–40. doi:10.1002/cncr.11208. PMID 12627518.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  82. ^ Ward E, Halpern M, Schrag N, Cokkinides V, DeSantis C, Bandi P, Siegel R, Stewart A, Jemal A (2008). "Association of insurance with cancer care utilization and outcomes" (PDF). CA Cancer J Clin. 58 (1): 9–31. doi:10.3322/CA.2007.0011. PMID 18096863. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  83. ^ Beaulac JA, Fry RN, Onysko J (2006). "Lifetime and recent prostate specific antigen (PSA) screening of men for prostate cancer in Canada". Can J Public Health. 97 (3): 171–6. PMID 16827400.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  84. ^ Gibbons L, Waters C (2003). "Prostate cancer--testing, incidence, surgery and mortality" (PDF). Health Rep. 14 (3): 9–20. PMID 12816012. {{cite journal}}: Unknown parameter |month= ignored (help)
  85. ^ Chodak, GW (1989). "Assessment of screening for prostate cancer using the digital rectal examination". J Urol. 141 (5): 1136–8. PMID 2709500. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  86. ^ Krahn, MD (1994). "Screening for prostate cancer.. A decision analytic view". JAMA. 272 (10): 773–80. doi:10.1001/jama.272.10.773. PMID 7521400. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  87. ^ Catalona WJ (2007). "How I manage a patient with a newly elevated PSA" (PDF). 2007 CDC Cancer Conference. {{cite web}}: Unknown parameter |month= ignored (help)
  88. ^ Kolota G (2004). "It was medical gospel, but it wasn't true". The New York Times: 4.7. {{cite journal}}: Unknown parameter |month= ignored (help)
    Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, Minasian LM, Ford LG, Lippman SM, Crawford ED, Crowley JJ, Coltman CA Jr (2004). "Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter". N Engl J Med. 350 (22): 2239–46. PMID 15163773. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
    Carter HB (2004). "Prostate cancers in men with low PSA levels--must we find them?". N Engl J Med. 350 (22): 2292–4. doi:10.1056/NEJMe048003. PMID 15163780. {{cite journal}}: Unknown parameter |month= ignored (help)
    Catalona WJ, Richie JP, Ahmann FR, Hudson MA, Scardino PT, Flanigan RC, deKernion JB, Ratliff TL, Kavoussi LR, Dalkin BL; et al. (1994). "Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men". J Urol. 151 (5): 1283–90. PMID 7512659. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
    FDA (1994). "FDA approves test for prostate cancer". {{cite web}}: Unknown parameter |month= ignored (help)
  89. ^ Roobol, MJ (2004). "Prostate-specific antigen velocity at low prostate-specific antigen levels as screening tool for prostate cancer: results of second screening round of ERSPC (ROTTERDAM)". Urology. 63 (2): 309–13, discussion 313–5. doi:10.1016/j.urology.2003.09.083. PMID 14972478. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  90. ^ Catalona, WJ (1994). "Comparison of prostate specific antigen concentration versus prostate specific antigen density in the early detection of prostate cancer: receiver operating characteristic curves". J Urol. 152 (6 Pt 1): 2031–6. PMID 7525994. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  91. ^ Hoffman, RM (2000). "Using the free-to-total prostate-specific antigen ratio to detect prostate cancer in men with nonspecific elevations of prostate-specific antigen levels". J Gen Intern Med. 15 (10): 739–48. doi:10.1046/j.1525-1497.2000.90907.x. PMID 11089718. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  92. ^ Partin, AW (2003). "Complexed prostate specific antigen improves specificity for prostate cancer detection: results of a prospective multicenter clinical trial". J Urol. 170 (5): 1787–91. doi:10.1097/01.ju.0000092695.55705.dd. PMID 14532777. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  93. ^ Mouraviev V, Evans B, Polascik TJ (2006). "Salvage prostate cryoablation after primary interstitial brachytherapy failure: a feasible approach". Prostate Cancer Prostatic Dis. 9 (1): 99–101. doi:10.1038/sj.pcan.4500853. PMID 16314889.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  94. ^ "Prostate Cancer At A Glance". ShaveMagazine.com. {{cite web}}: External link in |publisher= (help)
  95. ^ Wu, H (2004). "Watchful waiting and factors predictive of secondary treatment of localized prostate cancer". J Urol. 171 (3): 1111–6. doi:10.1097/01.ju.0000113300.74132.8b. PMID 14767282. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  96. ^ Robson, M (1996). "How is androgen-dependent metastatic prostate cancer best treated?". Hematol Oncol Clin North Am. 10 (3): 727–47. doi:10.1016/S0889-8588(05)70364-6. PMID 8773508. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help) Review.
  97. ^ Loblaw, DA (2004). "American Society of Clinical Oncology recommendations for the initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer". J Clin Oncol. 22 (14): 2927–41. doi:10.1200/JCO.2004.04.579. PMID 15184404. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help) Erratum in: J Clin Oncol. 2004 November 1;22(21):4435.
  98. ^ de Bono, Johann (2004). "Phase I Clinical Trial of a Selective Inhibitor of CYP17, Abiraterone Acetate, Confirms That Castration-Resistant Prostate Cancer Commonly Remains Hormone Driven". J Clin Oncol: online. doi:10.1200/JCO.2007.15.9749. PMID 15184404. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help); Unknown parameter |nopp= ignored (|no-pp= suggested) (help) Erratum in: J Clin Oncol. Early Release, published ahead of print July 21, 2008
  99. ^ Richard Warry (July 22, 2008). "Drug for deadly prostate cancer". BBC. Retrieved 2008-07-23.
  100. ^ Bill-Axelson A, Holmberg L, Ruutu M; et al. (2005). "Radical prostatectomy versus watchful waiting in early prostate cancer". N. Engl. J. Med. 352 (19): 1977–84. doi:10.1056/NEJMoa043739. PMID 15888698. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  101. ^ PreventProstateCancer.info: A Brief Overview of Prostate Cancer [3]
  102. ^ "Cryosurgical system for destroying tumors by freezing". Retrieved 1994-08-02. {{cite web}}: Check date values in: |accessdate= (help)
  103. ^ Bahn, DK (2002). "Targeted cryoablation of the prostate: 7-year outcomes in the primary treatment of prostate cancer". Urology. 60 (2 Suppl 1): 3–11. doi:10.1016/S0090-4295(02)01678-3. PMID 12206842. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  104. ^ Gerber, GS (1996). "Results of radical prostatectomy in men with clinically localized prostate cancer". JAMA. 276 (8): 615–9. doi:10.1001/jama.276.8.615. PMID 8773633. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  105. ^ Nag, S (1999). "American Brachytherapy Society Recommendations for Transperineal Permanent Brachytherapy of Prostate Cancer". Int. J. Rad. Onc. Biol. Phys. 44 (4): 789–799. ?. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help) Review.
  106. ^ Perez, CA (1993). "Localized carcinoma of the prostate (stages T1B, T1C, T2, and T3). Review of management with external beam radiation therapy". Cancer. 72 (11): 3156–73. doi:10.1002/1097-0142(19931201)72:11<3156::AID-CNCR2820721106>3.0.CO;2-G. PMID 7694785. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help) Review.
  107. ^ D'Amico AV, Manola J, Loffredo M, Renshaw AA, DellaCroce A, Kantoff PW (2004). "6-month androgen suppression plus radiation therapy vs radiation therapy alone for patients with clinically localized prostate cancer: a randomized controlled trial". JAMA. 292 (7): 821–7. doi:10.1001/jama.292.7.821. PMID 15315996.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  108. ^ Thompson IM, Tangen CM, Paradelo J (2009). "Adjuvant radiotherapy for pathological T3N0M0 prostate cancer significantly reduces risk of metastases and improves survival: long-term followup of a randomized clinical trial". J Urol. 181: 956–62. PMID 19167731.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  109. ^ Kupelian, PA title=Comparison of the efficacy of local therapies for localized prostate cancer in the prostate-specific antigen era: a large single-institution experience with radical prostatectomy and external-beam radiotherapy. (2002). J Clinc Oncol. 20 (16). PMID 12177097. {{cite journal}}: Missing or empty |title= (help); Missing pipe in: |first= (help)
  110. ^ Lawton, CA (1991). "Long-term treatment sequelae following external beam irradiation for adenocarcinoma of the prostate: analysis of RTOG studies 7506 and 7706". Int J Radiat Oncol Biol Phys. 21 (4): 935–9. PMID 1917622. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  111. ^ Brenner, DJ (2000). "Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery". Cancer. 88 (2): 398–406. doi:10.1002/(SICI)1097-0142(20000115)88:2<398::AID-CNCR22>3.0.CO;2-V. PMID 10640974. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  112. ^ a b Thomas A. Gardner and Michael A Koch, Indiana University Medical Center, Indianapolis. Prostate Cancer Therapy with High-Intensity Focused Ultrasound-Comprehensive Review. Clinical Genitourinary Cancer Vol 4. No.3, 2005.
  113. ^ a b Toyoaki Uchida, et al. Five years experience of transrectal high-intensity focused ultrasound using the Sonablate device in the treatment of localized prostate cancer. Dept of Urology University of Tokai Hachioji Hospital. International Journal of Urology
  114. ^ Tom Pickles, Larry Goldenberg, Gary Steinhoff. High Intensity Focused Ultrasound for Prostate Cancer. British Columbia Cancer Agency http://www.bccancer.bc.ca/NR/rdonlyres/08EA1C8E-4345-4C7E-A83A-1F84853A1C27/8101/HIFUreport2005Feb10revised1.pdf
  115. ^ Tannock, IF (2004). "Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer". N Engl J Med. 351 (15): 1502–12. doi:10.1056/NEJMoa040720. PMID 1547021. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  116. ^ Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, Chin JL, Vinholes JJ, Goas JA, Chen B (2002). "A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma". J Natl Cancer Inst. 94 (19): 1458–68. PMID 12359855.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  117. ^ Ornish, D (2005). "Intensive lifestyle changes may affect the progression of prostate cancer". J Urol. 174 (3): 1065–70. PMID 16094059. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  118. ^ Frattaroli, J (2008). "Clinical events in Prostate CAncer Lifestyle Trial: Results from two years of follow-up". Urology. epub ahead of print. PMID 18602144. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  119. ^ Pantuck, AJ (2006). "Phase II study of pomegranate juice for men with rising prostate-specific antigen following surgery or radiation for prostate cancer". Clin Cancer Res. 12 (13): 4018–26. PMID 16818701. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  120. ^ Kumar, NB (2004). "The specific role of isoflavones in reducing prostate cancer risk". Prostate. 59 (2): 141–7. PMID 15042614. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  121. ^ Yarnell, E (1999). "A naturopathic approach to prostate cancer. Part 2: Guidelines for treatment and prevention". Altern Complemen Ther. 5 (6): 360–8.
  122. ^ http://yedda.com/questions/Low_fat_milk_causes_prostate_cancer_7351021963170/
  123. ^ ACS :: What Are The Risk Factors for Prostate Cancer?
  124. ^ Jemal, A (2005). "Cancer statistics, 2005". CA Cancer J Clin. 55 (1): 10–30. PMID 15661684. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help) Erratum in: CA Cancer J Clin. 2005 Jul-Aug;55(4):259.
  125. ^ Wakai, K (2005). "Descriptive epidemiology of prostate cancer in Japan and Western countries". Nippon Rinsho. 63 (2): 207–12. PMID 15714967. {{cite journal}}: Unknown parameter |month= ignored (help) Review. Template:Ja icon
  126. ^ Yeole, BB (2001). "Population based survival from prostate cancer in Mumbai (Bombay), India". Indian J Cancer. 38 (2–4): 126–32. PMID 1259345. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  127. ^ Hsing, AW (2000). "International trends and patterns of prostate cancer incidence and mortality". Int J Cancer. 85 (1): 60–7. doi:10.1002/(SICI)1097-0215(20000101)85:1<60::AID-IJC11>3.0.CO;2-B. PMID 10585584. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  128. ^ Osegbe, DN (1997). "Prostate cancer in Nigerians: facts and nonfacts". J Urol. 157 (4): 1340–3. doi:10.1016/S0022-5347(01)64966-8. PMID 9120935. {{cite journal}}: Unknown parameter |month= ignored (help)
  129. ^ Di Blasio CJ, Rhee AC, Cho D, Scardino PT, Kattan MW (2003). "Predicting clinical end points: treatment nomograms in prostate cancer". Semin Oncol. 30 (5): 567–86. doi:10.1016/S0093-7754(03)00351-8. PMID 14571407.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  130. ^ Huggins C, Steven RE and Hodges CV, Studies on prostatic cancer. Arch. Sug. 43:209–223, 1941.
  131. ^ Hellerstedt BA and Pienta KJ, The current state of hormonal therapy for prostate cancer, CA Cancer J. Clin. 52: 154–179, 2002.PMID 12018929
  132. ^ Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001 Oct;1(1):34–45. PMID 11900250
  133. ^ Chuu CP, Hiipakka RA, Fukuchi J, Kokontis JM, Liao S. Androgen causes growth suppression and reversion of androgen-independent prostate cancer xenografts to an androgen-stimulated phenotype in athymic mice. Cancer Res. 2005 March 15;65(6):2082–4. PMID 15781616
  134. ^ Chuu CP, Hiipakka RA, Kokontis JM, Fukuchi J, Chen RY, Liao S. Inhibition of tumor growth and progression of LNCaP prostate cancer cells in athymic mice by androgen and liver X receptor agonist. Cancer Res. 2006 July 1;66(13):6482–6. PMID 16818617
  135. ^ Gupta S, Hastak K, Ahmad N, Lewin JS, Mukhtar H. Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci U S A. 2001 August 28;98(18):10350-5. PMID 11504910
  136. ^ Cooperberg MR, Pasta DJ, Elkin EP; et al. (2005). "The University of California, San Francisco Cancer of the Prostate Risk Assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy". J. Urol. 173 (6): 1938–42. doi:10.1097/01.ju.0000158155.33890.e7. PMID 15879786. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  137. ^ Cooperberg MR, Freedland SJ, Pasta DJ; et al. (2006). "Multiinstitutional validation of the UCSF cancer of the prostate risk assessment for prediction of recurrence after radical prostatectomy". Cancer. 107 (10): 2384–91. doi:10.1002/cncr.22262. PMID 17039503. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  138. ^ May M, Knoll N, Siegsmund M; et al. (2007). "Validity of the CAPRA score to predict biochemical recurrence-free survival after radical prostatectomy. Results from a european multicenter survey of 1,296 patients". J. Urol. 178 (5): 1957–62, discussion 1962. doi:10.1016/j.juro.2007.07.043. PMID 17868719. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  139. ^ Zhao KH, Hernandez DJ, Han M, Humphreys EB, Mangold LA, Partin AW (2008). "External validation of University of California, San Francisco, Cancer of the Prostate Risk Assessment score". Urology. 72 (2): 396–400. doi:10.1016/j.urology.2007.11.165. PMID 18372031. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  140. ^ Overview: Prostate Cancer—What Causes Prostate Cancer? American Cancer Society (2006-05-02). Retrieved on 2007-04-05
  141. ^ Prostate Cancer FAQs. State University of New York School of Medicine Department of Urology (2006-08-31). Retrieved on 2007-04-05
  142. ^ Potosky A, Miller B, Albertsen P, Kramer B (1995). "The role of increasing detection in the rising incidence of prostate cancer". JAMA. 273 (7): 548–52. doi:10.1001/jama.273.7.548. PMID 7530782.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  143. ^ Gine Kolata (June 15, 2008). "New Take on a Prostate Drug, and a New Debate". NY Times. Retrieved 2008-06-15.
  144. ^ Adams, J. The case of scirrhous of the prostate gland with corresponding affliction of the lymphatic glands in the lumbar region and in the pelvis. Lancet 1, 393 (1853).
  145. ^ Lytton, B. Prostate cancer: a brief history and the discovery of hormonal ablation treatment. J. Urol. 165, 1859–1862
  146. ^ Young, H. H. Four cases of radical prostatectomy. Johns Hopkins Bull. 16, 315 (1905).
  147. ^ Walsh, P. C., Lepor, H. & Eggleston, J. C. Radical prostatectomy with preservation of sexual function: anatomical and pathological considerations. Prostate 4, 473-485 (1983). PMID 6889192
  148. ^ Huggins, C. B. & Hodges, C. V. Studies on prostate cancer: 1. The effects of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1, 203 (1941).
  149. ^ Schally, A. V., Kastin, A. J. & Arimura, A. Hypothalamic FSH and LH-regulating hormone. Structure, physiology and clinical studies. Fertil. Steril. 22, 703–721 (1971).
  150. ^ Tolis G, Ackman D, Stellos A, Mehta A, Labrie F, Fazekas AT, Comaru-Schally AM, Schally AV. Tumor growth inhibition in patients with prostatic carcinoma treated with luteinizing hormone-releasing hormone agonists. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1658–62 PMID 6461861
  151. ^ Denmeade SR, Isaacs JT. A History of Prostate Cancer Treatment. Nature Reviews Cancer 2, 389–396 (2002). PMID 12044015
  152. ^ Scott, W. W. et al. Chemotherapy of advanced prostatic carcinoma with cyclophosphamide or 5-fluorouracil: results of first national randomized study. J. Urol. 114, 909–911 (1975). PMID 1104900
  153. ^ Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res. 2001 May 1;61(9):3550–5. PMID 11325816
  154. ^ Ford OH 3rd, Gregory CW, Kim D, Smitherman AB, Mohler JL. Androgen receptor gene amplification and protein expression in recurrent prostate cancer. J Urol. 2003 Nov;170(5):1817–21.PMID 14532783
  155. ^ Kokontis J, Takakura K, Hay N, Liao S. Increased androgen receptor activity and altered c-myc expression in prostate cancer cells after long-term androgen deprivation. Cancer Res. 1994 March 15;54(6):1566–73. PMID 7511045
  156. ^ Umekita Y, Hiipakka RA, Kokontis JM, Liao S. Human prostate tumor growth in athymic mice: inhibition by androgens and stimulation by finasteride. Proc Natl Acad Sci U S A. 1996 October 15;93(21):11802-7. PMID 8876218
  157. ^ Kokontis JM, Hsu S, Chuu CP, Dang M, Fukuchi J, Hiipakka RA, Liao S. Role of androgen receptor in the progression of human prostate tumor cells to androgen independence and insensitivity. Prostate. 2005 December 1;65(4):287-98. PMID 16015608

Template:Link FA Template:Link FA