List of organisms by chromosome count

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Karyotype of a human being, showing 22 pair of autosomal chromosomes and both the XX female and the XY male possibilities for the pair of allosomic (sex) chromosome
Fusion of ancestral chromosomes left distinctive remnants of telomeres, and a vestigial centromere. As other non-human extant hominidae have 48 chromosomes it is believed that the human chromosome 2 is the end result of the merging of two chromosomes.[1]

The list of organisms by chromosome count describes ploidy or numbers of chromosomes in the cells of various plants, animals, protists, and other living organisms. This number, along with the visual appearance of the chromosome, is known as the karyotype,[2][3][4] and can be found by looking at the chromosomes through a microscope. Attention is paid to their length, the position of the centromeres, banding pattern, any differences between the sex chromosomes, and any other physical characteristics.[5] The preparation and study of karyotypes is part of cytogenetics.

  Plants
  Other Eukaryotes
Organism
(Scientific name)
Chromosome number Picture Karyotype Notes Source
Jack jumper ant
(Myrmecia pilosula)
2/1 Myrmecia.pilosula.jpg 2 for females, males are haploid and thus have 1; smallest number possible. Other ant species have more chromosomes.[6] [6]
Oikopleura dioica
6 Oikopleura dioica 2.jpg [7]
Australian daisy
(Brachyscome dichromosomatica)
12 Brachyscome iberidifolia1.jpg This species can have more B chromosomes than A chromosomes at times, but 2n=4. [8]
Spider mite (Tetranychidae) 4–14 Tetranychus urticae with silk threads.jpg Spider mites (family Tetranychidae) are typically haplodiploidy (males are haploid, while females are diploid)[9] [9]
Yellowfever mosquito
(Aedes aegypti)
6 Aedes aegypti.jpg Yellow Fever Mosquito (Aedes aegypti) chromosomes.png The 2n=6 chromosome number is conserved in the entire family Culicidae, except in Chagasia bathana, which has 2n=8.[10] [10]
Indian muntjac
(Muntiacus muntjak)
6/7 Muntjac deer.JPG Karyotype of Indian muntjac (Muntiacus muntjak).png 2n = 6 for females and 7 for males. The lowest diploid chromosomal number in mammals.[11] [12]
Hieracium 8 Yellow Hawkweed.jpg
Fruit fly
(Drosophila melanogaster)
8 Drosophila melanogaster - side (aka).jpg Drosophila metaphase chromosomes female.png 6 autosomal and 2 allosomic (sex) [13]
Macrostomum lignano
(Macrostomum lignano)
8 Macrostomum lignano.jpg Karyotype of Macrostomum lignano.png [14]
Thale cress
(Arabidopsis thaliana)
10 Arabidopsis thaliana.jpg Karyotype of Thale cress (Arabidopsis thaliana).png
Swamp wallaby
(Wallabia bicolor)
10/11 Image-Swamp-Wallaby-Feeding-4,-Vic,-Jan.2008.jpg Karyotype of swamp wallaby (Wallabia bicolor).png 11 for male, 10 for female [15]
Nematode
(Caenorhabditis elegans)
12/11 Adult Caenorhabditis elegans.jpg Karyotype of Caenorhabditis elegans.png 12 for hermaphrodites, 11 for males
Spinach
(Spinacia oleracea)
12 Wurzelspinat02.jpg Karyotype of Spinach (Spinacia oleracea L. Mazeran).png [16]
Broad bean
(Vicia faba)
12 Fava beans 1.jpg Karyotype of Broad bean (Vicia faba).png [17]
Yellow dung fly
(Scathophaga stercoraria)
12 Fliege9012.JPG Karyotype of female yellow dung fly (Scathophaga stercoraria).png 10 autosomal and 2 allosomic (sex) chromosomes. Males have XY sex chromosomes and females have XX sex chromosomes. The sex chromosomes are the largest chromosomes and constitute 30% of the total length of the diploid set in females and about 25% in males.[18] [18]
Slime mold
(Dictyostelium discoideum)
12 Dictyostelium Fruiting Bodies.JPG [19]
Cucumber
(Cucumis sativus)
14 Komkommer plant.jpg Karyotype of cucumber (Cucumis sativus).png [20]
Tasmanian devil
(Sarcophilus harrisii)
14 Sarcophilus harrisii taranna.jpg Karyotype of Tasmanian devil (Sarcophilus Harrisii).png
Rye
(Secale cereale)
14 Rye Mature Grain Summer.jpg Karyotype of Austrian rye (Secale cereale).png [21]
Pea
(Pisum sativum)
14 Peas in pods - Studio.jpg Karyotype of pea (Pisum sativum).png [21]
Barley
(Hordeum vulgare)
14 Hordeum-barley.jpg Karyotype of barley (Hordeum vulgare).png [22]
Aloe vera 14 Aloe vera 1.jpg Karyotype of Aloe vera.png The diploid chromosome number is 2n = 14 with four pair of long acrocentric chromosomes ranging from 14.4 μm to 17.9 μm and three pair of short sub metacentric chromosomes ranging from 4.6 μm to 5.4 μm.[23] [23]
Koala
(Phascolarctos cinereus)
16 Koala climbing tree.jpg
Kangaroo 16 Macropus robustus2.jpg Karyotype of wallaroo (Macropus robustus).png This includes several members of genus Macropus, but not the red kangaroo (M. rufus, 20) [24]
Schistosoma mansoni 16 Schistosoma mansoni trematodes.jpg Karyotype of Schistosoma mansoni.png 2n=16. 7 autosomal pairs and ZW sex-determination pair.[25] [25]
Welsh onion
(Allium Fistulosum)
16 Spring Onion.jpg DAPI stained Welsh onion (Allium fistulosum) chromosomes.png [26]
Garlic
(Allium sativum)
16 All Garlic Ail Ajo.jpg Karyotype of garlic (Allium sativum).png [26]
Itch mite
(Sarcoptes scabiei)
17/18 Sarcoptes scabei 2.jpg Chromosomal spreads of single itch mite (Sarcoptes scabiei) cell - 17 chromosomes.png According to the observation of embryonic cells of egg, chromosome number of the itch mite is either 17 or 18. While the cause for the disparate numbers is unknown, it may arise because of an XO sex determination mechanism, where males (2n=17) lack the sex chromosome and therefore have one less chromosome than the female (2n=18).[27] [27]
Radish
(Raphanus sativus)
18 Raphanus sativus subsp. sativus, radijs (1).jpg Karyotype of radish (Raphanus sativus).png [21]
Carrot
(Daucus carota)
18 Baby carrots - jules.jpg Karyotype of carrot (Daucus carota).png The genus Daucus includes around 25 species. D. carota has nine chromosome pairs (2n = 2x = 18). D. capillifolius, D. sahariensis and D. syrticus are the other members of the genus with 2n = 18, whereas D. muricatus (2n = 20) and D. pusillus (2n = 22) have a slightly higher chromosome number. A few polyploid species as for example D. glochidiatus (2n = 4x = 44) and D. montanus (2n = 6x = 66) also exist.[28] [28]
Cabbage
(Brassica oleracea)
18 Choux 02.jpg Karyotype of Brussels sprout (Brassica oleracea var. gemmifera).png Broccoli, cabbage, kale, kohlrabi, brussels sprouts, and cauliflower are all the same species and have the same chromosome number.[21] [21]
Citrus
(Citrus x)
18 Lemon, Lime and Orange.jpg Karyotype of Lemon (Citrus limon).png Chromosome number of the genus Citrus, which including lemons, oranges, grapefruit, pomelo and limes, is 2n = 18.[29] [30]
Passion fruit
(Passiflora edulis)
18 Passionfruit and cross section.jpg Karyotype of passion fruit (Passiflora edulis).png [31]
Setaria viridis
(Setaria viridis)
18 エノコログサSetaria viridis (L.) P.Beauv.P9130041.JPG Karyotype of Setaria viridis.png [32]
Maize
(Zea mays)
20 Klip kukuruza uzgojen u Međimurju (Croatia).JPG C-banded karyograms of Maize.png [21]
Cannabis
(Cannabis sativa)
20 Cannabis sativa leaf.jpg Karyotype of Hemp (Cannabis sativa).png
Western clawed frog
(Xenopus tropicalis)
20 Xenopus tropicalis02.jpeg Karyotype of Western clawed frog (Xenopus (Silurana) tropicalis).png [33]
Australian pitcher plant
(Cephalotus follicularis)
20 Cephalotus follicularis 002.jpg [34]
Cacao
(Theobroma cacao)
20 Matadecacao.jpg Karyotype of cacao.png [35]
Eucalyptus
(Eucalyptus)
22 700 yr red river gum02.jpg Karyotype of river red gum (Eucalyptus camaldulensis).png Although some contradictory cases have been reported, the large homogeneity of the chromosome number 2n = 22 is now known for 135 (33.5%) distinct species among genus Eucalyptus.[36] [37]
Virginia opossum
(Didelphis virginiana)
22 Opossum 2.jpg [38]
Bean
(Phaseolus sp.)
22 Phaseolus vulgaris MHNT.BOT.2016.24.73.jpg Karyotype of Common bean (Phaseolus vulgaris).png All species in the genus Phaseolus have the same chromosome number, including common bean (P. vulgaris), runner bean (P. coccineus), tepary bean (P. acutifolius) and lima bean (P. lunatus).[21] [21]
Snail 24 Grapevinesnail 01.jpg
Melon
(Cucumis melo)
24 Cucumis melo 34.jpg Karyotype of melon (Cucumis melo L.).png [39]
Rice
(Oryza sativa)
24 US long grain rice.jpg Karyotype of rice (Oryza sativa).png [21]
Silverleaf nightshade
(Solanum elaeagnifolium)
24 Solanum elaeagnifolium.jpg [40]
Sweet chestnut
(Castanea sativa)
24 Frucht der Edelkastanie.jpg Karyotype of Sweet chestnut (Castanea sativa).png [41]
Tomato
(Solanum lycopersicum)
24 Bright red tomato and cross section02.jpg Karyotype of tomato (Solanum lycopersicum).png [42]
European beech
(Fagus sylvatica)
24 Hayedomasaustral.jpg Karyotype of European beech (Fagus sylvatica).png [43]
Bittersweet nightshade
(Solanum dulcamara)
24 SolanumDulcamara-bloem-sm.jpg [44][45]
Cork oak
(Quercus suber)
24 ChampagneCorksLarge.jpg Karyotype of Cork oak (Quercus suber).png [46]
Edible frog
(Pelophylax kl. esculentus)
26 Rana esculenta on Nymphaea edit.JPG Karyotype of Edible frog (Pelophylax esculentus).png Edible frog is the fertile hybrid of the pool frog and the marsh frog.[47] [48]
Axolotl
(Ambystoma mexicanum)
28 AxolotlBE.jpg Karyotype of axolotl (Ambystoma mexicanum).png [49]
Bed bug
(Cimex lectularius)
29–47 Bedbug004.jpg Karyotype of male bed bug (Cimex lectularius).png 26 autosomes and varying number of the sex chromosomes from three (X1X2Y) to 21 (X1X2Y+18 extra Xs).[50] [50]
Pill millipede
(Arthrosphaera magna attems)
30 Pillmillipede talakaveri.jpg [51]
Giraffe
(Giraffa camelopardalis)
30 Giraffen.jpg Karyotype of giraffe (Giraffa camelopardalis).png [52]
American mink
(Neovison vison)
30 American mink geograph.co.uk 2083077.jpg
Pistachio
(Pistacia vera)
30 ARS pistachio.jpg Karyotype of Pistachio (Pistacia vera).png [53]
Yeast
(Saccharomyces cerivisiae)
32 S cerevisiae under DIC microscopy.jpg
European honey bee
(Apis mellifera)
32/16 BeeCropped.jpg Karyotype of Honey bee (Apis mellifera).png 32 for females (2n = 32), males are haploid and thus have 16 (1n =16).[54] [54]
American badger
(Taxidea taxus)
32 AmericanBadger.JPG
Alfalfa
(Medicago sativa)
32 Graines de luzerne bio germées - 001.JPG Karyotype of tetraploid Alfalfa (Medicago sativa ssp falcata).png Cultivated alfalfa is tetraploid, with 2n=4x=32. Wild relatives have 2n=16.[21]:165 [21]
Red fox
(Vulpes vulpes)
34 Vulpes vulpes 2.jpg Plus 3-5 microsomes. [55]
Sunflower
(Helianthus annuus)
34 Lule Dielli.JPG Karyotype of sunflower (Helianthus annuus).png [56]
Porcupine
(Erethizon dorsatum)
34 Porcupine-BioDome.jpg [57]
Globe artichoke
(Cynara cardunculus var. scolymus)
34 Artichoke J1.jpg Karyotype of globe artichoke.png [58]
Yellow mongoose
(Cynictis penicillata)
36 Yellow mongoose 1.jpg
Tibetan sand fox
(Vulpes ferrilata)
36 Tibet Fox.jpg
Starfish
(Asteroidea)
36 Nerr0878.jpg
Red panda
(Ailurus fulgens)
36 Ailurus fulgens RoterPanda LesserPanda.jpg
Meerkat
(Suricata suricatta)
36 Meerkat feb 09.jpg
Cassava
(Manihot esculenta)
36 Manihot esculenta 001.jpg Karyotype of Cassava (Manihot esculenta).png [59]
Long-nosed cusimanse
(crossarchus obscurus)
36 Crossarchus obscurus Plzen zoo 02.2011.jpg
Earthworm
(Lumbricus terrestris)
36 Regenwurm1.jpg
African clawed frog
(Xenopus laevis)
36 Xenopus laevis 1.jpg Karyotype of African clawed frog (Xenopus laevis).png [33]
Waterwheel plant
(Aldrovanda vesiculosa)
38 Aldrovanda vesiculosa.jpg [34]
Tiger
(Panthera tigris)
38 Tigress at Jim Corbett National Park.jpg Karyotype of Siberian tiger.png
Sea otter
(Enhydra lutris)
38 Sea otter.jpg
Sable
(Martes zibellina)
38 Sable - 2.png
Raccoon
(Procyon lotor)
38 Procyon lotor (raccoon).jpg [60]
Pine marten
(Martes martes)
38 Baummarder 01.jpg
Pig
(Sus)
38 Sus Barbatus, the Bornean Bearded Pig (12616351323).jpg Karyotype of normal male pig.png
Oriental small-clawed otter
(Aonyx cinerea)
38 Otter - melbourne zoo.jpg
Lion
(Panthera leo)
38 Lion Ngorongoro Crater.jpg
Fisher 38 Martes martes crop.jpg a type of marten
European mink
(Mustela lutreola)
38 Europäischer Nerz.jpg
Coatimundi 38 Coati.jpg
Cat
(Felis silvestris catus)
38 Kittyply edit1.jpg Karyotype of domestic cat (Felis catus).png
Beech marten
(Martes foina)
38 Steinmarder 01.jpg
Baja California ratsnake
(Bogertophis rosaliae)
38 Bogertophis subocularis.jpg [61]
American marten
(Martes americana)
38 Marten with Flowers.jpg
Trans-Pecos ratsnake
(Bogertophis subocularis)
40 Trans-Pecos Rat Snake.jpg [62]
Mouse
(Mus musculus)
40 Мышь 2.jpg Karyotype of normal male mouse.png [63]
Mango
(Mangifera indica)
40 Mangga indramayu 071007-0327 rwg.jpg [21]
Hyena
(Hyaenidae)
40 Spotted Hyena and young in Ngorogoro crater.jpg
Ferret
(Mustela putorius furo)
40 Furets albinos champagne et zibeline sable.jpg
European polecat
(Mustela putorius)
40 Ilder.jpg
Beaver (American)
(Castor canadensis)
40 Castor canadensis.jpg
Peanut
(Arachis hypogaea)
40 Arachis-hypogaea-(peanuts).jpg Karyotype of cultivated peanut (Arachis hypogaea).png Cultivated peanut is an allotetraploid (2n = 4x = 40). Its closest relatives are the diploid (2n = 2x = 20).[64] [64]
Wolverine
(Gulo gulo)
42 Gulo gulo 01.jpg
Wheat
(Triticum aestivum)
42 Wheat (Triticum aestivum L.) at Alnarp 1.jpg Karyotype of wheat (Triticum aestivum).png This is a hexaploid with 2n=6x=42. Durum wheat is Triticum turgidum var. durum, and is a tetraploid with 2n=4x=28.[21] [21]
Rhesus monkey
(Macaca mulatta)
42 Macaca mulatta in Guiyang.jpg Karyotype of normal male rhesus macaque (Macaca mulatta).png [65]
Rat
(Rattus norvegicus)
42 Rattus norvegicus 1.jpg Karyogram of normal rat.png [66]
Oats
(Avena sativa)
42 Avena sativa 002.JPG Karyotype of hexaploid common wild oat (Avena fatua).png This is a hexaploid with 2n=6x=42. Diploid and tetraploid cultivated species also exist.[21] [21]
Giant panda
(Ailuropoda melanoleuca)
42 Giant Panda 2004-03-2.jpg
Fossa
(Cryptoprocta ferox)
42 Cryptoprocta ferox.jpg
European rabbit
(Oryctolagus cuniculus)
44 Oryctolagus cuniculus Tasmania 2.jpg Karyotype of Rabbit (Oryctolagus cuniculus).png
Eurasian badger
(Meles meles)
44 Badger-badger.jpg
Moon jellyfish
(Aurelia aurita)
44 Moon jellyfish at Gota Sagher.JPG [67]
Dolphin
(Delphinidae Delphi)
44 Kentriodon BW.jpg
Coffea arabica
(Coffea arabica)
44 Coffee arabica 12.10.2011 14-01-6.jpg Karyotype of Coffea arabica.png Out of the 103 species in the genus Coffea, arabica coffee is the only tetraploid species (2n = 4x = 44), the remaining species being diploid with 2n = 2x = 22.[68]
Sable antelope
(Hippotragus niger)
46 Sable antelope (Hippotragus niger) adult male.jpg
Reeves's muntjac
(Muntiacus reevesi)
46 Formosan Reeve's muntjac.jpg
Human
(Homo sapiens)
46 Akha cropped hires.JPG Human male karyotpe high resolution.jpg 44 autosomal. and 2 allosomic (sex) [69]
Parhyale hawaiensis 46 Parhyale hawaiensis - adult female.png Parhyale hawaiensis - karyotype.png [70]
Water buffalo (river type)
(Bubalus bubalis)
48
Tobacco
(Nicotiana tabacum)
48 Nicotiana Tobacco Plants 1909px.jpg Karyotype of Tobacco (Nicotiana tabacum).png Cultivated species N. tabacum is an amphidiploid (2n=4x=48) evolved through the interspecific hybridization of the ancestors of N. sylvestris (2n=2x=24, maternal donor) and N. tomentosiformis (2n=2x=24, paternal donor) about 200,000 years ago.[71] [71]
Potato
(Solanum tuberosum)
48 Solanum tuberosum 02.jpg Karyotype of Potato (Solanum tuberosum).png This is for common potato Solanum tuberosum (tetraploid, 2n = 4x = 48). Other cultivated potato species may be diploid (2n = 2x = 24), triploid (2n = 3x = 36), tetraploid (2n = 4x = 48), or pentaploid (2n = 5x = 60).[72] Wild relatives mostly have 2n=24.[21] [72]
Orangutan
(Pongo)
48 Orang Utan, Semenggok Forest Reserve, Sarawak, Borneo, Malaysia.JPG Karyotype of Orangutan (Pongo).png
Hare
(Lepus)
48 Polarhase 1 1997-08-04.jpg [73][74]
Gorilla
(Gorilla)
48 Gorillas in Uganda-1, by Fiver Löcker.jpg
Deer mouse
(Peromyscus maniculatus)
48 Peromyscus maniculatus.jpg
Chimpanzee
(Pan troglodytes)
48 Lightmatter chimp.jpg Karyotype of chimpanzee (Pan troglodytes).png [75]
Beaver (Eurasian)
(Castor fiber)
48 Beaver pho34.jpg
Zebrafish
(Danio rerio)
50 Zebrafisch.jpg Karyotype of zebrafish (Danio rerio).png [76]
Water buffalo (swamp type)
(Bubalus bubalis)
50 Water buffaloes in Wuyishan Wufu 2012.08.24 15-46-30.jpg Karyotype of female Nili Ravi buffalo.png
Striped skunk
(Mephitis mephitis)
50 Striped Skunk (Mephitis mephitis) DSC 0030.jpg
Pineapple
(Ananas comosus)
50 Pineapple victoria dsc07770.jpg [21]
Kit fox
(Vulpes macrotis)
50 Vulpes macrotis mutica with pups.jpg
Spectacled bear
(Tremarctos ornatus)
52 Urso-de-óculos no Zoológico de Sorocaba.JPG
Platypus
(Ornithorhynchus anatinus)
52 Platypus BrokenRiver QLD Australia.jpg Karyotype of male platypus (Ornithorhynchus anatinus).png Ten sex chromosomes. Males have X1Y1X2Y2X3Y3X4Y4X5Y5, females have X1X1X2X2X3X3X4X4X5X5.[77] [78]
Cotton
(Gossypium hirsutum)
52 CottonPlant.JPG Karyotype of Cotton (Gossypium hirsutum).png This is for the cultivated species G. hirsutum (allotetraploid, 2n=4x=52). This species accounts for 90% of the world cotton production. Among 50 species in the genus Gossypium, 45 are diploid (2n = 2x = 26) and 5 are allotetraploid (2n = 4x = 52).[79] [79]
Sheep
(Ovis orientalis aries)
54 Sheep norwegian dala.jpg Karyotype of sheep (Ovis aries).png
Hyrax
(Hyracoidea)
54 Procavia-capensis-Frontal.JPG Karyotype of rock hyrax (Procavia capensis).png Hyraxes were considered to be the closest living relatives of Elephants,[80] but sirenians have been found to be more closely related to elephants. [81]
Raccoon dog
(Nyctereutes procyonoides procyonoides)
54 Nyctereutes procyonoides 4 (Piotr Kuczynski).jpg Karyotype of Chinese raccoon dog (Nyctereutes procyonoides procyonoides).png This number is for Chinese raccoon dog (N. p. procyonoides), 2n=54+B(0–4). On the other hand, Japanese raccoon dog (N. p. viverrinus) with 2n=38+B(0–8). Here, B represents B chromosome and its variation in the number between individuals.[82][83] [82]
Capuchin monkey
(Cebus x)
54 Cebus capucinus, Costa Rica.JPG [84]
Silkworm
(Bombyx mori)
56 Silkworm & cocoon.jpg Karyotype of Silkworm (Bombyx mori).png This is for the species mulberry silkworm, B. mori (2n=56). Probably more than 99% of the world's commercial silk today come from this species.[85] Other silk producing moths, called non-mulberry silkworms, have various chromosome numbers. (e.g. Samia cynthia with 2n=25–28,[86] Antheraea pernyi with 2n=98.[87]) [88]
Strawberry
(Fragaria)
56 Fragaria × ananassa.JPG Karyotype of Strawberry (Fragaria virginiana ssp glauca).png This number is octoploid, main cultivated species Fragaria × ananassa (2n = 8x = 56). In genus Fragaria, basic chromosome number is seven (x = 7) and multiple levels of ploidy, ranging from diploid (2n = 2x = 14) to decaploid (F. iturupensis, 2n = 10x = 70), are known.[89] [89]
Gaur
(Bos gaurus)
56 Bos gaurus.jpeg
Elephant
(Elephantidae)
56 Elephant near ndutu.jpg
Woolly mammoth
(Mammuthus primigenius)
58 Mamut lanudo cropped.jpg extinct; tissue from a frozen carcass
Yak
(Bos mutus)
60 Bos grunniens - Syracuse Zoo.jpg
Goat
(Capra aegagrus hircus)
60 Hausziege 04.jpg Karyotype of normal male goat.png
Cow/Bull
(Bos primigenius)
60 20100516 Vacas Vilarromarís, Oroso-8-1.jpg Karyotype of cattle.PNG
American bison
(Bison bison)
60 American bison k5680-1.jpg
Bengal fox
(Vulpes bengalensis)
60 Indianfox.jpg
Gypsy moth
(Lymantria dispar dispar)
62 Lymantria dispar MHNT Fronton Male.jpg
Donkey
(Equus africanus asinus)
62 Donkey 1 arp 750px.jpg
Scarlet macaw
(Ara macao)
62–64 Scarlet Macaw (Ara macao) -Panama-8a.jpg Karyotype of Scarlet Macaw (Ara macao).png [90]
Mule 63 Juancito.jpg semi-infertile (odd number of chromosomes – between donkey (62) and horse (64) makes meiosis much more difficult)
Guinea pig
(Cavia porcellus)
64 Two adult Guinea Pigs (Cavia porcellus).jpg G-banded karyotype of female guinea pig (Cavia porcellus).png
Spotted skunk
(Spilogale x)
64 Spilogale gracilis.jpg
Horse
(Equus ferus caballus)
64 LaMirage body07.jpg Karyotype of male Marajoara Horse (Equus Caballus).png
Fennec fox
(Vulpes zerda)
64 Fennec Foxes.jpg [55]
Echidna 63/64 Ameisenigel.jpg 63 (X1Y1X2Y2X3Y3X4Y4X5, male) and 64 (X1X1X2X2X3X3X4X4X5X5, female)[91]
Chinchilla
(Chinchilla lanigera)
64 Chinchilla lanigera.jpg [57]
Nine-banded armadillo
(Dasypus novemcinctus)
64 Nine-banded Armadillo.jpg Karyotype of nine-banded armadillo.png [92]
Gray fox
(Urocyon cinereoargenteus)
66 Urocyon cinereoargenteus.jpg [55]
Red deer
(Cervus elaphus)
68 Zoo-Dortmund-IMG 5549-a.jpg
Elk (Wapiti)
(Cervus canadensis)
68 Cervus elaphus Luc Viatour 3.jpg
Roadside hawk
(Rupornis magnirostris)
68 Buteo magnirostris -Goias -Brazil-8.jpg Karyotype of roadside hawk (Rupornis magnirostris).png [93]
White-tailed deer
(Odocoileus virginianus)
70 Cervus canadensis2006.jpg
Black nightshade
(Solanum nigrum)
72 Solanum nigra bgiu.jpg [94]
Bat-eared fox
(Otocyon megalotis)
72 Otocyon megalotis (Namibia).jpg [55]
Sun bear
(Helarctos malayanus)
74 Sitting sun bear.jpg
Sloth bear
(Melursus ursinus)
74 Sloth Bear Washington DC.JPG
Polar bear
(Ursus maritimus)
74 Polar Bear - Alaska.jpg
Brown bear
(Ursus arctos)
74 Brown bear (Ursus arctos arctos) running.jpg
Asiatic black bear
(Ursus thibetanus)
74 Kragenbär.jpg
American black bear
(Ursus americanus)
74 Ursus americanus sequoia forest 2003-09-21.jpg
Maned wolf
(Chrysocyon brachyurus)
76 Chrysocyon.brachyurus.jpg
Gray wolf
(Canis lupus)
78 Canis lupus 265b.jpg
Golden jackal
(Canis aureus)
78 Golden wolf sa02.jpg [55]
Dove
(Columbidae)
78 Rock dove - natures pics.jpg Based on African collared dove [95]
Dog
(Canis lupus familiaris)
78 Boddhi the mixed-breed dog.jpg Karyotype of Dog (Canis lupus familiaris).png Normal dog karyotype is composed of 38 pairs of acrocentric autosomes and two metacentric sex chromosomes.[96][97] [98]
Dingo
(Canis lupus dingo)
78 Canis lupus dingo - cleland wildlife park.JPG [55]
Dhole
(Cuon alpinus)
78 Cuon.alpinus-cut.jpg
Coyote
(Canis latrans)
78 Coyote by Rebecca Richardson.jpg [55]
Chicken
(Gallus gallus domesticus)
78 Female pair.jpg Karyotype of chicken (Gallus gallus).png
African wild dog
(Lycaon pictus)
78 Lycaon pictus (Temminck, 1820).jpg [55]
Tropical pitcher plant
(Nepenthes rafflesiana)
78 Pahangraff3.jpg [34]
Turkey
(Meleagris)
80 Wild turkey eastern us.jpg [99]
Sugarcane
(Saccharum officinarum)
80 Cut sugarcane.jpg Karyotype of Sugarcane (Saccharum officinarum LA Purple).png This is for S. officinarum (octoploid, 2n = 8× = 80).[100] About 70% of the world’s sugar comes from this species.[101] Other species in the genus Saccharum, collectively known as sugarcane, have chromosome numbers in the range 2n=40–128.[102] [100]
Pigeon
(Columbidae)
80 Paloma en la Ciudad de México.JPG [103]
Great white shark
(Carcharodon carcharias)
82 Carcharodon carcharias.jpg [104]
Hedgehog genus Erinaceus (woodland hedgehogs) 88 Erinaceus europeaus (DarkAn9el).jpg
Moonworts
(Botrychium)
90 Botrychium-4.jpg
Hedgehog Genus Atelerix (African hedgehogs) 90 Igel01.jpg
Grape fern
(Sceptridium)
90 Botrychium multifidum.jpg
Pittier's crab-eating rat
(Ichthyomys pittieri)
92 Previously thought to be the highest number in mammals, tied with Anotomys leander. [105]
Shrimp
(Penaeus semisulcatus)
86–92 Penaeus monodon.jpg [106]
Aquatic rat
(Anotomys leander)
92 Previously thought to be the highest number in mammals, tied with Ichthyomys pittieri. [105]
Kamraj (fern)
(Helminthostachys zeylanica)
94 Helminthostachys zeylanica.jpg
Carp
(Carassius carassius)
100 Cyprinus carpio.jpeg Karyotype of crucian carp (Carassius carassius).png [107]
Red viscacha rat
(Tympanoctomys barrerae)
102 Tympanoctomys barrerae.jpg Metaphase spread of the Viscacha rat (Tympanoctomys barrerae).jpg Highest number known in mammals, thought to be a tetraploid[108] or allotetraploid.[109] [110]
Walking catfish
(Clarias batrachus)
104 Clarias batrachus.jpg Karyotype of walking catfish (Clarias batrachus).png [111]
American paddlefish
(Polyodon spathula)
120 Paddlefish underwater.jpeg Karyotype of North American paddlefish (Polyodon spathula).png [112]
Northern lamprey
(Petromyzontinae)
174 Petromyzon marinus2.jpg [113]
Rattlesnake fern
(Botrypus virginianus)
184 Botrychium virginianum.JPG [114]
Red king crab
(Paralithodes camtschaticus)
208 Paralithodes camtschaticus, 1.jpg
Field horsetail
(Equisetum arvense)
216 Equisetum arvense foliage.jpg
Adders-tongue
(Ophioglossum)
240 Ophioglossum closeup.jpg n=120–720 with a high degree of polyploidization[115] n=720 in hexaploid species O. reticulatum. A google book search for "ophioglossum reticulatum chromosomes" returns values of 2n=768 and 2n=1260, though these sources may be wp:circular and unreliable.
Agrodiaetus butterfly
(Agrodiaetus shahrami)
268 This insect has one of the highest chromosome numbers among all animals. [116]
Black mulberry
(Morus nigra)
308 Morus-nigra.JPG In this case, the chromosome number is docosaploid, or 22 times the basic number. [117]
Atlas blue
(Polyommatus atlantica)
448-452 PolyommatusAtlanticaMMUpUnAC1.jpg Karyotype of Atlas blue (Polyommatus atlanticus).png 2n = circa 448–452. Highest number of chromosomes in the non-polyploid eukaryotic organisms.[118] [118]
Ciliated protozoa
(Tetrahymena thermophila)
10 (in micronucleus) Tetrahymena thermophila.png 50x = 12,500 (in macronucleus, except minichromosomes)
10,000x = 10,000 (macronuclear minichromosomes)[119]
Ciliated protozoa
(Oxytricha trifallax)
15,600 MAC chromosomes × 1900 ploidy level =
29.64 × 106 chromosomes
Oxytricha trifallax.jpg Macronuclear "nanochromosomes"; ampliploid. [120][121][122]

See also[edit]

References[edit]

  1. ^ Avarello; et al. (1992). "Evidence for an ancestral alphoid domain on the long arm of human chromosome 2". Human Genetics. 89 (2): 247–9. doi:10.1007/BF00217134. PMID 1587535. 
  2. ^ Concise Oxford Dictionary
  3. ^ White 1973, p. 28
  4. ^ Stebbins, G.L. (1950). "Chapter XII: The Karyotype". Variation and evolution in plants. Columbia University Press. 
  5. ^ King, R.C.; Stansfield, W.D.; Mulligan, P.K. (2006). A dictionary of genetics (7th ed.). Oxford University Press. p. 242. 
  6. ^ a b Crosland, M.W.J., Crozier, R.H. (1986). "Myrmecia pilosula, an ant with only one pair of chromosomes". Science. 231 (4743): 1278. Bibcode:1986Sci...231.1278C. doi:10.1126/science.231.4743.1278. PMID 17839565. 
  7. ^ Körner, Wilhelm Friedric (1952). "Untersuchungen über die Gehäusebildung bei Appendicularien (Oikopleura dioica Fol)". Zeitschrift für Morphologie und Ökologie der Tiere. 41: 1–53. 
  8. ^ Leach; et al. (1995). "Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica". Chromosoma. 103 (10): 708–714. doi:10.1007/BF00344232. PMID 7664618. 
  9. ^ a b Helle, W.; Bolland, H. R.; Gutierrez, J. (1972). "Minimal chromosome number in false spider mites (Tenuipalpidae)". Experientia. 28 (6): 707. doi:10.1007/BF01944992. 
  10. ^ a b Francesco Giannelli; Hall, Jeffrey C.; Dunlap, Jay C.; Friedmann, Theodore (1999). Advances in Genetics, Volume 41 (Advances in Genetics). Boston: Academic Press. p. 2. ISBN 0-12-017641-6. 
  11. ^ Wang W, Lan H (2000). "Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogeny". Mol Biol Evol. 17 (9): 1326–33. doi:10.1093/oxfordjournals.molbev.a026416. PMID 10958849. 
  12. ^ Wurster, Doris H. & Kurt Benirschke (12 June 1970). "Indian Momtjac, Muntiacus muntiak: A Deer with a Low Diploid Chromosome Number". Science. 168 (3937): 1364–1366. Bibcode:1970Sci...168.1364W. doi:10.1126/science.168.3937.1364. PMID 5444269. 
  13. ^ "Drosophila Genome Project". National Center for Biotechnology Information. Retrieved 2009-04-14. 
  14. ^ Zadesenets, KS; Vizoso, DB; Schlatter, A; Konopatskaia, ID; Berezikov, E; Schärer, L; Rubtsov, NB (2016). "Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology". PLOS ONE. 11: e0164915. Bibcode:2016PLoSO..1164915Z. doi:10.1371/journal.pone.0164915. PMC 5068713Freely accessible. PMID 27755577. 
  15. ^ Toder (Jun 1997). "Comparative chromosome painting between two marsupials: origins of an XX/XY1Y2 sex chromosome system". Mammalian Genome. 8 (6): 418–22. doi:10.1007/s003359900459. PMID 9166586. 
  16. ^ Fujito S, Takahata S, Suzuki R, Hoshino Y, Ohmido N, Onodera Y (2015). "Evidence for a Common Origin of Homomorphic and Heteromorphic Sex Chromosomes in Distinct Spinacia Species". G3 (Bethesda). 5 (8): 1663–73. doi:10.1534/g3.115.018671. PMC 4528323Freely accessible. PMID 26048564. 
  17. ^ Patlolla AK, Berry A, May L, Tchounwou PB (2012). "Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles". Int J Environ Res Public Health. 9 (5): 1649–62. doi:10.3390/ijerph9051649. PMC 3386578Freely accessible. PMID 22754463. 
  18. ^ a b Sbilordo SH, Martin OY, Ward PI (2010). "The karyotype of the yellow dung fly, Scathophaga stercoraria, a model organism in studies of sexual selection". J Insect Sci. 10 (118): 118. doi:10.1673/031.010.11801. PMC 3016996Freely accessible. PMID 20874599. 
  19. ^ "First of six chromosomes sequenced in Dictyostelium discoideum". Genome News Network. Retrieved 2009-04-29. 
  20. ^ Zhang, Y; Cheng, C; Li, J; Yang, S; Wang, Y; Li, Z; Chen, J; Lou, Q (2015). "Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping". BMC Genomics. 16: 730. doi:10.1186/s12864-015-1877-6. PMC 4583154Freely accessible. PMID 26407707. 
  21. ^ a b c d e f g h i j k l m n o p q r Simmonds, NW (ed.) (1976). Evolution of crop plants. New York: Longman. ISBN 0-582-44496-9. [page needed]
  22. ^ Schubert, V; Ruban, A; Houben, A (2016). "Chromatin Ring Formation at Plant Centromeres". Front Plant Sci. 7: 28. doi:10.3389/fpls.2016.00028. PMC 4753331Freely accessible. PMID 26913037. 
  23. ^ a b Haque SM, Ghosh B (2013). "High frequency microcloning of Aloe vera and their true-to-type conformity by molecular cytogenetic assessment of two years old field growing regenerated plants". Bot Stud. 54 (1): 46. doi:10.1186/1999-3110-54-46. PMC 5430365Freely accessible. PMID 28510900. 
  24. ^ Rofe, R. H. (December 1978). "G-banded chromosomes and the evolution of macropodidae". Australian Mammalogy. 2: 50–63. ISSN 0310-0049. 
  25. ^ a b Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC; et al. (2009). "The genome of the blood fluke Schistosoma mansoni". Nature. 460 (7253): 352–8. Bibcode:2009Natur.460..352B. doi:10.1038/nature08160. PMC 2756445Freely accessible. PMID 19606141. 
  26. ^ a b Nagaki K, Yamamoto M, Yamaji N, Mukai Y, Murata M (2012). "Chromosome dynamics visualized with an anti-centromeric histone H3 antibody in Allium". PLOS ONE. 7 (12): e51315. Bibcode:2012PLoSO...751315N. doi:10.1371/journal.pone.0051315. PMC 3517398Freely accessible. PMID 23236469. 
  27. ^ a b Mounsey KE, Willis C, Burgess ST, Holt DC, McCarthy J, Fischer K (2012). "Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus". Parasit Vectors. 5: 3. doi:10.1186/1756-3305-5-3. PMC 3274472Freely accessible. PMID 22214472. 
  28. ^ a b Dunemann, F; Schrader, O; Budahn, H; Houben, A (2014). "Characterization of centromeric histone H3 (CENH3) variants in cultivated and wild carrots (Daucus sp.)". PLOS ONE. 9: e98504. Bibcode:2014PLoSO...998504D. doi:10.1371/journal.pone.0098504. PMC 4041860Freely accessible. PMID 24887084. 
  29. ^ Marcelo Guerra, Andrea Pedrosa, Ana Emília Barros e Silva, Maria Tereza Marquim Cornélio, Karla Santos and Walter dos Santos Soares Filho (1997). "Chromosome number and secondary constriction variation in 51 accessions of a citrus germplasm bank". Brazilian Journal of Genetics. 20 (3): 489. doi:10.1590/S0100-84551997000300021. 
  30. ^ Hynniewta, M; Malik, SK; Rao, SR (2011). "Karyological studies in ten species of Citrus(Linnaeus, 1753) (Rutaceae) of North-East India". Comp Cytogenet. 5: 277–87. doi:10.3897/CompCytogen.v5i4.1796. PMC 3833788Freely accessible. PMID 24260635. 
  31. ^ Souza, Margarete Magalhães, Telma N. Santana Pereira, and Maria Lúcia Carneiro Vieira. "Cytogenetic studies in some species of Passiflora L.(Passifloraceae): a review emphasizing Brazilian species." Brazilian Archives of Biology and Technology 51.2 (2008): 247–258. https://dx.doi.org/10.1590/S1516-89132008000200003
  32. ^ Nani, TF; Cenzi, G; Pereira, DL; Davide, LC; Techio, VH (2015). "Ribosomal DNA in diploid and polyploid Setaria (Poaceae) species: number and distribution". Comp Cytogenet. 9: 645–60. doi:10.3897/CompCytogen.v9i4.5456. PMC 4698577Freely accessible. PMID 26753080. 
  33. ^ a b Matsuda, Y; Uno, Y; Kondo, M; Gilchrist, MJ; Zorn, AM; Rokhsar, DS; Schmid, M; Taira, M (April 2015). "A New Nomenclature of Xenopus laevis Chromosomes Based on the Phylogenetic Relationship to Silurana/Xenopus tropicalis". Cytogenetic and Genome Research. 145 (3–4): 187–191. doi:10.1159/000381292. PMID 25871511. 
  34. ^ a b c Kondo, Katsuhiko (May 1969). "Chromosome Numbers of Carnivorous Plants". Bulletin of the Torrey Botanical Club. 96 (3): 322. doi:10.2307/2483737. JSTOR 2483737. 
  35. ^ da Silva, RA; Souza, G; Lemos, LS; Lopes, UV; Patrocínio, NG; Alves, RM; Marcellino, LH; Clement, D; Micheli, F; Gramacho, KP (2017). "Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae)". PLOS ONE. 12: e0170799. Bibcode:2017PLoSO..1270799D. doi:10.1371/journal.pone.0170799. PMC 5302445Freely accessible. PMID 28187131. 
  36. ^ Bachir Oudjehih, Bentouati Abdellah (2006). "Chromosome numbers of the 59 species of Eucalyptus L'Herit. (Myrtaceae)". Caryologia. 59 (3): 207–212. doi:10.1080/00087114.2006.10797916. 
  37. ^ Balasaravanan, T; Chezhian, P; Kamalakannan, R; Ghosh, M; Yasodha, R; Varghese, M; Gurumurthi, K (2005). "Determination of inter- and intra-species genetic relationships among six Eucalyptus species based on inter-simple sequence repeats (ISSR)". Tree Physiol. 25: 1295–302. doi:10.1093/treephys/25.10.1295. PMID 16076778. 
  38. ^ Biggers JD, Fritz HI, Hare WC, McFeely RA (June 1965). "Chromosomes of American Marsupials". Science. 148 (3677): 1602–3. Bibcode:1965Sci...148.1602B. doi:10.1126/science.148.3677.1602. PMID 14287602. 
  39. ^ Argyris, JM; Ruiz-Herrera, A; Madriz-Masis, P; Sanseverino, W; Morata, J; Pujol, M; Ramos-Onsins, SE; Garcia-Mas, J (2015). "Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly". BMC Genomics. 16: 4. doi:10.1186/s12864-014-1196-3. PMC 4316794Freely accessible. PMID 25612459. 
  40. ^ Heiser, Charles B.; Whitaker, Thomas W. (1948). "Chromosome Number, Polyploidy, and Growth Habit in California Weeds". American Journal of Botany. 35 (3): 179–186. doi:10.2307/2438241. 
  41. ^ Ivanova, D.; Vladimirov, V. (2007). "Chromosome numbers of some woody species from the Bulgarian flora" (PDF). Phytologia Balcanica. 13 (2): 205–207. 
  42. ^ Staginnus C, Gregor W, Mette MF, Teo CH, Borroto-Fernández EG, Machado ML; et al. (2007). "Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species". BMC Plant Biol. 7: 24. doi:10.1186/1471-2229-7-24. PMC 1899175Freely accessible. PMID 17517142. 
  43. ^ Packham, John R.; Thomas, Peter A.; Atkinson, Mark D.; Degen, Thomas (2012). "Biological Flora of the British Isles:Fagus sylvatica". Journal of Ecology. 100: 1557–1608. doi:10.1111/j.1365-2745.2012.02017.x. 
  44. ^ Abrams, L. (1951). Illustrated Flora of the Pacific States. Volume 3. Stanford University Press. p. 866. 
  45. ^ Stace, C. (1997). New Flora of the British Isles. Second Edition. Cambridge, UK. p. 1130. 
  46. ^ Zaldoš V, Papeš D, Brown SC, Panaus O, Šiljak-Yakovlev S (1998) Genome size and base composition of seven Quercus species: inter- and intra-population variation. 'Genome, 41: 162–168.
  47. ^ Doležálková, Marie; Sember, Alexandr; Marec, František; Ráb, Petr; Plötner, Jörg; Choleva, Lukáš (2016). "Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax?". BMC Genetics. 17 (1). doi:10.1186/s12863-016-0408-z. ISSN 1471-2156. 
  48. ^ Zaleśna, A.; Choleva, L.; Ogielska, M.; Rábová, M.; Marec, F.; Ráb, P. (2011). "Evidence for Integrity of Parental Genomes in the Diploid Hybridogenetic Water Frog Pelophylax esculentus by Genomic in situ Hybridization". Cytogenetic and Genome Research. 134 (3): 206–212. doi:10.1159/000327716. ISSN 1424-859X. 
  49. ^ Keinath MC, Timoshevskiy VA, Timoshevskaya NY, Tsonis PA, Voss SR, Smith JJ (2015). "Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing". Sci Rep. 5: 16413. Bibcode:2015NatSR...516413K. doi:10.1038/srep16413. PMC 4639759Freely accessible. PMID 26553646. 
  50. ^ a b Sadílek, D; Angus, RB; Šťáhlavský, F; Vilímová, J (2016). "Comparison of different cytogenetic methods and tissue suitability for the study of chromosomes in Cimex lectularius (Heteroptera, Cimicidae)". Comp Cytogenet. 10: 731–752. doi:10.3897/CompCytogen.v10i4.10681. PMC 5240521Freely accessible. PMID 28123691. 
  51. ^ Achar, K.P. (1986). "Analysis of male meiosis in seven species of Indian pill-millipede". Caryologia (39): 89–101. 
  52. ^ Huang L, Nesterenko A, Nie W, Wang J, Su W, Graphodatsky AS; et al. (2008). "Karyotype evolution of giraffes (Giraffa camelopardalis) revealed by cross-species chromosome painting with Chinese muntjac (Muntiacus reevesi) and human (Homo sapiens) paints". Cytogenet Genome Res. 122 (2): 132–8. doi:10.1159/000163090. PMID 19096208. 
  53. ^ Sola-Campoy, PJ; Robles, F; Schwarzacher, T; Ruiz Rejón, C; de la Herrán, R; Navajas-Pérez, R (2015). "The Molecular Cytogenetic Characterization of Pistachio (Pistacia vera L.) Suggests the Arrest of Recombination in the Largest Heteropycnotic Pair HC1". PLOS ONE. 10: e0143861. Bibcode:2015PLoSO..1043861S. doi:10.1371/journal.pone.0143861. PMC 4669136Freely accessible. PMID 26633808. 
  54. ^ a b Gempe T, Hasselmann M, Schiøtt M, Hause G, Otte M, Beye M (2009). "Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway". PLoS Biol. 7 (10): e1000222. doi:10.1371/journal.pbio.1000222. PMC 2758576Freely accessible. PMID 19841734. 
  55. ^ a b c d e f g h Sillero-Zubiri, Claudio; Hoffmann, Michael J.; Dave Mech (2004). Canids: Foxes, Wolves, Jackals and Dogs: Status Survey and Conservation Action Plan. World Conservation Union. ISBN 2-8317-0786-2. [page needed]
  56. ^ Feng, J; Liu, Z; Cai, X; Jan, CC (2013). "Toward a molecular cytogenetic map for cultivated sunflower (Helianthus annuus L.) by landed BAC/BIBAC clones". G3 (Bethesda). 3: 31–40. doi:10.1534/g3.112.004846. PMC 3538341Freely accessible. PMID 23316437. 
  57. ^ a b "Metapress – Discover More". 24 June 2016. 
  58. ^ Giorgi, D; Pandozy, G; Farina, A; Grosso, V; Lucretti, S; Gennaro, A; Crinò, P; Saccardo, F (2016). "First detailed karyo-morphological analysis and molecular cytological study of leafy cardoon and globe artichoke, two multi-use Asteraceae crops". Comp Cytogenet. 10: 447–463. doi:10.3897/CompCytogen.v10i3.9469. PMC 5088355Freely accessible. PMID 27830052. 
  59. ^ An F, Fan J, Li J, Li QX, Li K, Zhu W; et al. (2014). "Comparison of leaf proteomes of cassava (Manihot esculenta Crantz) cultivar NZ199 diploid and autotetraploid genotypes". PLOS ONE. 9 (4): e85991. Bibcode:2014PLoSO...985991A. doi:10.1371/journal.pone.0085991. PMC 3984080Freely accessible. PMID 24727655. 
  60. ^ Perelman PL, Graphodatsky AS, Dragoo JW, Serdyukova NA, Stone G, Cavagna P, Menotti A, Nie W, O'Brien PC, Wang J, Burkett S, Yuki K, Roelke ME, O'Brien SJ, Yang F, Stanyon R (2008). "Chromosome painting shows that skunks (Mephitidae, Carnivora) have highly rearranged karyotypes". Chromosome Res. 16 (8): 1215–31. doi:10.1007/s10577-008-1270-2. PMID 19051045. 
  61. ^ [1]: Mengden, Greg. 1985. In Dowling, H.G. and. RM. Price. 1988. A proposed new genus for Elaphe subocularis and Elaphe rosaliae. The Snake 20(1): 53, 61.
  62. ^ [2]: Chromosomes of Elaphe subocularis (Reptilia: Serpentes), with the description of an in vivo technique for preparation of snake chromosomes.
  63. ^ The Jackson Laboratory Archived 2013-01-25 at the Wayback Machine.: Mice with chromosomal aberrations.
  64. ^ a b Milla SR, Isleib TG, Stalker HT (2005). "Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers". Genome. 48 (1): 1–11. doi:10.1139/g04-089. PMID 15729391. 
  65. ^ Moore, CM; Dunn, BG; McMahan, CA; Lane, MA; Roth, GS; Ingram, DK; Mattison, JA (2007). "Effects of calorie restriction on chromosomal stability in rhesus monkeys (Macaca mulatta)". Age (Dordr). 29 (1): 15–28. doi:10.1007/s11357-006-9016-6. PMC 2267682Freely accessible. PMID 19424827. 
  66. ^ "Rnor_6.0 - Assembly - NCBI". www.ncbi.nlm.nih.gov. 
  67. ^ Diupotex-Chong, Maria Esther; Ocaña-Luna, Alberto; Sánchez-Ramírez, Marina (July 2009). "Chromosome analysis of Linné, 1758 (Scyphozoa: Ulmaridae), southern Gulf of Mexico". Marine Biology Research. 5 (4): 399–403. doi:10.1080/17451000802534907. Retrieved 7 October 2015. 
  68. ^ Geleta, M; Herrera, I; Monzón, A; Bryngelsson, T (2012). "Genetic diversity of arabica coffee (Coffea arabica L.) in Nicaragua as estimated by simple sequence repeat markers". ScientificWorldJournal. 2012: 939820. doi:10.1100/2012/939820. PMC 3373144Freely accessible. PMID 22701376. 
  69. ^ "Human Genome Project". National Center for Biotechnology Information. Retrieved 2009-04-29. 
  70. ^ Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E; et al. (2016). "The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion". Elife. 5. doi:10.7554/eLife.20062. PMC 5111886Freely accessible. PMID 27849518. 
  71. ^ a b Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A; et al. (2014). "The tobacco genome sequence and its comparison with those of tomato and potato". Nat Commun. 5: 3833. Bibcode:2014NatCo...5E3833S. doi:10.1038/ncomms4833. PMC 4024737Freely accessible. PMID 24807620. 
  72. ^ a b Machida-Hirano R (2015). "Diversity of potato genetic resources". Breed Sci. 65 (1): 26–40. doi:10.1270/jsbbs.65.26. PMC 4374561Freely accessible. PMID 25931978. 
  73. ^ T.J. Robinson; F. Yang; W.R. Harrison (2002). "Chromosome painting refines the history of genome evolution in hares and rabbits (order Lagomorpha)". Cytogenetic and Genome Research. 96 (1–4): 223–227. doi:10.1159/000063034. PMID 12438803. 
  74. ^ "4.W4". Rabbits, Hares and Pikas. Status Survey and Conservation Action Plan. pp. 61–94. Archived from the original on 2011-05-05. 
  75. ^ Young WJ, Merz T, Ferguson-Smith MA, Johnston AW (June 1960). "Chromosome number of the chimpanzee, Pan troglodytes". Science. 131 (3414): 1672–3. Bibcode:1960Sci...131.1672Y. doi:10.1126/science.131.3414.1672. PMID 13846659. 
  76. ^ Postlethwait, John H.; Woods, Ian G.; Ngo-Hazelett, Phuong; Yan, Yi-Lin; Kelly, Peter D.; Chu, Felicia; Huang, Hui; Hill-Force, Alicia; Talbot, William S. (1 December 2000). "Zebrafish Comparative Genomics and the Origins of Vertebrate Chromosomes". Genome Research. 10 (12): 1890–1902. doi:10.1101/gr.164800. PMID 11116085 – via genome.cshlp.org. 
  77. ^ Brien, Stephen (2006). Atlas of mammalian chromosomes. Hoboken, NJ: Wiley-Liss. p. 2. ISBN 978-0-471-35015-6. 
  78. ^ Warren; et al. (2008). "Genome analysis of the platypus reveals unique signatures of evolution" (PDF). Nature. 453 (7192): 175–183. Bibcode:2008Natur.453..175W. doi:10.1038/nature06936. PMC 2803040Freely accessible. PMID 18464734. 
  79. ^ a b Chen H, Khan MK, Zhou Z, Wang X, Cai X, Ilyas MK; et al. (2015). "A high-density SSR genetic map constructed from a F2 population of Gossypium hirsutum and Gossypium darwinii" (PDF). Gene. 574 (2): 273–86. doi:10.1016/j.gene.2015.08.022. PMID 26275937. 
  80. ^ "Hyrax: The Little Brother of the Elephant", Wildlife on One, BBC TV.
  81. ^ O'Brien, Stephen J., Meninger, Joan C., Nash, William G. (2006). Atlas of Mammalian Chromosomes. John Wiley & sons. p. 78. ISBN 978-0-471-35015-6. 
  82. ^ a b Måkinen, Auli (1986). "A chromosome-banding study in the Finnish and the Japanese raccoon dog". Hereditas. 105 (1): 97–105. doi:10.1111/j.1601-5223.1986.tb00647.x. PMID 3793521. 
  83. ^ Elaine A. Ostrander (1 January 2012). Genetics of the Dog. CABI. pp. 250–. ISBN 978-1-84593-941-0. 
  84. ^ Barnabe, Renato Campanarut; Guimarães, Marcelo Alcindo de Barros Vaz; Oliveira, CláUdio Alvarenga de; Barnabe, Alexandre Hyppolito (2002). "Analysis of some normal parameters of the spermiogram of captive capuchin monkeys (Cebus apella Linnaeus, 1758 )". Brazilian Journal of Veterinary Research and Animal Science. 39 (6). doi:10.1590/S1413-95962002000600010. 
  85. ^ Peigler, Richard S. ["Wild silks of the world." American Entomologist 39.3 (1993): 151–162. https://doi.org/10.1093/ae/39.3.151
  86. ^ Yoshido A, Yasukochi Y, Sahara K (2011). "Samia cynthia versus Bombyx mori: comparative gene mapping between a species with a low-number karyotype and the model species of Lepidoptera" (PDF). Insect Biochem Mol Biol. 41 (6): 370–7. doi:10.1016/j.ibmb.2011.02.005. PMID 21396446. 
  87. ^ Mahendran B, Ghosh SK, Kundu SC (2006). "Molecular phylogeny of silk-producing insects based on 16S ribosomal RNA and cytochrome oxidase subunit I genes". J Genet. 85 (1): 31–8. doi:10.1007/bf02728967. PMID 16809837. 
  88. ^ Yoshido A, Bando H, Yasukochi Y, Sahara K (2005). "The Bombyx mori karyotype and the assignment of linkage groups". Genetics. 170 (2): 675–85. doi:10.1534/genetics.104.040352. PMC 1450397Freely accessible. PMID 15802516. 
  89. ^ a b Liu, B; Davis, TM (2011). "Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae)". BMC Plant Biol. 11: 157. doi:10.1186/1471-2229-11-157. PMC 3261831Freely accessible. PMID 22074487. 
  90. ^ Seabury, CM; Dowd, SE; Seabury, PM; Raudsepp, T; Brightsmith, DJ; Liboriussen, P; Halley, Y; Fisher, CA; Owens, E; Viswanathan, G; Tizard, IR (2013). "A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao)". PLoS ONE. 8: e62415. Bibcode:2013PLoSO...862415S. doi:10.1371/journal.pone.0062415. PMC 3648530Freely accessible. PMID 23667475. 
  91. ^ Rens, W.; et al. (2007). "The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z". Genome Biology. 8 (11): R243. doi:10.1186/gb-2007-8-11-r243. PMC 2258203Freely accessible. PMID 18021405. 
  92. ^ Svartman, M; Stone, G; Stanyon, R (2006). "The ancestral eutherian karyotype is present in Xenarthra". PLoS Genet. 2: e109. doi:10.1371/journal.pgen.0020109. PMC 1513266Freely accessible. PMID 16848642. 
  93. ^ de Oliveira, EH; Tagliarini, MM; dos Santos, MS; O'Brien, PC; Ferguson-Smith, MA (2013). "Chromosome painting in three species of buteoninae: a cytogenetic signature reinforces the monophyly of South American species". PLOS ONE. 8: e70071. Bibcode:2013PLoSO...870071D. doi:10.1371/journal.pone.0070071. PMC 3724671Freely accessible. PMID 23922908. 
  94. ^ Smith, Hugh (1927). "Chromosome counts in the varieties of Solanum tuberosum and allied wild species". Genetics. 12 (1): 84–92. PMC 1200928Freely accessible. PMID 17246516. 
  95. ^ Guttenbach M, Nanda I, Feichtinger W, Masabanda JS, Griffin DK, Schmid M (2003). "Comparative chromosome painting of chicken autosomal paints 1–9 in nine different bird species". Cytogenetic and Genome Research. 103 (1–2): 173–84. doi:10.1159/000076309. PMID 15004483. 
  96. ^ https://www.ncbi.nlm.nih.gov/genome/guide/dog/
  97. ^ Maeda, J; Yurkon, CR; Fujisawa, H; Kaneko, M; Genet, SC; Roybal, EJ; Rota, GW; Saffer, ER; Rose, BJ; Hanneman, WH; Thamm, DH; Kato, TA (2012). "Genomic instability and telomere fusion of canine osteosarcoma cells". PLOS ONE. 7: e43355. Bibcode:2012PLoSO...743355M. doi:10.1371/journal.pone.0043355. PMC 3420908Freely accessible. PMID 22916246. 
  98. ^ Lindblad-Toh K, Wade CM, Mikkelsen TS, et al. (December 2005). "Genome sequence, comparative analysis and haplotype structure of the domestic dog". Nature. 438 (7069): 803–19. Bibcode:2005Natur.438..803L. doi:10.1038/nature04338. PMID 16341006. 
  99. ^ Muhammad L Aslam; John WM Bastiaansen; Richard PMA Crooijmans; Addie Vereijken; Hendrik-Jan Megens; Martien AM Groenen (2010). "A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the Turkey and Chicken genomes" (PDF). BMC Genomics. 11: 647. doi:10.1186/1471-2164-11-647. PMC 3091770Freely accessible. PMID 21092123. 
  100. ^ a b Wang J, Roe B, Macmil S, Yu Q, Murray JE, Tang H; et al. (2010). "Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes". BMC Genomics. 11: 261. doi:10.1186/1471-2164-11-261. PMC 2882929Freely accessible. PMID 20416060. 
  101. ^ "Saccharum officinarum L. | Plants of the World Online | Kew Science". Retrieved 2017-07-02. 
  102. ^ Robert J. Henry; Chittaranjan Kole (15 August 2010). Genetics, Genomics and Breeding of Sugarcane. CRC Press. p. 70. ISBN 978-1-4398-4860-9. 
  103. ^ Susumu Ohno; Christina Stenius; L. C. Christian; Willy Beçak; Maria Luiza Beçak (1964). "Chromosomal uniformity in the avian subclass Carinatae". Chromosoma. 14 (3): 280–288. doi:10.1007/BF00321513. 
  104. ^ Gregory, T.R. (2015). Animal Genome Size Database. http://www.genomesize.com/result_species.php?id=1701
  105. ^ a b Schmid, M.; Fernández-Badillo, A.; Feichtinger, W.; Steinlein, C.; Roman, J.I. (1988). "On the highest chromosome number in mammals". Cytogenetics and Cell Genetics. 49 (4): 305–8. doi:10.1159/000132683. PMID 3073914. 
  106. ^ Hosseini SJ, Elahi E, Raie RM (2004). "The Chromosome Number of the Persian Gulf Shrimp Penaeus semisulcatus". Iranian Int. J. Sci. 5 (1): 13–23. 
  107. ^ Spoz, A; Boron, A; Porycka, K; Karolewska, M; Ito, D; Abe, S; Kirtiklis, L; Juchno, D (2014). "Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes". Comp Cytogenet. 8: 233–48. doi:10.3897/CompCytogen.v8i3.7718. PMC 4205492Freely accessible. PMID 25349674. 
  108. ^ Gallardo MH, Bickham JW, Honeycutt RL, Ojeda RA, Köhler N (1999). "Discovery of tetraploidy in a mammal". Nature. 401 (6751): 341. Bibcode:1999Natur.401..341G. doi:10.1038/43815. PMID 10517628. 
  109. ^ Gallardo, M.H.; González, CA; Cebrián, I (2006), "Molecular cytogenetics and allotetraploidy in the red vizcacha rat, Tympanoctomys barrerae (Rodentia, Octodontidae)", Genomics (published August 2006), 88 (2), pp. 214–221, doi:10.1016/j.ygeno.2006.02.010, PMID 16580173 
  110. ^ Contreras LC, Torres-Mura JC, Spotorno AE (1990). "The largest known chromosome number for a mammal, in a South American desert rodent". Experientia. 46 (5): 506–508. doi:10.1007/BF01954248. PMID 2347403. 
  111. ^ Maneechot, N; Yano, CF; Bertollo, LA; Getlekha, N; Molina, WF; Ditcharoen, S; Tengjaroenkul, B; Supiwong, W; Tanomtong, A; de Bello Cioffi, M (2016). "Genomic organization of repetitive DNAs highlights chromosomal evolution in the genus Clarias (Clariidae, Siluriformes)". Mol Cytogenet. 9: 4. doi:10.1186/s13039-016-0215-2. PMC 4719708Freely accessible. PMID 26793275. 
  112. ^ Symonová, R; Havelka, M; Amemiya, CT; Howell, WM; Kořínková, T; Flajšhans, M; Gela, D; Ráb, P (2017). "Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula)". BMC Genet. 18: 19. doi:10.1186/s12863-017-0484-8. PMC 5335500Freely accessible. PMID 28253860. 
  113. ^ William N. Eschmeyer. "Family Petromyzontidae – Northern lampreys". 
  114. ^ Flora of North America Editorial Committee, eds (1993). Flora of North America. Missouri Botanical Garden, St. Louis. 
  115. ^ Lukhtanov, Vladimir (2015-07-10). "The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms". Comparative Cytogenetics. 9 (4): 683–690. doi:10.3897/compcytogen.v9i4.5760. PMC 4698580Freely accessible. PMID 26753083. 
  116. ^ Lukhtanov; et al. (2005). "Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies". Nature. 436 (3704): 385–389. Bibcode:2005Natur.436..385L. doi:10.1038/nature03704. PMID 16034417. 
  117. ^ Kichisaburō Minamizawa (1997). Moriculture. CRC Press. p. 170. ISBN 978-90-5410-287-8. 
  118. ^ a b Lukhtanov, VA (2015). "The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms". Comp Cytogenet. 9: 683–90. doi:10.3897/CompCytogen.v9i4.5760. PMC 4698580Freely accessible. PMID 26753083. 
  119. ^ Mochizuki, K (2010). "DNA rearrangements directed by non-coding RNAs in ciliates". Wiley Interdiscip Rev RNA. 1 (3): 376–87. doi:10.1002/wrna.34. PMC 3746294Freely accessible. PMID 21956937. 
  120. ^ Kumar, Sushil; Kumarik Renu (June 2015). "Origin, structure and function of millions of chromosomes present in the macronucleus of unicellular eukaryotic ciliate, Oxytricha trifallax: a model organism for transgenerationally programmed genome rearrangements". Journal of Genetics. 94 (2): 173. doi:10.1007/s12041-015-0504-2. Retrieved 2017-03-14. 
  121. ^ Estienne C. Swart; John R. Bracht; Vincent Magrini; Patrick Minx; Xiao Chen; Yi Zhou; Jaspreet S. Khurana; Aaron D. Goldman; Mariusz Nowacki; Klaas Schotanus; Seolkyoung Jung; Robert S. Fulton; Amy Ly; Sean McGrath; Kevin Haub; Jessica L. Wiggins; Donna Storton; John C. Matese; Lance Parsons; Wei-Jen Chang; Michael S. Bowen; Nicholas A. Stover; Thomas A. Jones; Sean R. Eddy; Glenn A. Herrick; Thomas G. Doak; Richard K. Wilson; Elaine R. Mardis; Laura F. Landweber (2013-01-29). "The Oxytricha trifallax Macronuclear Genome: A Complex Eukaryotic Genome with 16,000 Tiny Chromosomes". PLOS Biology. 11 (1): e1001473. doi:10.1371/journal.pbio.1001473. PMC 3558436Freely accessible. PMID 23382650. Retrieved 2014-04-29. 
  122. ^ "You Have 46 Chromosomes. This Pond Creature Has 15,600", National Geographic, [3].

External links[edit]