Jump to content

Lithium nitrate

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Rhadamante (talk | contribs) at 06:45, 25 November 2015 (Uses). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Lithium nitrate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.029.290 Edit this at Wikidata
RTECS number
  • QU9200000
  • Key: IIPYXGDZVMZOAP-UHFFFAOYSA-N ☒N
  • InChI=1S/Li.NO3/c;2-1(3)4/q+1;-1
    Key: IIPYXGDZVMZOAP-UHFFFAOYSA-N
  • InChI=1/Li.NO3/c;2-1(3)4/q+1;-1
    Key: IIPYXGDZVMZOAP-UHFFFAOYAC
  • [Li+].[N+](=O)([O-])[O-]
Properties
LiNO3
Molar mass 68.946 g/mol
Appearance White to light yellow solid
Density 2.38 g/cm3
Melting point 255 °C (491 °F; 528 K)
Boiling point 600 °C (1,112 °F; 873 K) (decomposes)
52.2 g/100 mL (20 °C)
90 g/100 mL (28 °C)
234 g/100 mL (100 °C)
Solubility soluble in ethanol, methanol, pyridine, ammonia, acetone
1.735[1]
Thermochemistry
64 J/mol K
105 J/mol K
-7.007 kJ/g or -482.3 kJ/mol
-389.5 kJ/mol
25.5 kH/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Oxidant, irritant
NFPA 704 (fire diamond)
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
1426 mg/kg (oral, rat)
Related compounds
Other cations
Sodium nitrate
Potassium nitrate
Rubidium nitrate
Caesium nitrate
Related compounds
Lithium sulfate
Lithium chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Lithium nitrate is an inorganic compound with the formula LiNO3. It is the lithium salt of nitric acid. It is made by reacting lithium carbonate or lithium hydroxide with nitric acid.

Uses

This deliquescent colourless salt is an oxidizing agent used in the manufacture of red-colored fireworks and flares.

Lithium Nitrate has been proposed as a medium to store heat collected from the sun for cooking. A Fresnel lens would be used to melt solid lithium nitrate, which would then function as a 'solar battery', allowing heat to be redistributed later by convection.[2]

LiNO3 is utilized in solute-solvent interactions at decreasing temperatures (i.e. 329-290 K) which in effect, can be used to transport ions in binary solutions of molten acetamide.[3]

Currently, lithium nitrate is being tested to see if it can be applied to concrete-pavement to withstand weathering effects.[4]

In the lab, LiNO3 is commonly bound to a trihydrate ion in order to test bifurcated hydrogen bonds within crystal structures of molecules which can correlate to hydrogen bond strength.[5]

Lithium nitrate is also used as a catalyst which accelerates the breakdown of nitrogen oxides, through oxidation, found in soot.[6]

Synthesis

Lithium nitrate can be synthesized by reacting nitric acid and lithium carbonate.

Li2CO3 + 2 HNO3 → 2 LiNO3 + H2O + CO2

Generally when forming LiNO3, a pH indicator is used to determine when all of the acid has been neutralized. However, this neutralization can also be recognized with the loss of carbon dioxide production.[7] In order to rid the final product of excess water, the sample is heated.

Properties

Upon thermal decomposition, LiNO3 gives lithium oxide (Li2O), nitrogen dioxide, and oxygen:

4 LiNO3 → 2 Li2O + 4 NO2 + O2

Other group I nitrates decompose differently, forming the nitrite salt and oxygen. Because of its relatively small size, the lithium cation is very polarizing, which favors the formation of the oxide.

Lithium nitrate is also a very good oxidizing agent.[8]

Lithium nitrate is also denser than water.[8]

Toxicity

Lithium nitrate can be toxic to the body when ingested by targeting the central nervous system, thyroids, kidneys, and cardio-vascular system.[9] When exposed to the skin, eyes, and mucous membranes, lithium nitrate can cause irritation to these areas.[8]

References

  1. ^ Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN 0-07-049439-8.
  2. ^ http://barbequelovers.com/grills/a-solar-grill-prototype-for-a-greener-tomorrow
  3. ^ Berchiesi, G; et al. (1985). Journal of Chemical and Engineering Data. 30: 208–209. {{cite journal}}: Missing or empty |title= (help)
  4. ^ Kelly, M; et al. (2006). American Society of Civil Engineers. 191: 625–635. {{cite journal}}: Missing or empty |title= (help)
  5. ^ Muniz, M; Cardini, G; Righini, R; et al. (2012). "Bifurcated hydrogen bond in lithium nitrate trihydrate probed by ab initio molecular dynamics". The Journal of Physical Chemistry. 116 (9): 2147–2153. doi:10.1021/jp2120115. PMID 22309150. {{cite journal}}: Explicit use of et al. in: |author2= (help)
  6. ^ Ruiz, M; et al. (2012). I and EC research. 51: 1150–1157. {{cite journal}}: Missing or empty |title= (help)
  7. ^ "Synthesis database: Lithium nitrate synthesis". Amateur Science Network. Retrieved 18 June 2012. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  8. ^ a b c "Chemical Datasheet". CAMEO Chemicals. Retrieved April 26, 2012.
  9. ^ "Material Safety Data Sheet". Sigma-Aldrich Catalog. Retrieved April 12, 2012.