Jump to content

Radio spectrum

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Fgnievinski (talk | contribs) at 00:53, 1 October 2018. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The radio spectrum is the part of the electromagnetic spectrum with frequencies from 3 Hz to 3 000 GHz (3 THz). Electromagnetic waves in this frequency range, called radio waves, are extremely widely used in modern technology, particularly in telecommunication. To prevent interference between different users, the generation and transmission of radio waves is strictly regulated by national laws, coordinated by an international body, the International Telecommunication Union (ITU).[1]

Different parts of the radio spectrum are allocated by the ITU for different radio transmission technologies and applications; some 40 radiocommunication services are defined in the ITU's Radio Regulations (RR).[2] In some cases, parts of the radio spectrum are sold or licensed to operators of private radio transmission services (for example, cellular telephone operators or broadcast television stations). Ranges of allocated frequencies are often referred to by their provisioned use (for example, cellular spectrum or television spectrum).[3] Because it is a fixed resource which is in demand by an increasing number of users, the radio spectrum has become increasingly congested in recent decades, and the need to utilize it more effectively is driving modern telecommunications innovations such as trunked radio systems, spread spectrum (ultra-wideband) transmission, frequency reuse, dynamic spectrum management, frequency pooling, and cognitive radio.

Radio bands by frequency

A radio band is a small contiguous section of the radio spectrum frequencies, in which channels are usually used or set aside for the same purpose. To prevent interference and allow for efficient use of the radio spectrum, similar services are allocated in bands. For example, broadcasting, mobile radio, or navigation devices, will be allocated in non-overlapping ranges of frequencies.

Each of these bands has a basic bandplan which dictates how it is to be used and shared, to avoid interference and to set protocol for the compatibility of transmitters and receivers.[4]

ITU

As a matter of convention, the ITU divides the radio spectrum into 12 bands, each beginning at a wavelength which is a power of ten (10n) metres, with corresponding frequency of 3×108−n hertz, and each covering a decade of frequency or wavelength. Each of these bands has a traditional name. For example, the term high frequency (HF) designates the wavelength range from 100 to 10 metres, corresponding to a frequency range of 3 MHz to 30 MHz. This is just a naming convention and is not related to allocation; the ITU further divides each band into subbands allocated to different uses. Above 300 GHz, the absorption of electromagnetic radiation by Earth's atmosphere is so great that the atmosphere is effectively opaque, until it becomes transparent again in the near-infrared and optical window frequency ranges.

These ITU radio bands are defined in the ITU Radio Regulations. Article 2, provision No. 2.1 states that "the radio spectrum shall be subdivided into nine frequency bands, which shall be designated by progressive whole numbers in accordance with the following table[5]".

The table originated with a recommendation of the IVth CCIR meeting, held in Bucharest in 1937, and was approved by the International Radio Conference held at Atlantic City, NJ in 1947. The idea to give each band a number, in which the number is the logarithm of the approximate geometric mean of the upper and lower band limits in Hz, originated with B.C. Fleming-Williams, who suggested it in a letter to the editor of Wireless Engineer in 1942. (For example, the approximate geometric mean of Band 7 is 10 MHz, or 107 Hz.)[6]

Band name Abbreviation ITU band number Frequency and Wavelength Example Uses
Extremely low frequency ELF 1 3–30 Hz
100,000–10,000 km
Communication with submarines
Super low frequency SLF 2 30–300 Hz
10,000–1,000 km
Communication with submarines
Ultra low frequency ULF 3 300–3,000 Hz
1,000–100 km
Submarine communication, communication within mines
Very low frequency VLF 4 3–30 kHz
100–10 km
Navigation, time signals, submarine communication, wireless heart rate monitors, geophysics
Low frequency LF 5 30–300 kHz
10–1 km
Navigation, time signals, AM longwave broadcasting (Europe and parts of Asia), RFID, amateur radio
Medium frequency MF 6 300–3,000 kHz
1,000–100 m
AM (medium-wave) broadcasts, amateur radio, avalanche beacons
High frequency HF 7 3–30 MHz
100–10 m
Shortwave broadcasts, citizens band radio, amateur radio and over-the-horizon aviation communications, RFID, over-the-horizon radar, automatic link establishment (ALE) / near-vertical incidence skywave (NVIS) radio communications, marine and mobile radio telephony
Very high frequency VHF 8 30–300 MHz
10–1 m
FM, television broadcasts, line-of-sight ground-to-aircraft and aircraft-to-aircraft communications, land mobile and maritime mobile communications, amateur radio, weather radio
Ultra high frequency UHF 9 300–3,000 MHz
1–0.1 m
Television broadcasts, microwave oven, microwave devices/communications, radio astronomy, mobile phones, wireless LAN, Bluetooth, ZigBee, GPS and two-way radios such as land mobile, FRS and GMRS radios, amateur radio, satellite radio, Remote control Systems, ADSB
Super high frequency SHF 10 3–30 GHz
100–10 mm
Radio astronomy, microwave devices/communications, wireless LAN, DSRC, most modern radars, communications satellites, cable and satellite television broadcasting, DBS, amateur radio, satellite radio
Extremely high frequency EHF 11 30–300 GHz
10–1 mm
Radio astronomy, high-frequency microwave radio relay, microwave remote sensing, amateur radio, directed-energy weapon, millimeter wave scanner, wireless LAN (802.11ad)
Terahertz or Tremendously high frequency THz or THF 12 300–3,000 GHz
1–0.1 mm
Experimental medical imaging to replace X-rays, ultrafast molecular dynamics, condensed-matter physics, terahertz time-domain spectroscopy, terahertz computing/communications, remote sensing, amateur radio

IEEE radar bands

Frequency bands in the microwave range are designated by letters. This convention began around World War 2 with military designations for frequencies used in radar, which was the first application of microwaves. Unfortunately there are several incompatible naming systems for microwave bands, and even within a given system the exact frequency range designated by a letter varies somewhat between different application areas. One widely used standard is the IEEE radar bands established by the US Institute of Electrical and Electronic Engineers.


Radar-frequency bands according to IEEE standard[7]
Band
designation
Frequency range Explanation of meaning of letters
HF 0.003 to 0.03 GHz High Frequency[8]
VHF 0.03 to 0.3 GHz Very High Frequency[8]
UHF 0.3 to 1 GHz Ultra High Frequency[8]
L 1 to 2 GHz Long wave
S 2 to 4 GHz Short wave
C 4 to 8 GHz Compromise between S and X
X 8 to 12 GHz Used in WW II for fire control, X for cross (as in crosshair). Exotic.[9]
Ku 12 to 18 GHz Kurz-under
K 18 to 27 GHz Kurz (German for "short")
Ka 27 to 40 GHz Kurz-above
V 40 to 75 GHz
W 75 to 110 GHz W follows V in the alphabet[citation needed]
mm or G 110 to 300 GHz​[note 1] Millimeter[7]
  1. ^ The designation mm is also used to refer to the range from 30 to 300 GHz.[7]

EU, NATO, US ECM frequency designations

NATO LETTER BAND DESIGNATION[10][9][11] BROADCASTING
BAND
DESIGNATION
NEW NOMENCLATURE OLD NOMENCLATURE
BAND FREQUENCY (MHz) BAND FREQUENCY (MHz)
A 0 – 250 I 100 – 150 Band I
47 – 68 MHz (TV)
Band II
87.5 – 108 MHz (FM)
G 150 – 225 Band III
174 – 230 MHz (TV)
B 250 – 500 P 225 – 390
C 500 – 1 000 L 390 – 1 550 Band IV
470 – 582 MHz (TV)
Band V
582 – 862 MHz (TV)
D 1 000 – 2 000 S 1 550 – 3 900
E 2 000 – 3 000
F 3 000 – 4 000
G 4 000 – 6 000 C 3 900 – 6 200
H 6 000 – 8 000 X 6 200 – 10 900
I 8 000 – 10 000
J 10 000 – 20 000 Ku 10 900 – 20 000
K 20 000 – 40 000 Ka 20 000 – 36 000
L 40 000 – 60 000 Q 36 000 – 46 000
V 46 000 – 56 000
M 60 000 – 100 000 W 56 000 – 100 000
US- MILITARY / SACLANT
N 100 000 – 200 000
O 100 000 – 200 000

Waveguide frequency bands

Band Frequency range [12]
R band 1.70 to 2.60 GHz
D band 2.20 to 3.30 GHz
S band 2.60 to 3.95 GHz
E band 3.30 to 4.90 GHz
G band 3.95 to 5.85 GHz
F band 4.90 to 7.05 GHz
C band 5.85 to 8.20 GHz
H band 7.05 to 10.10 GHz
X band 8.2 to 12.4 GHz
Ku band 12.4 to 18.0 GHz
K band 18.0 to 26.5 GHz
Ka band 26.5 to 40.0 GHz
Q band 33 to 50 GHz
U band 40 to 60 GHz
V band 40 to 75 GHz
E band 60 to 90 GHz
W band 75 to 110 GHz
F band 90 to 140 GHz
D band 110 to 170 GHz
Y band 325 to 500 GHz

Comparison of radio band designation standards

Comparison of frequency band designations
Frequency IEEE[7] EU,
NATO,
US ECM
ITU
no. abbr.
A  
3 Hz 1 ELF
30 Hz 2 SLF
300 Hz 3 ULF
3 kHz 4 VLF
30 kHz 5 LF
300 kHz 6 MF
3 MHz HF 7 HF
30 MHz VHF 8 VHF
250 MHz B
300 MHz UHF 9 UHF
500 MHz C
1 GHz L D
2 GHz S E
3 GHz F 10 SHF
4 GHz C G
6 GHz H
8 GHz X I
10 GHz J
12 GHz Ku
18 GHz K
20 GHz K
27 GHz Ka
30 GHz 11 EHF
40 GHz V L
60 GHz M
75 GHz W
100 GHz
110 GHz mm
300 GHz 12 THF
3 THz  

Radio bands by application

Broadcasting

Broadcast frequencies:

Designations for television and FM radio broadcast frequencies vary between countries, see Television channel frequencies and FM broadcast band. Since VHF and UHF frequencies are desirable for many uses in urban areas, in North America some parts of the former television broadcasting band have been reassigned to cellular phone and various land mobile communications systems. Even within the allocation still dedicated to television, TV-band devices use channels without local broadcasters.

The Apex band in the United States was a pre-WWII allocation for VHF audio broadcasting; it was made obsolete after the introduction of FM broadcasting.

Air band

Airband refers to VHF frequencies 118 to 137 MHz, used for navigation and voice communication with aircraft. Trans-oceanic aircraft also carry HF radio and satellite transceivers.

Marine band

The greatest incentive for development of radio was the need to communicate with ships out of visual range of shore. From the very early days of radio, large oceangoing vessels carried powerful long-wave and medium-wave transmitters. High-frequency allocations are still designated for ships, although satellite systems have taken over some of the safety applications previously served by 500 kHz and other frequencies. 2182 kHz is a medium-wave frequency still used for marine emergency communication.

Marine VHF radio is used in coastal waters and relatively short-range communication between vessels and to shore stations. Radios are channelized, with different channels used for different purposes; marine Channel 16 is used for calling and emergencies.

Amateur radio frequencies

Amateur radio frequency allocations vary around the world. Several bands are common for amateurs worldwide, usually in the HF part of the spectrum. Other bands are national or regional allocations only due to differing allocations for other services, especially in the VHF and UHF parts of the radio spectrum.

Citizens' band and personal radio services

Citizens' band radio is allocated in many countries, using channelized radios in the upper HF part of the spectrum (around 27 MHz). It is used for personal, small business and hobby purposes. Other frequency allocations are used for similar services in different jurisdictions, for example UHF CB is allocated in Australia. A wide range of personal radio services exist around the world, usually emphasizing short-range communication between individuals or for small businesses, simplified or no license requirements, and usually FM transceivers using around 1 watt or less.

Industrial, scientific, medical

The ISM bands were initially reserved for non-communications uses of RF energy, such as microwave ovens, radio-frequency heating, and similar purposes. However, in recent years the largest use of these bands has been by short-range low-power communications systems, since users do not have to hold a radio operator's license. Cordless telephones, wireless computer networks, Bluetooth devices, and garage door openers all use the ISM bands. ISM devices do not have regulatory protection against interference from other users of the band.

Land mobile bands

Bands of frequencies, especially in the VHF and UHF parts of the spectrum, are allocated for communication between fixed base stations and land mobile vehicle-mounted or portable transceivers. In the United States these services are informally known as business band radio. See also Professional mobile radio.

Police radio and other public safety services such as fire departments and ambulances are generally found in the VHF and UHF parts of the spectrum. Trunking systems are often used to make most efficient use of the limited number of frequencies available.

The demand for mobile telephone service has led to large blocks of radio spectrum allocated to cellular frequencies.

Radio control

Reliable radio control uses bands dedicated to the purpose. Radio-controlled toys may use portions of unlicensed spectrum in the 27 MHz or 49 MHz bands, but more costly aircraft, boat, or land vehicle models use dedicated radio control frequencies near 72 MHz to avoid interference by unlicensed uses. The 21st century has seen a move to 2.4 gigahertz spread spectrum RC control systems.

Licensed amateur radio operators use portions of the 6-meter band in North America. Industrial remote control of cranes or railway locomotives use assigned frequencies that vary by area.

Radar

Radar applications use relatively high power pulse transmitters and sensitive receivers, so radar is operated on bands not used for other purposes. Most radar bands are in the microwave part of the spectrum, although certain important applications for meteorology make use of powerful transmitters in the UHF band. Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. Radio waves have frequencies as high as 300 GHz to as low as 3 kHz, though some definitions describe waves above 1 or 3 GHz as microwaves, or include waves of any lower frequency. At 300 GHz, the corresponding wavelength is 1 mm (0.039 in), and at 3 kHz is 100 km (62 mi). Like all other electromagnetic waves, they travel at the speed of light. Naturally occurring radio waves are generated by lightning, or by astronomical objects.

Artificially generated radio waves are used for fixed and mobile radio communication, broadcasting, radar and other navigation systems, communications satellites, computer networks and innumerable other applications. Radio waves are generated by radio transmitters and received by radio receivers. Different frequencies of radio waves have different propagation characteristics in the Earth's atmosphere; long waves can diffract around obstacles like mountains and follow the contour of the earth (ground waves), shorter waves can reflect off the ionosphere and return to earth beyond the horizon (skywaves), while much shorter wavelengths bend or diffract very little and travel on a line of sight, so their propagation distances are limited to the visual horizon.

To prevent interference between different users, the artificial generation and use of radio waves is strictly regulated by law, coordinated by an international body called the International Telecommunications Union (ITU), which defines radio waves as "electromagnetic waves of frequencies arbitrarily lower than 3 000 GHz, propagated in space without artificial guide".[1] The radio spectrum is divided into a number of radio bands on the basis of frequency, allocated to different uses

See also

Notes

  1. ^ ITU Radio Regulations – Article 1, Definitions of Radio Services, Article 1.2 Administration: Any governmental department or service responsible for discharging the obligations undertaken in the Constitution of the International Telecommunication Union, in the Convention of the International Telecommunication Union and in the Administrative Regulations (CS 1002)
  2. ^ International Telecommunication Union´s Radio Regulations, Edition of 2012.
  3. ^ Colin Robinson (2003). Competition and regulation in utility markets. Edward Elgar Publishing. p. 175. ISBN 978-1-84376-230-0.
  4. ^ See detail of bands: [1]
  5. ^ ITU Radio Regulations, Volume 1, Article 2; Edition of 2008. Available online at "Archived copy". Archived from the original on 2011-10-01. Retrieved 2012-01-12. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)CS1 maint: archived copy as title (link)
  6. ^ Booth, C.F. (1949). "Nomenclature of Frequencies". The Post Office Electrical Engineers' Journal. 42 (1): 47–48.
  7. ^ a b c d e IEEE Std 521-2002 Standard Letter Designations for Radar-Frequency Bands.
  8. ^ a b c Table 2 in [7]
  9. ^ a b Norman Friedman (2006). The Naval Institute Guide to World Naval Weapon Systems. Naval Institute Press. pp. xiii. ISBN 978-1-55750-262-9.
  10. ^ Leonid A. Belov; Sergey M. Smolskiy; Victor N. Kochemasov (2012). Handbook of RF, Microwave, and Millimeter-Wave Components. Artech House. pp. 27–28. ISBN 978-1-60807-209-5.
  11. ^ NATO Allied Radio Frequency Agency (ARFA) HANDBOOK – VOLUME I; PART IV – APPENDICES, … G-2, … NOMENCLATURE OF THE FREQUENCY AND WAVELENTH BANDS USED IN RADIOCOMMUNCATION.
  12. ^ www.microwaves101.com "Waveguide frequency bands and interior dimensions"

References