Jump to content

2021 in paleontology: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 4,464: Line 4,464:
* A study comparing the morphology of the maxillary canal of ''[[Heleosaurus]] scholtzi'', ''[[Varanosaurus]] acutrostris'', ''[[Orovenator]] mayorum'' and ''[[Prolacerta]] broomi'', and evaluating the implications of the morphology of the maxillary canal for the knowledge of the phylogenetic placement of [[Varanopidae|varanopids]], is published by Benoit ''et al.'' (2021).<ref>{{Cite journal|last1=Benoit |first1=J. |last2=Ford |first2=D. P. |last3=Miyamae |first3=J. A. |last4=Ruf |first4=I. |title=Can maxillary canal morphology inform varanopid phylogenetic affinities? |year=2021 |journal=Acta Palaeontologica Polonica |volume=66 |doi=10.4202/app.00816.2020 }}</ref>
* A study comparing the morphology of the maxillary canal of ''[[Heleosaurus]] scholtzi'', ''[[Varanosaurus]] acutrostris'', ''[[Orovenator]] mayorum'' and ''[[Prolacerta]] broomi'', and evaluating the implications of the morphology of the maxillary canal for the knowledge of the phylogenetic placement of [[Varanopidae|varanopids]], is published by Benoit ''et al.'' (2021).<ref>{{Cite journal|last1=Benoit |first1=J. |last2=Ford |first2=D. P. |last3=Miyamae |first3=J. A. |last4=Ruf |first4=I. |title=Can maxillary canal morphology inform varanopid phylogenetic affinities? |year=2021 |journal=Acta Palaeontologica Polonica |volume=66 |doi=10.4202/app.00816.2020 }}</ref>
* A study on the [[paleoneurology]] and likely paleobiology of ''[[Anteosaurus]] magnificus'' is published by Benoit ''et al.'' (2021).<ref>{{Cite journal|last1=Benoit |first1=J. |last2=Kruger |first2=A. |last3=Jirah |first3=S. |last4=Fernandez |first4=V. |last5=Rubidge |first5=B. S. |title=Palaeoneurology and palaeobiology of the dinocephalian therapsid ''Anteosaurus magnificus'' |year=2021 |journal=Acta Palaeontologica Polonica |volume=66 |issue=1 |pages=29–39 |doi=10.4202/app.00800.2020 |doi-access=free }}</ref>
* A study on the [[paleoneurology]] and likely paleobiology of ''[[Anteosaurus]] magnificus'' is published by Benoit ''et al.'' (2021).<ref>{{Cite journal|last1=Benoit |first1=J. |last2=Kruger |first2=A. |last3=Jirah |first3=S. |last4=Fernandez |first4=V. |last5=Rubidge |first5=B. S. |title=Palaeoneurology and palaeobiology of the dinocephalian therapsid ''Anteosaurus magnificus'' |year=2021 |journal=Acta Palaeontologica Polonica |volume=66 |issue=1 |pages=29–39 |doi=10.4202/app.00800.2020 |doi-access=free }}</ref>
* New specimen of ''[[Lanthanostegus]] mohoii'', providing new information on the anatomy of the skull of this dicynodont and providing the first direct correlation between the lower [[Abrahamskraal Formation]] at Jansenville on the eastern side of the [[Karoo Basin]] and the southwestern part of this basin, is described by Rubidge, Day & Benoit (2021).<ref>{{cite journal |last1=Rubidge |first1=B. S. |last2=Day |first2=M. O. |last3=Benoit |first3=J. |year=2021 |title=New Specimen of the Enigmatic Dicynodont ''Lanthanostegus mohoii'' (Therapsida, Anomodontia) from the Southwestern Karoo Basin of South Africa, and its Implications for Middle Permian Biostratigraphy |journal=Frontiers in Earth Science |volume=9 |pages=Article 668143 |doi=10.3389/feart.2021.668143 }}</ref>
* New burrow casts containing skeletons of ''[[Diictodon]]'', including associated remains of adult and infant specimens, are described by Smith ''et al.'' (2021), who consider it likely that portions of underground burrows produced ''Diictodon'' by were facultatively used as brood chambers.<ref>{{Cite journal|last1=Smith |first1=R. M. H. |last2=Angielczyk |first2=K. D. |last3=Benoit |first3=J. |last4=Fernandez |first4=V. |title=Neonate aggregation in the Permian dicynodont ''Diictodon'' (Therapsida, Anomodontia): Evidence for a reproductive function for burrows? |year=2021 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=569 |pages=Article 110311 |doi=10.1016/j.palaeo.2021.110311 }}</ref>
* New burrow casts containing skeletons of ''[[Diictodon]]'', including associated remains of adult and infant specimens, are described by Smith ''et al.'' (2021), who consider it likely that portions of underground burrows produced ''Diictodon'' by were facultatively used as brood chambers.<ref>{{Cite journal|last1=Smith |first1=R. M. H. |last2=Angielczyk |first2=K. D. |last3=Benoit |first3=J. |last4=Fernandez |first4=V. |title=Neonate aggregation in the Permian dicynodont ''Diictodon'' (Therapsida, Anomodontia): Evidence for a reproductive function for burrows? |year=2021 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=569 |pages=Article 110311 |doi=10.1016/j.palaeo.2021.110311 }}</ref>
* Redescription and a study on the phylogenetic relationships of ''[[Kunpania]] scopulusa'' is published by Angielczyk, Liu & Yang (2021).<ref>{{Cite journal|last1=Angielczyk |first1=K. D. |last2=Liu |first2=J. |last3=Yang |first3=W. |year=2021 |title=A Redescription of ''Kunpania scopulusa'', a Bidentalian Dicynodont (Therapsida, Anomodontia) from the ?Guadalupian of Northwestern China |journal=Journal of Vertebrate Paleontology |volume=in press |pages=e1922428 |doi=10.1080/02724634.2021.1922428 }}</ref>
* Redescription and a study on the phylogenetic relationships of ''[[Kunpania]] scopulusa'' is published by Angielczyk, Liu & Yang (2021).<ref>{{Cite journal|last1=Angielczyk |first1=K. D. |last2=Liu |first2=J. |last3=Yang |first3=W. |year=2021 |title=A Redescription of ''Kunpania scopulusa'', a Bidentalian Dicynodont (Therapsida, Anomodontia) from the ?Guadalupian of Northwestern China |journal=Journal of Vertebrate Paleontology |volume=in press |pages=e1922428 |doi=10.1080/02724634.2021.1922428 }}</ref>

Revision as of 20:11, 2 June 2021

List of years in paleontology (table)
In paleobotany
2018
2019
2020
2021
2022
2023
2024
In arthropod paleontology
2018
2019
2020
2021
2022
2023
2024
In insect paleontology
2018
2019
2020
2021
2022
2023
2024
In paleomalacology
2018
2019
2020
2021
2022
2023
2024
In reptile paleontology
2018
2019
2020
2021
2022
2023
2024
In archosaur paleontology
2018
2019
2020
2021
2022
2023
2024
In mammal paleontology
2018
2019
2020
2021
2022
2023
2024
In paleoichthyology
2018
2019
2020
2021
2022
2023
2024

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2021.

Flora

Cnidarians

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Columnocoenia falkenbergensis[2]

Sp. nov

Valid

Baron-Szabo

Early Cretaceous (Aptian)

Schrattenkalk Formation

 Germany
 Romania

A stony coral.

Confusaforma prima[3]

Sp. nov

Valid

Löser in Löser et al.

Early Cretaceous (Valanginian)

Sierra del Pozo Formation

 Spain

A coral belonging to the family Solenocoeniidae.

Decimoconularia[4]

Gen. et sp. nov

Valid

Guo et al.

Cambrian Stage 2

Yanjiahe Formation

 China

A hexangulaconulariid. Genus includes new species D. isofacialis.

Eopreverastrea[3]

Gen. et sp. nov

Valid

Löser in Löser et al.

Early Cretaceous (Valanginian)

Sierra del Pozo Formation

 Spain

A coral belonging to the family Aulastraeoporidae. The type species is E. llanoensis.

Floriastrea iberica[3]

Sp. nov

Valid

Löser in Löser et al.

Early Cretaceous (Valanginian)

Sierra del Pozo Formation

 Spain

A coral belonging to the family Actinastreidae.

Monopachyphyllia[5]

Gen. et sp. nov

Valid

Kołodziej & Marian

Early Cretaceous (Aptian)

 Romania

A colonial coral belonging to the group Pachythecaliina, possibly belonging to the superfamily Heterocoenioidea and the family Carolastraeidae. Genus includes new species M. roniewiczae.

Palaeodiphasia[6]

Gen et comb. nov

Valid

Song et al.

Late Cambrian

Fengshan Formation

 China

A member of Leptothecata belonging to the group Macrocolonia; a new genus for "Siberiograptus" simplex Lin (1985).

Siderohelia[7]

Gen. et sp. nov

Valid

Löser in Löser et al.

Cretaceous (Hauterivian to Santonian)

 Spain

A stony coral belonging to the family Rhizangiidae. The type species is S. aquilai.

Research

  • A study on the morphology, embryonic development and phylogenetic relationships of Quadrapyrgites is published by Zhao et al. (2021), who interpret this taxon and its probable relative Olivooides as more likely to be diploblastic cnidarians than triploblastic cycloneuralians.[8]
  • An exceptionally preserved conulariid specimen, keeping its aperture semi-closed and making it possible to see most of the internal part of the closure with rib continuation inwards, is described from the Ordovician of southeastern Brandenburg (Germany) by Sendino & Bochmann (2021).[9]

Arthropods

Arachnids

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Alterphyxioschemoides[10]

Gen. et sp. nov

Valid

Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

Possibly a member of the family Dipluridae. The type species is A. spicula.

Alticorona[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A member of the family Tetrablemmidae. The type species is A. plenfemur.

Autotomiana brevisetosa[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A member of Araneomorphae belonging to the family Pholcochyroceridae.

Barbutia theroni[11]

Sp. nov

Valid

Khaustov et al.

Late Eocene

Rovno amber

 Ukraine

A mite belonging to the group Raphignathoidea and the family Barbutiidae.

Boavista[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae. The type species is B. crassifemora.

Burmadictyna crassembolus[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Deinopoidea and the family Salticoididae.

Burmadictyna fissura[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Deinopoidea and the family Salticoididae.

Burmadictyna similis[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Deinopoidea and the family Salticoididae.

Burmaspiralis[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Araneoidea and the family Zarqaraneidae. The type species is B. trispinae.

Burmorsolus longitibia[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A member of Araneomorphae belonging to the family Burmorsolidae.

Cornutheridion[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Theridiidae. The type species is C. concavum.

Crassicephalus[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Deinopoidea and the new family Crassicephalidae. The type species is C. parvibulbus.

Crassitibia sicilicula[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Araneoidea and the family Zarqaraneidae.

Cretaceousopisthacanthus[12]

Gen. et sp. nov

Valid

Lourenço in Lourenço & Velten

Cretaceous

Burmese amber

 Myanmar

A scorpion belonging to the family Protoischnuridae. The type species is C. smeelei.

Cretapalpus[13]

Gen. et sp. nov

Valid

Downen & Selden

Early Cretaceous

Crato Formation

 Brazil

A spider belonging to the family Palpimanidae. Genus includes new species C. vittari.

Dolichocybe elongata[14]

Sp. nov

Valid

Khaustov et al.

Late Eocene

Rovno amber

 Ukraine

A mite belonging to the group Heterostigmata and the family Dolichocybidae.

Dubiodeinopsis[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Deinopoidea and the new family Dubiodeinopsidae. The type species is D. spinifemora.

Dubiouloborix[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Deinopoidea and the new family Dubiouloboridae. The type species is D. incompletus.

Dubiouloborus[10]

Gen. et 2 sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Deinopoidea and the new family Dubiouloboridae. The type species is D. praeta; genus also includes D. procerembolus.

Electroblemma spermaferens[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A member of the family Tetrablemmidae.

Eoagelenomorphus[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider of uncertain phylogenetic placement, possibly a member of an early branch of the RTA clade. The type species is E. cretaceus.

Hoplocheylus neosimilis[14][11]

Sp. nov

Valid

Khaustov et al.

Late Eocene

Rovno amber

 Ukraine

A mite belonging to the group Heterostigmata and the family Tarsocheylidae.

Kachinarachne[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A member of Araneomorphae belonging to the family Pholcochyroceridae. The type species is K. oblonga.

Longissipalpus cochlea[10]

Sp. nov

Junior homonym

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A member of Araneomorphae belonging to the family Pholcochyroceridae. The specific name is preoccupied Longissipalpus cochlea Wunderlich (2017).

Longissipalpus impudicus[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A member of Araneomorphae belonging to the family Pholcochyroceridae.

Megasetae[10]

Gen. et sp. nov

Valid

Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A member of Araneomorphae belonging to the new family Megasetidae. The type species is M. colphepeiroides.

Micropalpimanus gibber[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Palpimanoidea and the family Micropalpimanidae.

Microtheridion[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Theridiidae. The type species is M. longissispinae.

Microuloborus oblongus[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Palaeoleptoneta fissura[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Leptonetidae.

Palaeothele onoi[15]

Sp. nov

Valid

Selden

Carboniferous (Moscovian)

Mazon Creek fossil beds

 United States
( Illinois)

A spider belonging to the group Mesothelae and to the new family Palaeothelidae.

Palaeozearchaea[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Mecysmaucheniidae. The type species is P. depressa.

Paradactylidium sineunguis[14]

Sp. nov

Valid

Khaustov et al.

Late Eocene

Rovno amber

 Ukraine

A mite belonging to the group Heterostigmata and the family Acarophenacidae.

Paramiagrammopes appendix[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Paramiagrammopes curvatus[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Paramiagrammopes furca[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Paramiagrammopes granulatus[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Paramiagrammopes inaequalis[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Paramiagrammopes inclinatus[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Paramiagrammopes multifemurspinae[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Paramiagrammopes paracurvatus[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Paramiagrammopes pilosus[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Paramiagrammopes pollex[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Paramiagrammopes semiapertus[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Paramiagrammopes simplex[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Paramiagrammopes sulcus[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Paramiagrammopes texter[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Paramiagrammopes unibrevispina[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Planarchaea incompleta[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Palpimanoidea and the family Planarchaeidae.

Platythelae[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Palpimanoidea and the family Planarchaeidae. The type species is P. longicorpus.

Praetervetianus[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Palpimanoidea and the family Vetiatoridae. The type species is P. circulus.

Prionochthonius[16]

Gen. et sp. nov

Valid

Wriedt et al.

Cretaceous

Burmese amber

 Myanmar

A pseudoscorpion belonging to the family Chthoniidae. Genus includes new species P. burmiticus.

Priscaleclercera christae[17]

Sp. nov

In press

Magalhaes et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A spider belonging to the family Psilodercidae.

Proadactylidium fossibilis[14]

Sp. nov

Valid

Khaustov et al.

Late Eocene

Rovno amber

 Ukraine

A mite belonging to the group Heterostigmata and the family Acarophenacidae.

Proaraneoides lanceatum[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Leptonetoidea and the family Protoaraneoididae.

Procerclypeus[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A member of the family Tetrablemmidae. The type species is P. deformans.

Procervetiator[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Palpimanoidea and the family Vetiatoridae. The type species is P. fruticosus.

Propterkachin bispinatus[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae.

Propterpsiloderces similis[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A member of Araneomorphae belonging to the family Eopsilodercidae.

Protolycosa suazoi[15]

Sp. nov

Valid

Selden

Carboniferous (Kasimovian)

Atrasado Formation

 United States
( New Mexico)

A spider belonging to the group Mesothelae and the family Arthrolycosidae.

Pseudokachin[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae. The type species is P. tuberculatus.

Scutuloborella[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Deinopoidea and the new family Scutuloboridae. The type species is S. admirabilis.

Scutuloboroides[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Deinopoidea and the new family Scutuloboridae. The type species is S. pumilio.

Scutuloborus[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Deinopoidea and the new family Scutuloboridae. The type species is S. spiralembolus.

Spiniarchaea[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Archaeidae. The type species is S. aberrans.

Spinicymbium unispina[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the group Araneoidea and the family Zarqaraneidae.

Spiniuloborus[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Uloboridae. The type species is S. crux.

?Telemofila ovalis[10]

Sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A spider belonging to the family Telemidae, possibly a species of Telemofila.

Tenuicephalus[10]

Gen. et sp. nov

Valid

Wunderlich in Wunderlich & Müller

Cretaceous

Burmese amber

 Myanmar

A member of the family Tetrablemmidae. The type species is T. penicillus.

Research

  • Revision of the fossil record of whip spiders is published by Haug & Haug (2021).[18]

Crustaceans

New taxa

Malacostracans
Name Novelty Status Authors Age Type locality Country Notes Images

Aptanacalliax[19]

Gen. et sp. nov

In press

Ferratges, Hyžný & Zamora

Early Cretaceous (Aptian)

Forcall Formation

 Spain

A member of Axiidea belonging to the family Anacalliacidae. Genus includes new species A. enigma.

Aptaxiopsis[19]

Gen. et sp. nov

In press

Ferratges, Hyžný & Zamora

Early Cretaceous (Aptian)

Forcall Formation

 Spain

A member of Axiidea. Genus includes new species A. longimanus.

Bavaricaris[20]

Gen. et sp. nov

Valid

Winkler

Late Jurassic (Tithonian)

Altmühltal Formation

 Germany

A member of Caridea, possibly belonging to the family Palaemonidae. The type species is B. haereri.

Blaculla anjobea[20]

Sp. nov

Valid

Winkler

Late Jurassic (Tithonian)

Altmühltal Formation

 Germany

A member of Caridea.

Carpilius cantellii[21]

Sp. nov

Valid

De Angeli & Alberti

Eocene (Bartonian-Priabonian)

 Italy

A crab, a species of Carpilius.

Cirolana aptiana[22]

Sp. nov

In press

Bruce et al.

Early Cretaceous (Aptian)

Sierra Madre Formation

 Mexico

A member of Isopoda, a species of Cirolana.

Cirolana bretoni[22]

Sp. nov

In press

Bruce et al.

Early Cretaceous (Aptian)

Sierra Madre Formation

 Mexico

A member of Isopoda, a species of Cirolana.

Cirolana longirostra[22]

Sp. nov

In press

Bruce et al.

Early Cretaceous (Aptian)

Sierra Madre Formation

 Mexico

A member of Isopoda, a species of Cirolana.

Cretacocalcinus[19]

Gen. et sp. nov

In press

Ferratges, Hyžný & Zamora

Early Cretaceous (Aptian)

Forcall Formation

 Spain

A hermit crab. Genus includes new species C. josaensis.

Crosniera forcallensis[19]

Sp. nov

In press

Ferratges, Hyžný & Zamora

Early Cretaceous (Aptian)

Forcall Formation

 Spain

A member of Axiidea belonging to the family Callianideidae.

Cryptolacruma[23]

Gen. et sp. nov

Valid

Schädel et al.

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A member of Isopoda belonging to the group Epicaridea. The type species is C. nidis.

Daciapagurus suebiorum[24]

Sp. nov

Valid

Fraaije, Van Bakel & Jagt

Late Jurassic (Kimmeridgian)

 Germany

A hermit crab belonging to the family Schobertellidae.

Electrolana[25]

Gen. et sp. nov

Valid

Schädel, Hyžný & Haug

Late Cretaceous (Cenomanian)

Burmese amber

 Myanmar

A member of Isopoda belonging to the group Cymothoida. The type species is E. madelineae.

Gammaroidorum yooling[26]

Sp. nov

Valid

Wei et al.

Late Neogene

Xiaobai Formation

 China

A member of Amphipoda.

Glypheopsis tubantiensis[27]

Sp. nov

Valid

Becker, Fraaije & Mulder

Early Cretaceous

 Netherlands

A member of the family Glypheidae.

Harthofia heidenreichetfauseri[20]

Sp. nov

Valid

Winkler

Late Jurassic (Tithonian)

Altmühltal Formation

 Germany

A member of Caridea.

Linuparus qualitus[28]

Sp. nov

Valid

Feldmann et al.

Late Cretaceous (Turonian)

Kaskapau Formation

 Canada
( British Columbia)

A species of Linuparus.

Meticonaxius gracilis[19]

Sp. nov

In press

Ferratges, Hyžný & Zamora

Early Cretaceous (Aptian)

Forcall Formation

 Spain

A member of Axiidea.

Meyeria libanotica[29]

Sp. nov

Valid

Charbonnier et al.

Early Cretaceous (Barremian)

 Lebanon

A member of the family Mecochiridae.

Nahecaris sabineae[30]

Sp. nov

Valid

Poschmann

Devonian (Emsian)

 Germany

A member of Phyllocarida.

Paronapaguropsis[31]

Gen. et sp. nov

Valid

Beschin et al.

Late Eocene

 Italy

A hermit crab. Genus includes new species P. scaligera.

Plakolana chiapaneca[22]

Sp. nov

In press

Bruce et al.

Early Cretaceous (Aptian)

Sierra Madre Formation

 Mexico

A member of Isopoda belonging to the family Cirolanidae.

Stenodactylina shotoverigiganti[32]

Sp. nov

Valid

Devillez & Charbonnier

Late Jurassic (Oxfordian)

 United Kingdom

A member of Erymoidea.

Tyrannosculda[33]

Gen. et sp. nov

Valid

Haug & Haug

Late Jurassic (Tithonian)

Altmühltal Group (Eichstätt Subformation)

 Germany

A mantis shrimp. The type species is T. laurae.

Ostracods
Name Novelty Status Authors Age Type locality Country Notes Images

Aracajuia separatta[34]

Sp. nov

In press

Vázquez García et al.

Cretaceous (Albian–Cenomanian)

Riachuelo Formation

 Brazil

Bythoceratina antetumida[35]

Nom. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Candona dawenkouensis[36]

Sp. nov

In press

Wang et al.

Middle Eocene to Oligocene

Dawenkou Formation

 China

A species of Candona.

Candona phaseolus[37]

Sp. nov

In press

Kshetrimayum et al.

Late Cretaceous (Maastrichtian)

 India

A species of Candona.

Cytheropteron laranjeirensis[34]

Sp. nov

In press

Vázquez García et al.

Cretaceous (Albian–Cenomanian)

Riachuelo Formation

 Brazil

Eucytherura fossapunctata[38]

Sp. nov

In press

Maia et al.

Late Pleistocene

 Brazil

Gomphocythere testudo[37]

Sp. nov

In press

Kshetrimayum et al.

Late Cretaceous (Maastrichtian)

 India

Idiocythere caburnensis[35]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Isocythereis postelongata[35]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Jenningsina guilinensis[39]

Sp. nov

In press

Song et al.

Late Devonian

 China

Karsteneis oculocosta[35]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Mauritsina? paradordoniensis[35]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Microxestoleberis riachuelensis[34]

Sp. nov

In press

Vázquez García et al.

Cretaceous (Albian–Cenomanian)

Riachuelo Formation

 Brazil

Monoceratina minangulata[35]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Parahemingwayela fauthi[34]

Sp. nov

In press

Vázquez García et al.

Cretaceous (Albian–Cenomanian)

Riachuelo Formation

 Brazil

Patellacythere weaveri[35]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Pleurocythere khapissovi[40]

Sp. nov

Valid

Glinskikh & Tesakova

Middle Jurassic (Callovian)

 Russia

Pterygocythereis carolinae[35]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Quasihermanites? punctata[34]

Sp. nov

In press

Vázquez García et al.

Cretaceous (Albian–Cenomanian)

Riachuelo Formation

 Brazil

Rehacythereis stellatus[35]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Schuleridea langdonensis[35]

Sp. nov

Valid

Slipper

Late Cretaceous (Turonian)

 United Kingdom

Other crustaceans
Name Novelty Status Authors Age Type locality Country Notes Images

Concinnalepas bessinensis[41]

Sp. nov

In press

Gale

Middle Jurassic (Bathonian)

 France

A barnacle.

Concinnalepas rugosa[41]

Sp. nov

In press

Gale

Late Jurassic (Tithonian)

Kimmeridge Clay

 United Kingdom

A barnacle.

Malayacyclus[42]

Gen. et sp. nov

In press

Tang, Mychko, Feldmann & Schweitzer in Tang et al.

Carboniferous (Viséan)

 Malaysia

A member of Cyclida. Genus includes new species M. terengganuensis.

Research

  • A study on the anatomy and phylogenetic relationships of the species "Penaeus" natator from the Santonian of Lebanon is published by Audo, Winkler & Charbonnier (2021), who interpret this species as a relative of Pseudodrobna kenngotti from the Late Jurassic of Germany, and transfer it to the genus Pseudodrobna[43]
  • A study on the anatomy and morphological variation in Beurlenia araripensis, based on data from fossil samples from the Crato Formation (Brazil), is published by Barros et al. (2021).[44]
  • A study on evolutionary trends in sexual dimorphism of cytheroid ostracods from the Gulf and Atlantic coastal plain from the Late Cretaceous to the late Eocene is published by Matzke-Karasz & Smith (2021).[45]

Insects

Trilobites

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Asioptychaspis lata[46]

Sp. nov

In press

Wernette et al.

Cambrian (Furongian)

Myet-Ye Formation

 Myanmar

Dohmiella pachyacanthophilia[47]

Sp. nov

Valid

Van Viersen

Devonian (Emsian)

 Spain

Dohmiella pooka[47]

Sp. nov

Valid

Van Viersen

Devonian (Eifelian)

 Belgium

Ehmaniella tupeqarfik[48]

Sp. nov

Valid

Peel

Cambrian (Wuliuan)

Telt Bugt Formation

 Greenland

A member of the family Alokistocaridae.

Eldoradia caerulioris[49]

Sp. nov

Valid

Peel

Cambrian (Guzhangian)

Blue Cliffs Formation

 Greenland

A member of the family Bolaspididae.

Fieldaspis? iubilaei[48]

Sp. nov

Valid

Peel

Cambrian (Wuliuan)

Telt Bugt Formation

 Greenland

A member of the family Zacanthoididae.

Gerastos cornix[47]

Sp. nov

Valid

Van Viersen

Devonian (Eifelian)

 Belgium

Gonioteloides moffitti[50]

Sp. nov

Valid

Adrain & Karim

Ordovician (Tremadocian)

 United States

Possibly a member of the family Dimeropygidae.

Gonioteloides pankowskii[50]

Sp. nov

Valid

Adrain & Karim

Ordovician (Tremadocian)

 United States

Possibly a member of the family Dimeropygidae.

Timsaloproetus alissae[51]

Sp. nov

Valid

Van Viersen & Lerouge

Devonian (Emsian)

 Morocco

A member of the family Proetidae.

Research

  • A study on middle–late Cambrian trilobite diversity patterns in South China is published by Zhang et al. (2021).[52]
  • Sun, Zeng & Zhao (2021) describe digestive structures of representatives of five trilobite genera from the Cambrian Mantou Formation and Zhangxia Formation (Liaoning, China).[53]
  • Hou, Hughes & Hopkins (2021) report structural details of the upper limb branch of Triarthrus eatoni and Olenoides serratus, and interpret their findings as indicating that the upper limb branch of trilobites served a respiratory function.[54]
  • A study on the morphology of Redlichia rex and Olenoides serratus, aiming to determine whether these trilobites were adapted for durophagy, is published by Bicknell et al. (2021).[55]
  • A study exploring the existence and the nature of growth gradients along the main body axis of Oryctocarella duyunensis is published by Dai et al (2021), who interpret O. duyunensis as the first trilobite with documented determinate growth.[56]
  • Description of all meraspid stages of Oryctocarella duyunensis, based on data from specimens from the Cambrian Balang Formation (Hunan, South China), is published by Dai et al. (2021).[57]
  • A study on the long-term evolutionary history of Devonian trilobites in North Africa is published by Bault et al. (2021).[58]
  • Evidence from trace and body fossils indicative of the presence of trilobites in brackish-water settings is presented by Mángano et al. (2021).[59]
  • A study on the chemical changes in the exoskeleton of trilobites induced by diagenesis, based on data from pygidia of Athabaskia anax from the Miaolingian of San Isidro (Argentina), is published by D'Angelo et al. (2021), is published by D'Angelo et al. (2021), who argue that some morphological characteristics of the trilobite pygidia are in fact results of chemical and structural changes taking place during fossilization, and evaluate possible systematic implications of the chemical data, advising caution when using morphological characteristics of the exoskeletons to establish new taxa.[60]
  • The study on the internal structures of eyes of trilobites belonging to the genera Asaphus and Archegonus published by Scholtz, Staude & Dunlop (2019)[61] is criticized by Schoenemann & Clarkson (2021).[62][63]
  • A study on the biomechanics of the trilobite cephalon is published by Esteve et al. (2021), who interpret their findings as indicating that in the sutured trilobites the cephalon was able to withstand greater stresses than in their non‐sutured counterparts, and argue that the ability to withstand greater burrowing loads enabled trilobites to successfully invade bioturbated and more consolidated sediments during the Cambrian substrate revolution.[64]

Other arthropods

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Bohemiacaris[65]

Gen. et sp. nov

Valid

Van Roy et al.

Ordovician (Sandbian)

Letná Formation

 Czech Republic

A member of Thylacocephala. Genus includes new species B. libori.

Eodollocaris[66]

Gen. et sp. nov

Valid

Laville, Haug & Haug

Carboniferous (middle Pennsylvanian)

Mazon Creek fossil beds

 United States
( Illinois)

A member of Thylacocephala. The type species is E. keithflinti.

Franconiolimulus[67]

Gen. et sp. nov

In press

Bicknell, Hecker & Heyng

Early Jurassic (Hettangian)

Bayreuth Formation

 Germany

A member of Xiphosura belonging to the family Austrolimulidae. Genus includes new species F. pochankei.

Myrmecodesmus antiquus[68]

Sp. nov

Valid

Riquelme & Hernández-Patricio in Riquelme, Hernández-Patricio & Álvarez-Rodríguez

Miocene

Mexican amber

 Mexico

A millipede belonging to the family Pyrgodesmidae.

Ostenolimulus[69]

Gen. et sp. nov

Valid

Lamsdell et al.

Early Jurassic (Sinemurian)

Moltrasio Formation

 Italy

A horseshoe crab. Genus includes new species O. latus.

Pectocaris inopinata[70]

Sp. nov

Valid

Jin et al.

Cambrian

 China

Pseudoprotozoea[65]

Gen. et sp. nov

Valid

Van Roy et al.

Ordovician (Sandbian)

Letná Formation

 Czech Republic

A member of Thylacocephala. Genus includes new species P. irenae.

Research

  • New information on the anatomy of the head of Fuxianhuia is presented by Aria, Zhao & Zhu (2021), who interpret fuxianhuiids as mandibulates.[71]
  • Revision of the morphological diversity, relationships and taxonomy of Early Triassic thylacocephalans is published by Laville et al. (2021).[72]
  • Description of new fossil material of Mayrocaris bucculata from the Solnhofen Limestone, providing new information on the anatomy of this thylacocephalan, is published by Laville et al. (2021), who evaluate the implications of these fossils for the knowledge of the body organization and phylogenetic affinities of thylacocephalans.[73]
  • A fossil larva lacking segmentation of the carapace, closely resembling the trilobite protaspis, is described from the Ordovician (Darriwilian) of central Siberia by Dzik (2021), found associated with other skeletal elements of the angarocaridid Girardevia;[74] however, Lerosey-Aubril & Laibl (2021) subsequently interpret this specimen as actually belonging to the trilobite genus Isotelus or a related taxon, and conclude that protaspid larvae represent a developmental trait unique to trilobites.[75][76]
  • Redescription and a study on the phylogenetic relationships of Prolimulus woodwardi is published by Lustri, Laibl & Bicknell (2021).[77]
  • A study on the anatomy and phylogenetic relationships of Parioscorpio venator is published by Anderson et al. (2021).[78]

General research

  • A study on the evolution of the arthropod labrum is published by Budd (2021), who reevaluates the morphology of the Cambrian stem-euarthropod Parapeytoia and evaluates its implications for the knowledge of the origin of the labrum.[79]

Brachiopods

Name Novelty Status Authors Age Type locality Location Notes Images

Bellistrophia askarensis[80]

Sp. nov

Valid

Popov & Nikitina in Popov et al.

Cambrian (Wuliuan)

Athei Formation

 Kazakhstan

A kutorginide brachiopod.

Carinagypa robecki[81]

Sp. nov

Valid

Blodgett et al.

Devonian (Emsian)

 United States
( Alaska)

A member of Pentamerida belonging to the family Gypidulidae.

Crinisarina pseudoglobularis[82]

Sp. nov

Valid

Serobyan et al.

Devonian (Famennian)

 Armenia

An athyride brachiopod.

Eoconulus tucunucoensis[83]

Sp. nov

Valid

Lavié, Mestre & Carrera

Ordovician

San Juan Formation

 Argentina

An acrotretid brachiopod.

Kermanirhyncha[84]

Gen. et sp. nov

Valid

Popov et al.

Silurian (Aeronian)

Shabdjereh Formation

 Iran

A rhynchonellide brachiopod. Genus includes new species K. granulata.

Levanispirifer[84]

Gen. et sp. nov

Valid

Popov et al.

Silurian (Aeronian)

Shabdjereh Formation

 Iran

A spiriferide brachiopod. Genus includes new species L. alatus.

Luthieria[83]

Gen. et sp. nov

Valid

Lavié, Mestre & Carrera

Ordovician

San Juan Formation

 Argentina

An obolid brachiopod. Genus includes new species L. diminuta.

Mictospirifer obtusus[84]

Sp. nov

Valid

Popov et al.

Silurian (Aeronian)

Shabdjereh Formation

 Iran

A spiriferide brachiopod.

Psiloria karasuensis[80]

Sp. nov

Valid

Popov & Nikitina in Popov et al.

Cambrian (Wuliuan)

Athei Formation

 Kazakhstan

A protorthide brachiopod.

Schellwienella clarkei[85]

Sp. nov

Valid

Rezende & Isaacson

Devonian

Ponta Grossa Formation

 Brazil

A member of Orthotetida.

Xanastur[86]

Nom. nov

Valid

García-Alcalde

Early Devonian

 Spain

A terebratulid brachiopod; a replacement name for Xana García-Alcalde (1972).

Xinjiangiproductus? junggarensis[87]

Sp. nov

In press

Guo, Chen & Liao

Early Carboniferous

Hongshanzui Formation

 China

Molluscs

Echinoderms

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Archiacia ramitaensis[88]

Sp. nov

Valid

Néraudeau & Mouty

Late Cretaceous (Cenomanian)

 Syria

A sea urchin belonging to the family Archiaciidae.

Barbaraster[89]

Gen. et 2 sp. nov

In press

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

 Luxembourg

A brittle star belonging to the group Ophiurida. The type species is B. colbachi; genus also includes B. muenzbergerae.

Cantabrigiaster[90]

Gen. et sp. nov

Hunter & Ortega-Hernández

Early Ordovician

Fezouata Formation

 Morocco

A somasteroid asterozoan. The type species is C. fezouataensis.

Cherbonniericrinus requiensis[91]

Sp. nov

Valid

Roux, Martinez & Vizcaïno

Eocene (Ypresian)

 France

A crinoid belonging to the family Rhizocrinidae.

Costatocrinus fragilis[92]

Sp. nov

In press

Gale

Late Cretaceous (Campanian)

 United Kingdom

A crinoid.

Dermacantha reolidi[89]

Sp. nov

In press

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

 Luxembourg

A brittle star belonging to the family Ophionereididae.

Douglasicrinus[92]

Gen. et sp. nov

In press

Gale

Late Cretaceous (Campanian)

 United Kingdom

A crinoid. Genus includes new species D. alumensis.

Globator aegyptiaca[93]

Sp. nov

In press

El Qot

Early Cretaceous (Albian)

 Egypt

A sea urchin.

Globulocrinus[91]

Gen. et sp. nov

Valid

Roux, Martinez & Vizcaïno

Eocene (Ypresian)

 France

A crinoid belonging to the family Rhizocrinidae. Genus includes new species G. amphoraformis.

Hessicrinus vectensis[92]

Sp. nov

In press

Gale

Late Cretaceous (Campanian)

 United Kingdom

A crinoid.

Holopus plaziati[91]

Sp. nov

Valid

Roux, Martinez & Vizcaïno

Eocene (Ypresian)

 France

A crinoid belonging to the family Holopodidae.

Inexpectacantha ullmanni[89]

Sp. nov

In press

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

 Luxembourg

A brittle star belonging to the group Euryophiurida.

Lapidaster hougardae[89]

Sp. nov

In press

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

 Luxembourg

A brittle star belonging to the group Ophioscolecida and the family Ophioscolecidae.

Ophiomisidium pratchettae[89]

Sp. nov

In press

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

 Luxembourg

A brittle star belonging to the group Ophiurida and the family Astrophiuridae.

Ophiomusa perezi[89]

Sp. nov

In press

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

 Luxembourg

A brittle star belonging to the group Ophiurida and the family Ophiomusaidae.

Ophiotardis[89]

Gen. et sp. et comb. nov

In press

Thuy & Numberger-Thuy

Early Jurassic (Sinemurian-Toarcian)

 Luxembourg  United Kingdom  France?  Germany?

A brittle star belonging to the group Ophiurida and the family Ophiopyrgidae. The type species is O. tennanti; genus also includes "Ophiura" astonensis Hess (1964).

Palaeocoma kortei[89]

Sp. nov

In press

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

 Luxembourg

A brittle star belonging to the group Ophiurida and the family Ophiopyrgidae.

Pseudoconocrinus lavadensis[91]

Sp. nov

Valid

Roux, Martinez & Vizcaïno

Eocene (Ypresian)

 France

A crinoid belonging to the family Rhizocrinidae.

Sagittacrinus rotundacutus[92]

Sp. nov

In press

Gale

Late Cretaceous (Campanian)

 United Kingdom

A crinoid.

Sidericrinus (col.) plymouthensis[94]

Sp. nov

Valid

Donovan & Fearnhead

Early Devonian

 United Kingdom

A crinoid.

Sinaiosalenia[93]

Gen. et sp. nov

In press

El Qot

Late Cretaceous (Cenomanian)

 Egypt

A sea urchin. Genus includes new species S. rhombohedralis.

Sinosura dieschbourgae[89]

Sp. nov

In press

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

 Luxembourg

A brittle star belonging to the group Ophioscolecida and the family Ophioleucidae.

Thanataster[89]

Gen. et sp. et comb. nov

In press

Thuy & Numberger-Thuy

Early Jurassic (Sinemurian to Toarcian)

 Luxembourg

A brittle star belonging to the group Ophiurida. The type species is T. desdemonia; genus also includes "Ophiomusium" sinemurensis Kutscher & Hary (1991).

Trecrinus[95]

Gen. et sp. nov

Valid

Semenov et al.

Ordovician (Darriwilian)

 Russia

A hybocrinid crinoid. Genus includes new species T. schmidti.

Research

  • A study on the functional efficiency of hydrospires of blastoids, evaluating their potential significance for longer survival of blastoids than other blastozoan echinoderms, is published by Paul (2021).[96]
  • A study on extinction selectivity and changes in taxonomic, morphological and ecological diversity of diplobathrid crinoids throughout their evolutionary history is published by Cole & Hopkins (2021).[97]

Conodonts

Name Novelty Status Authors Age Type locality Country Notes Images

Ancyrogondolella? bohorensis[98]

Sp. nov

In press

Karádi et al.

Late Triassic (Norian)

 Slovenia

A member of the family Gondolellidae.

Ancyrogondolella goldingi[98]

Sp. nov

In press

Karádi et al.

Late Triassic (Norian)

 Slovenia

A member of the family Gondolellidae.

Apsidognathus yanbianensis[99]

Sp. nov

Valid

Yan & Wu

Silurian

 China

Caudicriodus anitae[100]

Sp. nov

Valid

Barrick, Sundgren & McAdams

Devonian (Lochkovian)

 United States

Caudicriodus murphyi[100]

Sp. nov

Valid

Barrick, Sundgren & McAdams

Devonian (Lochkovian)

 United States

Dollymae peregrina[101]

Sp. nov

In press

Świś

Devonian (Famennian)

 Poland

Epigondolella buseri[98]

Sp. nov

In press

Karádi et al.

Late Triassic (Norian)

 Slovenia

A member of the family Gondolellidae.

Epigondolella kozjanskoensis[98]

Sp. nov

In press

Karádi et al.

Late Triassic (Norian)

 Slovenia

A member of the family Gondolellidae.

Epigondolella ritae[98]

Sp. nov

In press

Karádi et al.

Late Triassic (Norian)

 Austria
 Slovenia

A member of the family Gondolellidae.

Epigondolella senovoensis[98]

Sp. nov

In press

Karádi et al.

Late Triassic (Norian)

 Slovenia

A member of the family Gondolellidae.

Epigondolella slovenica[98]

Sp. nov

In press

Karádi et al.

Late Triassic (Norian)

 Slovenia

A member of the family Gondolellidae.

Mosherella longnanensis[102]

Sp. nov

In press

Li & Lai in Li et al.

Late Triassic (Carnian)

Dengdengqiao Formation

 China

Ozarkodina huenickeni[103]

Sp. nov

In press

Gómez et al.

Silurian (Ludfordian) to Devonian (Lochkovian)

Los Espejos Formation

 Argentina

Parvigondolella ciarapicae[104]

Sp. nov

In press

Rigo & Du in Du et al.

Late Triassic (Norian and Rhaetian)

Gabbs Formation
San Hipolito Formation
Scillato Formation

 Hungary
 Italy
 Mexico
 United States
( Nevada)

Praeicriodus simpsoni[100]

Sp. nov

Valid

Barrick, Sundgren & McAdams

Silurian (LudlowPridoli)

 Australia

Tasmanognathus coronatus[105]

Sp. nov

Valid

Yang et al.

Ordovician (Katian)

 China

Fish

New taxa

Jawless vertebrates

Name Novelty Status Authors Age Type locality Location Notes Images

Jiangxialepis[106]

Gen. et sp. nov

Valid

Liu et al.

Silurian (Telychian)

Fentou Formation

 China

A member of Galeaspida belonging to the group Eugaleaspidiformes. The type species is J. retrospina.

Qushiaspis[107]

Gen. et sp. nov

In press

Jiang et al.

Early Devonian

Xujiachong Formation

 China

A member of Galeaspida. Genus includes new species Q. elaia.

Placoderms

Name Novelty Status Authors Age Type locality Country Notes Images

Leptodontichthys[108]

Gen. et sp. nov

Jobbins et al.

Devonian (Givetian)

Taboumakhlouf Formation

 Morocco

A member of Arthrodira belonging to the family Plourdosteidae. The type species is L. ziregensis.

Acanthodians

Name Novelty Status Authors Age Type locality Country Notes Images

Nostolepis digitus[109]

Sp. nov

Valid

Li et al.

Devonian (Lochkovian)

Xitun Formation

 China

Nostolepis qujingensis[109]

Sp. nov

Valid

Li et al.

Devonian (Lochkovian)

Xitun Formation

 China

Cartilaginous fishes

Name Novelty Status Authors Age Type locality Location Notes Images

Aquilolamna[110]

Gen. et sp. nov

Vullo et al.

Late Cretaceous (Turonian)

Agua Nueva Formation

 Mexico

A probable planktivorous shark of uncertain phylogenetic placement, possibly a member of Lamniformes. The type species is A. milarcae.

Dracopristis[111]

Gen. et sp. nov

Valid

Hodnett et al.

Late Carboniferous (Kasimovian)

Atrasado Formation

 United States
( New Mexico)

A medium-sized ctenacanthiform shark known from a complete skeleton with soft tissue. The type species is D. hoffmanorum.

Durnonovariaodus[112]

Gen. et sp. nov

Valid

Stumpf et al.

Late Jurassic (Tithonian)

Kimmeridge Clay

 United Kingdom

A member of the family Hybodontidae. The type species is D. maiseyi.

Nebriimimus[113]

Gen. et sp. nov

Valid

Collareta et al.

Pliocene (Zanclean)

 Italy

A member of Rajiformes, possibly a skate. The type species is N. wardi.

Phoebodus curvatus[114]

Sp. nov

Valid

Ivanov

Devonian (GivetianFrasnian)

 Australia
 Poland
 Russia

Pseudocorax kindlimanni[115]

Sp. nov

In press

Jambura, Stumpf & Kriwet

Late Cretaceous (Cenomanian)

Sannine Formation

 Lebanon

Ray-finned fishes

Name Novelty Status Authors Age Type locality Country Notes Images

Austelliscus[116]

Gen. et sp. nov

Figueroa, Weinschütz & Friedman

Middle Devonian or older

Paraná Basin

 Brazil

An early ray-finned fish. Genus includes new species A. ferox.

Auxis koreanus[117]

Sp. nov

Valid

Nam, Nazarkin & Bannikov

Middle Miocene

Duho Formation

 South Korea

A species of Auxis.

Bardackichthys[118]

Gen. et sp. nov

In press

Hacker & Shimada

Late Cretaceous (Cenomanian)

Woodbine Formation

 United States
( Texas)

A member of Ichthyodectiformes. Genus includes new species B. carteri.

Bobbitichthys[119]

Gen. et comb. nov

Valid

Schwarzhans, Milàn & Carnevale

Paleocene (Selandian)

Kerteminde Marl

 Denmark

A member of the family Macrouridae. The type species is "Hymenocephalus" rosenkrantzi Schwarzhans (2003).

Brauccipycnodus[120]

Gen. et comb. nov

Valid

Taverne & Capasso

Early Cretaceous (Albian)

 Italy

A member of the family Pycnodontidae. The type species is "Proscinetes" pillae Capasso (2007).

Cheirolepis jonesi[121]

Sp. nov

In press

Newman et al.

Devonian (Givetian)

Tordalen Formation

 Norway

Choichix[122]

Gen. et sp. nov

Valid

Cantalice, Than‐Marchese & Villalobos‐Segura

Late Cretaceous (Cenomanian)

 Mexico

A member of Acanthopterygii of uncertain phylogenetic placement. Genus includes new species C. alvaradoi.

Feroxichthys panzhouensis[123]

Sp. nov

Valid

Ma, Xu & Geng

Middle Triassic (Anisian)

Guanling Formation

 China

A member of the family Colobodontidae.

Gobiosoma? axsmithi[124]

Sp. nov

In press

Ebersole, Cicimurri & Stringer

Oligocene (Rupelian)

Byram Formation

 United States
( Alabama)

A member of the family Gobiidae.

Guiclupea[125]

Gen. et sp. nov

Valid

Chen et al.

Oligocene

 China

A member of Clupeomorpha belonging to the group Ellimmichthyiformes. The type species is G. superstes.

Pteronisculus changae[126]

Sp. nov

In press

Ren & Xu

Middle Triassic (Anisian)

Guanling Formation

 China

Raususetarches[127]

Gen. et sp. nov

Valid

Yabumoto & Nazarkin

Late Miocene

Koshikawa Formation

 Japan

A member of the family Scorpaenidae. Genus includes new species R. sakurai.

Saurichthys sceltrichensis[128]

Sp. nov

Valid

Renesto, Magnani & Stockar

Middle Triassic (Ladinian)

Meride Limestone

  Switzerland

Severnichthys[129]

Gen. et sp. nov

In press

Stringer & Schwarzhans

Late Cretaceous (Maastrichtian)

Severn Formation

 United States
( Maryland)

Possibly a member of Polymixiiformes. Genus includes new species S. bourdoni.

Research

  • A study aiming to determine whether the earliest vertebrates may have swum under various conditions without a clearly-differentiated tail fin, based on data from an abstracted model of Metaspriggina walcotti, is published by Rival, Yang & Caron (2021).[130]
  • Miyashita et al. (2021) report larval and juvenile forms of four stem lampreys from the Paleozoic era (Hardistiella, Mayomyzon, Pipiscius and Priscomyzon), including a hatchling-to-adult growth series of Priscomyzon, and report that the studied larvae display features that are otherwise unique to adult modern lampreys, and lack the defining traits of ammocoetes.[131]
  • A study on the morphological and functional diversity of osteostracan and galeaspid headshields, and on its implications for the knowledge of the ecology of the immediate jawless relatives of jawed vertebrates, is published by Ferrón et al. (2021).[132]
  • A study on the histology of the dermal skeleton in Procephalaspis oeselensis, Aestiaspis viitaensis, Dartmuthia gemmifera and four species of Tremataspis is published by Bremer et al. (2021), who interpret their findings as indicative of the emergence of the complex pore‐canal system in Tremataspis through the modification of the structures already present in other taxa.[133]
  • A study on the morphology of the earliest osteocytes in Tremataspis mammillata and Bothriolepis trautscholdi is published by Haridy et al. (2021), who interpret their findings as indicating that the earliest known osteocytes in the fossil record had similar morphology and likely similar physiological capabilities to their modern counterparts, and attempt to determine initial driver favoring evolution of cellular (osteocytic) over acellular (anosteocytic) bones in vertebrates.[134]
  • Zhu et al. (2021) use CT scanning to reveal the endocast of Brindabellaspis stensioi, and evaluate the implications of its anatomy for the knowledge of the phylogenetic relationships of early jawed vertebrates.[135]
  • Redescription of the anatomy of the headshield of Parayunnanolepis xitunensis is published by Wang & Zhu (2021).[136]
  • Description of new fossil material of Palaeacanthaspis vasta from the Devonian (Lochkovian) Chortkiv Formation (Ukraine), and a study on the phylogenetic relationships of this species, is published by Dupret et al. (2021).[137]
  • A study on the development of teeth in acanthodians, and on its implications for the knowledge of the evolution of teeth of jawed vertebrates, is published by Rücklin et al. (2021).[138]
  • Description of the first known skull remains of Onchopristis numidus from the Cretaceous Kem Kem Group (Morocco), and a study on the anatomy and phylogenetic relationships of this species, is published by Villalobos-Segura et al. (2021), who name a new family Onchopristidae.[139]
  • New, exceptionally well‐preserved skeleton of Asteracanthus ornatissimus, preserved with teeth that markedly differ from other teeth referred to Asteracanthus, is described from the Tithonian Altmühltal Formation (Germany) by Stumpf et al. (2021), who interpret this specimen as indicating that Asteracanthus and Strophodus represent two valid genera distinct from all other hybodontiforms.[140]
  • A study on the biomechanics of teeth of five species of Otodus, aiming to assess the functional significance of morphological trends in otodontid teeth and to test whether the morphology of otodontid teeth enabled the transition from piscivory to predation on marine mammals and the evolution of titanic body sizes, is published by Ballell & Ferrón (2021)[141]
  • A study on growth patterns, reproductive biology and likely lifespan of Otodus megalodon is published by Shimada et al. (2021).[142]
  • Perez, Leder & Badaut (2021) present a novel method for estimating body size in fossil lamniform sharks, and attempt to determine the body size of Otodus megalodon.[143]
  • Revision of the fossil record of the extant tiger shark and the extinct members of the tiger shark lineage is published by Türtscher et al. (2021).[144]
  • Redescription of Striatolamia tchelkarnurensis is published by Malyshkina (2021).[145]
  • Shark teeth which might represent the first occurrence of the blacknose shark in the Pacific Ocean are described from the Pliocene Upper Onzole Formation (Ecuador) by Collareta et al. (2021), who evaluate the implications of this finding for the knowledge of the evolutionary history of the blacknose shark and the whitenose shark.[146]
  • A platysomid specimen, representing the earliest deep-bodied actinopterygian reported to date, is described from the Carboniferous (Tournaisian) Horton Bluff Formation (Canada) by Wilson, Mansky & Anderson (2021), who evaluate the implications of this findings for the knowledge of the evolution of early ray-finned fishes.[147]
  • A review of the fossil record of Early–Middle Triassic marine bony fishes, aiming to determine the implications of poor fossil record from the late Olenekian-early middle Anisian interval on the knowledge of the Triassic radiation of bony fishes, is published by Romano (2021).[148]
  • A diverse assemblage of late Maastrichtian and Paleocene ray-finned fishes is described from Evrytania (Greece) by Argyriou & Davesne (2021).[149]
  • A study on the morphological diversity and evolution of pycnodontiforms is published by Cawley et al. (2021).[150]
  • A study on fossil crushing dentitions of Pycnodus zeaformis and P. maliensis, providing evidence of a distinct pattern of gap‐filling tooth addition in pycnodonts, with individual large teeth replaced by multiple small teeth, is published by Collins & Underwood (2021).[151]
  • A study on the evolutionary history of lanternfishes, primarily based on the fossil record of otoliths, is published by Schwarzhans & Carnevale (2021).[152]
  • A study on the phylogenetic relationships of extant and fossil coelacanths is published by Toriño, Soto & Perea (2021).[153]
  • A study on the morphology and histology of the scales of Miguashaia bureaui, and on its implications for the knowledge of the evolution of the squamation in coelacanths, is published by Mondéjar‐Fernández et al. (2021).[154]
  • An ossified lung of a mawsoniid coelacanth is described from the Maastrichtian of Oued Zem (Morocco) by Brito et al. (2021), representing the last known record of a Mesozoic coelacanth and the first known occurrence of coelacanths in the phosphate deposits of North Africa.[155]
  • A study on the evolution of feeding modes among tetrapodomorphs, as indicated by the anatomy of the skull of Tiktaalik roseae, is published by Lemberg, Daeschler & Shubin (2021), who report the simultaneous occurrence of anatomical modifications of the skull for prey capture through biting, as well as joint morphologies suggestive of cranial kinesis that is also present in suction-feeding fish.[156]

Amphibians

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Bermanerpeton[157]

Gen. et sp. nov

Valid

Werneburg, Schneider & Lucas

Carboniferous (Kasimovian)

Atrasado Formation

 United States
( New Mexico)

A dvinosauroid temnospondyl. The type species is B. kinneyi.

Laosuchus hun[158]

Sp. nov

Valid

Liu & Chen

Late Permian

Naobaogou

 China

A chroniosuchian.

Palaeobatrachus codreavladi[159]

Sp. nov

Valid

Roček, Rage & Venczel

Palaeobatrachus minutus[159]

Sp. nov

Valid

Roček, Rage & Venczel

Rocekophryne[160]

Gen. et sp. nov

Valid

Rage et al.

Eocene

 Algeria

A frog belonging to the group Ranoidea. The type species is R. ornata.

Research

  • A study on the function and evolution of forelimbs of early tetrapods, based on data from three-dimensional models of bones and muscles of forelimbs of Eusthenopteron foordi, Acanthostega gunnari and Pederpes finneyae, is published by Molnar et al. (2021).[161]
  • A study on the locomotor capabilities of tetrapods from the earliest Carboniferous Blue Beach site (Nova Scotia, Canada) is published by Lennie et al. (2021).[162]
  • A study on the early evolution of long bone elongation and bone marrow in tetrapods, based on data from temnospondyls (Apateon and Metoposaurus) and seymouriamorphs (Seymouria and Discosauriscus), is published by Estefa et al. (2021), who find the terrestrial Permian seymouriamorphs to be the oldest known tetrapods exhibiting a centralized marrow organization of long bones (which allows production of blood cells as in extant amniotes), and argue that the migration of blood-cell production in long bones probably wasn't an exaptation predating the water-to-land transition.[163]
  • A study on the skeletal anatomy of the holotype specimen of Ichthyerpeton bradleyae is published by Ó Gogáin & Wyse Jackson (2021).[164]
  • Description of the anatomy of the postcranial skeleton of Whatcheeria deltae is published by Otoo et al. (2021).[165]
  • A study on the anatomy and phylogenetic relationships of "Cheliderpeton" lellbachae is published by Schoch (2021), who transfers this species to the genus Glanochthon in the family Sclerocephalidae.[166]
  • A study on the histology of different-sized femora and vertebra of specimens of Platyoposaurus stuckenbergi is published by Uliakhin, Skutschas & Saburov (2021).[167]
  • A study on the anatomy and phylogenetic relationships of Tertrema acuta is published by Slodownik, Mörs & Kear (2021).[168]
  • Redescription of the metoposaurid fossil material from the Upper Triassic Zions View locality (New Oxford Formation; Pennsylvania, United States) is published by Gee & Jasinski (2021), who assign this material to the species Anaschisma browni, expanding known geographic range of this taxon.[169]
  • A study on the anatomy and phylogenetic relationships of Timonya anneae and Procuhy nazariensis is published by Marsicano et al. (2021).[170]
  • A study on the anatomy and phylogenetic relationships of Macrerpeton huxleyi is published by Schoch & Milner (2021).[171]
  • Description of a new specimen of Conjunctio from the Permian Cutler Formation (Colorado, United States), and a study on the phylogenetic relationships of this genus, is published by Gee et al. (2021).[172]
  • New fossil material of Micropholis stowi, expanding known geographic range of this species, is described from the lower Fremouw Formation (Halfmoon Bluff, Antarctica) by Gee & Sidor (2021).[173]
  • New early adult specimen of Milnererpeton huberi, providing new information on the ontogenetic development of amphibamiform temnospondyls, is described from the Carboniferous (Kasimovian) Atrasado Formation (New Mexico, United States) by Werneburg, Schneider & Lucas (2021).[174]
  • An early Campanian assemblage of anuran bones, suggestive of high local species richness of frogs, is described from the Aguja Formation (Texas, United States) by Wick (2021).[175]
  • Description of new fossil material of Hungarobatrachus szukacsi from the Upper Cretaceous (Santonian) Csehbánya Formation (Hungary), and a study on the anatomy and phylogenetic relationships of this species, is published by Venczel, Szentesi & Gardner (2021).[176]
  • Revision of the fossil record of the family Ceratophryidae is published by Gómez & Turazzini (2021).[177]
  • Revision of the fossil material of Mesozoic temnospondyls and anurans housed in the collections of the Sirindhorn Museum and the Palaeontological Research and Education Centre of Mahasarakham University (Thailand), including fossils of brachyopids resembling the Chinese forms, is published by Nonsrirach, Manitkoon & Lauprasert (2021).[178]

Reptiles

Synapsids

Non-mammalian synapsids

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Acratophorus[179]

Gen. et comb. nov

Valid

Kammerer & Ordoñez

Middle Triassic (Anisian)?

Río Seco de la Quebrada

 Argentina

A kannemeyeriid dicynodont, the type species is "Kannemeyeria" argentinensis.

Borealestes cuillinensis[180]

Sp. nov

Valid

Panciroli et al.

Middle Jurassic (Bathonian)

Kilmaluag Formation

 United Kingdom

A docodont.

Dobunnodon[180]

Gen. et comb. nov

Valid

Panciroli et al.

Middle Jurassic (Bathonian)

Forest Marble Formation

 United Kingdom

A docodont; a new genus for "Borealestes" mussettae Sigogneau−Russell (2003).

Fossiomanus[181]

Gen. et sp. nov

Valid

Mao et al.

Early Cretaceous (Aptian)

Jiufotang Formation

 China

A cynodont belonging to the family Tritylodontidae. Genus includes new species F. sinensis.

Isengops[182]

Gen. et sp. nov

In press

Sidor, Tabor & Smith

Late Permian

Madumabisa Mudstone

 Zambia

A burnetiamorph biarmosuchian. Genus includes new species I. luangwensis.

Kannemeyeria aganosteus[179]

Sp. nov

Valid

Kammerer & Ordoñez

Middle Triassic (Anisian)?

Quebrada de los Fósiles

 Argentina

A species of Kannemeyeria.

Mobaceras[183]

Gen. et sp. nov

Valid

Kammerer & Sidor

Middle Permian

Madumabisa Mudstone

 Zambia

A burnetiid therapsid. The type species is G. zambeziense.

Turfanodon jiufengensis[184]

Sp. nov

Valid

Liu

Late Permian

Naobaogou Formation

 China

A dicynodontoid dicynodont.

Research

  • A study on the evolution of the vertebral column in synapsids is published by Jones et al. (2021), who interpret their findings as refuting the idea that the transition from non-mammalian synapsids to mammals involved a shift from reptile-like lateral bending of the backbone to sagittal bending, and argue that non-mammalian synapsids were characterized by their own unique functional regime of the vertebral column, distinct from that of extant reptiles and amphibians.[185]
  • A study comparing the forelimb morphology in extant mammals and fossil non-mammalian synapsids, aiming to determine whether extant mammals are good ecomorphological analogues for extinct synapsids, whether examples of ecomorphological convergence can be found among synapsids, and whether evolutionary history determined available functional solutions in synapsid forelimbs, is published by Lungmus & Angielczyk (2021).[186]
  • A study comparing the morphology of the maxillary canal of Heleosaurus scholtzi, Varanosaurus acutrostris, Orovenator mayorum and Prolacerta broomi, and evaluating the implications of the morphology of the maxillary canal for the knowledge of the phylogenetic placement of varanopids, is published by Benoit et al. (2021).[187]
  • A study on the paleoneurology and likely paleobiology of Anteosaurus magnificus is published by Benoit et al. (2021).[188]
  • New specimen of Lanthanostegus mohoii, providing new information on the anatomy of the skull of this dicynodont and providing the first direct correlation between the lower Abrahamskraal Formation at Jansenville on the eastern side of the Karoo Basin and the southwestern part of this basin, is described by Rubidge, Day & Benoit (2021).[189]
  • New burrow casts containing skeletons of Diictodon, including associated remains of adult and infant specimens, are described by Smith et al. (2021), who consider it likely that portions of underground burrows produced Diictodon by were facultatively used as brood chambers.[190]
  • Redescription and a study on the phylogenetic relationships of Kunpania scopulusa is published by Angielczyk, Liu & Yang (2021).[191]
  • A study on the bone histology and likely life history of specimens of Lystrosaurus from the Lower Triassic Turpan Basin (Xinjiang, China), comparing them with specimens from South Africa, is published by Han, Zhao & Liu (2021).[192]
  • A new postcranial specimen of a stahleckeriid dicynodont, possibly of Stahleckeria, is described from the Chañares Formation, representing the oldest record of stahleckeriine dicynodonts from the Ischigualasto-Villa Unión Basin in Argentina.[193]
  • A study on the quality of the early cynodont fossil record in time and space, and on its implications for the understanding of the group's evolutionary history, is published by Varnham, Mannion & Kammerer (2021).[194]
  • A study on the anatomy and variation of the stapes in Thrinaxodon and Galesaurus is published by Gaetano & Abdala (2021).[195]
  • A study on the morphology of the nasal cavity of Exaeretodon riograndensis and Siriusgnathus niemeyerorum is published by Franco et al. (2021).[196]
  • A study on the morphology of the endocast of a specimen of Riograndia guaibensis from the Linha São Luiz site (Candelária Sequence of the Santa Maria Supersequence, Brazil) is published by Kerber et al. (2021).[197]
  • New specimen of the Middle Jurassic haramiyidan Vilevolodon diplomylos with well-preserved malleus, incus and ectotympanic is described by Wang et al. (2021).[198]

Mammals

Other animals

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Anulitubus[199]

Gen. et sp. nov

Valid

Moczydłowska in Moczydłowska et al.

Ediacaran

Stáhpogieddi Formation

 Norway

A member of Eumetazoa of uncertain phylogenetic placement. The type species is A. formosus.

Arienigraptus balticus[200]

Sp. nov

Valid

Maletz & Ahlberg

Ordovician (Darriwilian)

 Sweden

A graptolite.

Arienigraptus delicatus[200]

Sp. nov

Valid

Maletz & Ahlberg

Ordovician (Darriwilian)

 Sweden

A graptolite.

Arienigraptus robustus[200]

Sp. nov

Valid

Maletz & Ahlberg

Ordovician (Dapingian)

 Sweden

A graptolite.

Blastochaetetes reitneri[201]

Sp. nov

In press

Sánchez-Beristain & García-Barrera in Sánchez-Beristain, García-Barrera & Juárez-Aguilar

Late Cretaceous

Tamasopo Formation

 Mexico

A chaetetid demosponge.

Buccaspinea[202]

Gen. et sp. nov

Valid

Pates et al.

Cambrian (Drumian)

Marjum Formation

 United States
( Utah)

A member of Radiodonta belonging to the family Hurdiidae. The type species is B. cooperi.

Coniculus[199]

Gen. et sp. nov

Valid

Moczydłowska in Moczydłowska et al.

Ediacaran

Stáhpogieddi Formation

 Norway

A member of Eumetazoa of uncertain phylogenetic placement. The type species is C. elegantis.

Cornulites spinosus[203]

Sp. nov

Valid

Vinn & Eyzenga

Late Ordovician

 Netherlands

A cornulitid tubeworm.

Dailyatia icari[204]

Sp. nov

Valid

Claybourn et al.

Cambrian Series 2

Antarctica

A camenellan tommotiid.

Fistula[199]

Gen. et sp. nov

Valid

Moczydłowska in Moczydłowska et al.

Ediacaran

Stáhpogieddi Formation

 Norway

A member of Eumetazoa of uncertain phylogenetic placement. The type species is F. crenulata.

Houcaris[205]

Gen. et comb. nov

Valid

Wu et al.

Cambrian Series 2

Carrara Formation
Maotianshan Shales
Pioche Formation

 China
 United States

A member of Radiodonta belonging to the family Tamisiocarididae. The type species is "Anomalocaris" saron Hou, Bergström & Ahlberg (1995); genus also includes "Anomalocaris" magnabasis Pates et al. (2019).

Lenisicaris[206]

Gen. et sp. et comb. nov

In press

Wu et al.

Cambrian

 China
 United States

A member of Radiodonta. Genus includes new species L. lupata, as well as "Anomalocaris" pennsylvanica Resser (1929).

Palaeocorvospongilla[207]

Gen. et sp. nov

In press

Samant et al.

Late Cretaceous (Maastrichtian)

Deccan Intertrappean Beds

 India

A sponge belonging to the family Palaeospongillidae. Genus includes new species P. cretacea.

Palaeosaccus minus[208]

Sp. nov

Valid

Luo et al.

Cambrian

Shuijingtuo Formation

 China

A sponge.

Papiliograptus retimarginatus[209]

Sp. nov

Valid

Kozłowska & Bates

Silurian (Homerian)

 Germany
 Poland

A graptolite belonging to the family Retiolitidae.

Paranomalocaris simplex[210]

Sp. nov

Valid

Jiao et al.

Cambrian Stage 4

Wulongqing Formation

 China

A member of Radiodonta belonging to the family Anomalocarididae.

Saetaspongia jianhensis[211]

Sp. nov

Valid

Ling et al.

Cambrian Stage 4

Balang Formation

 China

A sponge of uncertain phylogenetic placement, possibly with protomonaxonid affinities.

Triticispongia giganta[208]

Sp. nov

Valid

Luo et al.

Cambrian

Shuijingtuo Formation

 China

A sponge.

Turriserpula[212]

Gen. et sp. nov

In press

Dieni & Massari

Early Cretaceous (Berriasian)

 Italy

A microserpulid. Genus includes new species T. coralliophila.

Vauxia paraleioia[213]

Sp. nov

In press

Wei et al.

Cambrian Stage 3

 China

A vauxiid sponge.

Vauxia pregracilenta[213]

Sp. nov

In press

Wei et al.

Cambrian Stage 3

 China

A vauxiid sponge.

Research

  • A study aiming to identify characters of Kimberella, Ikaria, Dickinsonia and Tribrachidium controlled by conserved developmental processes, as well as genetic elements likely responsible for their expression, is published by Evans, Droser & Erwin (2021), who also attempt to determine phylogenetic positions of these taxa relative to extant animals.[214]
  • Structures interpreted as traces of motor activity of Dickinsonia are reported by Ivantsov & Zakrevskaya (2021), who interpret the studied traces as indicating that Dickinsonia was capable of both attachment and mobility.[215]
  • A study aiming to determine the feeding mode of Arkarua adami is published by Cracknell et al. (2021).[216]
  • Shore et al. (2021) report the first three-dimensional, pyritized preservation of soft tissue in Namacalathus hermanastes from the Nama Group (Namibia), and evaluate the implications of this finding for the knowledge of the phylogenetic relationships of this animal.[217]
  • A new assemblage of fossil eggs, embryos attributable to the early scalidophoran Markuelia, and early post-embryonic developmental stages of camenellans is described from the Cambrian Stage 3 Salanygol Formation (Mongolia) by Steiner et al. (2021).[218]
  • Redescription of Stanleycaris hirpex, and a study on the phylogenetic relationships of this species and on the functional specialization of the frontal appendages of this and other stem euarthropods, is published by Moysiuk & Caron (2021).[219]

Other organisms

New taxa

Name Novelty Status Authors Age Type locality Location Notes Images

Bicellum[220][221]

Gen. et sp. nov

Strother & Wellman in Strother et al.

ca. 1 billion years old

Diabaig Formation

 United Kingdom

An organism of uncertain phylogenetic placement, possibly an early member of Holozoa. Genus includes new species B. brasieri. Appears to have differentiated multicellularity.

Bleximothyrium[222]

Gen. et sp. nov

Valid

Le Renard et al.

Early Cretaceous (Aptian)

Potomac Group

 United States
( Virginia)

A fungus belonging to the group Dothideomycetes. Genus includes new species B. ostiolatum.

Columnomyces electri[223]

Sp. nov

Valid

Haelewaters & Perreau in Perreau, Haelewaters & Tafforeau

Miocene

Dominican amber

 Dominican Republic

A fungus, a species of Columnomyces.

Gigarimaneta[224]

Gen. et sp. nov

Valid

Taylor et al.

Ediacaran

Mistaken Point Formation

 Canada
( Newfoundland and Labrador)

A organism growing on the seafloor in a manner similar to Fractofusus and Beothukis. Genus includes new species G. samsoni.

Quadrimurus[225]

Gen. et sp. nov

Valid

Miao, Moczydłowska & Zhu

Early Mesoproterozoic

Xiamaling Formation

 China

An organic-walled microfossil. Genus includes new species Q. clavatus.

Rhizophydites[226]

Gen. et sp. nov

Valid

Krings, Serbet & Harper

Early Devonian

Rhynie chert

 United Kingdom

A fungus belonging to the group Chytridiomycota. Genus includes new species R. matryoshkae.

Research

  • Delarue et al. (2021) describe 3.4 billion years old microfossils preserved with a tail-like structure from the Strelley Pool Formation (Australia), and interpret the tail-like appendage as likely providing early microorganisms with movement capabilities.[227]
  • Tang et al. (2021) describe dark discoidal, semicircular, or ovate structures preserved on fossil of early Neoproterozoic eukaryotes Tawuia and Sinosabellidites from North China, and interpret these structures as fossils of eukaryotic epibionts that lived on the surface of and may have benefited from an association with their Tawuia and Sinosabellidites hosts.[228]
  • Exceptionally preserved specimens of Tawuia, providing new information on the anatomy of this organism, are described from the Tonian Liulaobei and Shiwangzhuang formations (China) by Tang et al. (2021), who interpret Tawuia as a coenocytic eukaryote, possibly a macroalga.[229]
  • Well-preserved communities of large unbranched filamentous microorganisms, bearing morphological and ecological similarities with large sulfide-oxidizing bacteria such as Beggiatoa, are described from the Ediacaran Itajaí Basin (Brazil) by Becker-Kerber et al. (2021).[230]
  • Microfossils which may represent early terrestrial fungi are described from the Ediacaran Doushantuo Formation (China) by Gan et al. (2021).[231]
  • A Rhynie chert fossil Mycokidstonia sphaerialoides, originally interpreted as an ascomycete, is reclassified as a member of Glomeromycota belonging to the family Ambisporaceae by Walker et al. (2021).[232]
  • Carboniferous organism Oochytrium lepidodendri, originally classified as a fungus, is reinterpreted as an oomycete by Strullu-Derrien et al. (2021).[233]
  • Probable fossils of multicellular eukaryotic macroalgae (possibly with a green algal affinity) are described from the Tonian Dolores Creek Formation in the Wernecke Mountains (Canada) by Maloney et al. (2021), who interpret these fossils as likely to be some of the few green algae and some of the largest macroscopic eukaryotes yet recognized in the early Neoproterozoic, indicating that eukaryotic algae colonized marine environments by the early Neoproterozoic.[234]
  • Zacaï et al. (2021) attempt to determine the potential timing of establishment of the latitudinal diversity gradient for early Paleozoic acritarchs and its evolution through time .[235]

History of life in general

  • A study on the taphonomy of eukaryotic organelles, assessing the basis of the view that organelles decay too rapidly to be fossilized and evaluating the plausibility of the claims of organelles preserved in Proterozoic fossils, is published by Carlisle et al. (2021).[236]
  • Evidence of the presence of significant populations of both red and green algae ca. 1.4 billion years ago (600 million years earlier than previously recognized) is reported from the Xiamaling Formation (China) by Zhang et al. (2021).[237]
  • A study on the major biotic transitions in the Phanerozoic fossil record of the benthic marine faunas is published by Rojas et al. (2021), who report evidence of three major biotic transitions (across the end-Cambrian, end-Permian, and mid-Cretaceous boundaries).[238]
  • A study on changes of diversity of skeletonized marine invertebrates in the fossil record, evaluating the impact of dead clades walking on broader trends in Phanerozoic biodiversity, is published by Barnes, Sclafani & Zaffos (2021), who identify 70 invertebrate orders that experienced major diversity losses without recovery, but note that most of these taxa had a long duration after the drop in diversity, and many drops in diversity without recovery were not associated with mass extinction events.[239]
  • Geyer & Landing (2021) report a hitherto unknown Cambrian Stage 3 Lagerstätte from the Amouslek Formation (Morocco), preserving the first relatively abundant fossils with exceptional preservation from the Cambrian of Morocco (and Africa).[240]
  • A study on Carboniferous and early Permian tetrapod tracks, and on their implications for the knowledge of evolutionary changes in the anatomy of the trackmakers in and locomotion style close to the origin of amniotes, is published by Buchwitz et al. (2021).[241]
  • A study on the impact of Permian mass extinctions on continental invertebrate infauna, based on data from the Iberian Basin (central Spain), is published by Buatois et al. (2021), who report evidence of a dramatic decrease in bioturbation intensity on land by the end of the Capitanian, coinciding with an increase in weathering intensity and acidic conditions, and a collapse in plant communities spanning the late Permian–Early Triassic in the Iberian Basin.[242]
  • A review of the state of research on the Capitanian mass extinction event in the Karoo Basin (South Africa) is published by Day & Rubidge (2021).[243]
  • Evidence from tetrapod fossil record from the Karoo Basin (South Africa) indicative of a protracted (∼1 Ma) extinction on land during the Permian-Triassic transition is presented by Viglietti et al. (2021).[244]
  • Evidence of two pulses of extinction at the Permian–Triassic boundary caused by different environmental triggers is reported from the Liangfengya section in the South China Block by Li et al. (2021).[245]
  • Revision of the Triassic record of tetrapod tracks is published by Klein & Lucas (2021).[246]
  • A study on the diversity dynamics and evolution of the functional morphology of tetrapod herbivores throughout the Triassic and Early Jurassic is published by Singh et al. (2021).[247]
  • Marchetti et al. (2021) revise the tetrapod (including dinosauromorph) footprint assemblage from the Quarziti del Monte Serra Formation (Ladinian of Italy), and interpret this assemblage and other findings of Ladinian dinosauromorph footprints as evidence of wide dispersal of dinosauromorphs as early as the Middle Triassic.[248]
  • Zouhri et al. (2021) describe a diverse vertebrate fauna from the Eocene (Bartonian) Aridal Formation (Western Sahara), including 12 species of cartilaginous fishes, at least three species of turtles, at least two longirostrine crocodylian taxa, the oldest record of Pelagornis reported to date, and a proboscidean possibly belonging to the genus Barytherium.[249]
  • A study on the age of escorias (glassy rock fragments similar to volcanic scoriae, likely products of extraterrestrial impacts) collected along the Pampean Atlantic coast from the "Irene" and Chapadmalal Formations (Argentina), and on their implications for the knowledge of the timing of late Miocene–Pliocene faunal succession in the Pampean Region, is published by Prevosti et al. (2021).[250]
  • A study on the age of the most recent Pleistocene megafaunal specimens from Cloggs Cave (Australia), and on its implications for the knowledge of the timing and causes of Late Pleistocene extinctions of Australian megafauna, is published by David et al. (2021).[251]
  • A study aiming to determine whether a significant relationship can be detected between demographic susceptibility to extinction of members of Quaternary megafauna of Sahul and their extinction chronology inferred from their fossil record is published by Bradshaw et al. (2021).[252]
  • A study aiming to determine whether the fossil record indicates that the arrival of hominins on islands in the Pleistocene was coincident with the disappearance of insular taxa is published by Louys et al. (2021).[253]
  • A study aiming to determine how observed extinctions in the geological past can be predicted from the interaction of long-term temperature trends with short-term climate change is published by Mathes et al. (2021).[254]
  • A study on the impact of the Capitanian mass extinction event, Permian–Triassic extinction event and Triassic–Jurassic extinction event on terrestrial and freshwater ecosystems, aiming to quantify community resistance during the extinction events and to determine ecological dynamics of communities before and after these extinctions, is published by Huang et al. (2021).[255]
  • A study on correlations between fossilization potential and food web features, aiming to determine how fossilization impacts inferences of ancient community structure, is published by Shaw et al. (2021).[256]
  • A study on the drilling predation pressure on sea urchins across the Mesozoic and Cenozoic is published by Petsios et al. (2021), who present evidence indicative of the Cenozoic intensification of this predation, and argue that the Mesozoic marine revolution was more likely a series of asynchronous processes with variable significance across different groups of predators and preys, rather than a single synchronized ecosystem-wide event.[257]
  • A study on the spatial biodiversity dynamics of unicellular marine plankton throughouth the Cenozoic, aiming to test the generality of the ‘out of the tropics’ hypothesis (positing that the tropics are both a cradle and source of biodiversity for extratropical regions), is published by Raja & Kiessling (2021).[258]
  • A study on the evolution of ecophysiological adaptations to life in the sea in extant and fossil marine tetrapods (excluding birds) is published by Motani & Vermeij (2021).[259]

Other research

  • Mißbach et al. (2021) report the existence of indigenous organic molecules and gases in primary fluid inclusions in c. 3.5-billion-year-old barites from the Dresser Formation (Pilbara Craton, Australia), providing evidence of the organic composition of primordial fluids that were available for the early microbes.[260]
  • A study on the 3.4-billion-year old organic films from the Buck Reef Chert (Kaapvaal Craton, South Africa) is published by Alleon et al. (2021), who interpret their findings as indicating that early Archean organic films carry chemical information directly related to their original molecular compositions, and evaluate the implications of their finding for the knowledge of the initial chemical nature of organic microfossils found in ancient rocks.[261]
  • Evidence of prolonged and repeated oxygen stress in the Appalachian Basin associated with the Late Devonian extinctions is presented by Boyer et al. (2021).[262]
  • Rakociński et al. (2021) report very large anomalous mercury spikes from the south-western part of Tian Shan (Uzbekistan), and interpret this finding as evidence of intensive volcanic activity both predating and occurring during the Hangenberg Crisis.[263]
  • Evidence from the southern Karoo Basin of South Africa indicative of at least four atmospheric carbon dioxide spikes coinciding with extinctions on land and at sea from the Late Permian to the Middle Triassic is presented by Retallack (2021).[264]
  • A study evaluating whether fuel-driven changes to fire activity during the Cretaceous period had the ability to counteract rising atmospheric oxygen at this time is published by Belcher et al. (2021), who argue that alteration of fire feedbacks driven by the rise of the flowering plants likely lowered atmospheric oxygen levels from ~30% to 25% by the end of the Cretaceous.[265]
  • White & Campione (2021) describe a workflow in which three-dimensional surface profiles of fragmentary fossils can be quantitatively compared to better-known exemplars in order to identify fragmentary fossils, and apply this workflow to megaraptorid theropod unguals from the Cretaceous of Australia.[266]
  • A study aiming to test whether histological characters can be used to assign bones to individuals within a quarry, using sauropod dinosaur material from two adjacent Morrison quarries in the Bighorn Basin (Wyoming, United States) as a case study, is published by Wiersma-Weyand et al. (2021).[267]
  • A study on diverse amniotic eggshells from the Wido Volcanics (Upper Cretaceous, South Korea), evaluating their utility for assessments of the paleothermometry of the sedimentary deposits, is published by Choi et al. (2021).[268]
  • A study on the age and duration of the Lower Cretaceous Yixian Formation (China) is published by Zhong et al. (2021).[269]
  • Goderis et al. (2021) report new data revealing a positive iridium anomaly within the peak-ring sequence of the Chicxulub impact structure, and interpret this finding as conclusively tying Chicxulub to the global iridium layer and Cretaceous-Paleogene boundary sections worldwide, confirming the link between crater formation and the iridium peak detected in these sections.[270]
  • A study aiming to determine whether a strong link can be established between stable carbon isotopes of tooth enamel of herbivores and vegetation structure in present African ecosystems, and whether enamel stable carbon isotopes of fossil herbivores are useful for making inferences about Plio-Pleistocene vegetation structure in Africa and the environmental context of hominin evolution, is published by Robinson et al. (2021).[271]
  • A study on environmental changes in East Africa at the time of the extinction of Paranthropus boisei is published by Quinn & Lepre (2021), who report evidence of a significant reduction in C4 grasslands during Mid-Pleistocene Transition, and argue that this reduction might have escalated dietary competition amongst the abundant C4-feeders and influenced P. boisei’s demise.[272]
  • Evidence from Chitimwe Beds (northern Malawi), indicating that in the late Pleistocene early modern humans fundamentally altered local landscapes and ecology using fire, is presented by Thompson et al. (2021).[273]
  • Ellis et al. (2021) examine current biodiversity patterns in relation to distribution of human populations and land use over the past 12,000 years, and argue that as early as 12,000 years ago nearly three quarters of Earth’s land was inhabited and shaped by human societies.[274]
  • Alleon et al. (2021) revise reports of organic molecules in animal fossils, and argue that purported signatures of organic molecules are in reality instrumental artefacts resulting from intense background luminescence.[275]

Paleoclimate

  • Scotese et al. (2021) estimate how global temperatures have changed during the last 540 million years.[276]
  • A high-resolution proxy record of Late Cambrian and Ordovician climate is presented by Goldberg et al. (2021).[277]
  • A study on the atmospheric CO2 levels during the Permian–Triassic transition, based on data from fossil plant remains from sedimentary successions in southwestern China, is published by Wu et al. (2021), who present evidence of a six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction.[278]
  • A study on the climate of the Lufeng area (China) during the Early Jurassic, and on the relationship between the global distribution of dinosaur fossils and climate during the Jurassic, is published by Shen et al. (2021).[279]
  • Evidence of the presence of a terrestrial climate barrier in the Western Interior Basin of North America during the final 15 million years of the Cretaceous, dividing the Western Interior Basin into warm southern and cool northern biomes, is presented by Burgener et al. (2021), who also report evidence indicating that the biogeographical distribution of plants was heavily influenced by the presence of this temperature transition zone.[280]
  • A study on CO2 contents of early Deccan Traps lavas, aiming to determine whether early Deccan magmatism triggered the warming event during the latest Maastrichtian, is published by Hernandez Nava et al. (2021).[281]
  • Vento et al. (2021) estimate parameters of the Paleogene to Neogene climate on the basis of data from fossil leaves from the Río Turbio and Río Guillermo formations in southern South America (Argentina).[282]
  • 10-million-year long proxy record of Arabian climate is developed by Böhme et al. (2021), who report evidence indicative of a sustained period of hyperaridity in the Pliocene and a number of transient periods of hyperaridity in northern Arabia during the late Miocene which were out of phase with those in North Africa, and argue that these desert dynamics had a strong control on large-scale mammalian dispersals between Africa and Eurasia.[283]
  • A study aiming to reconstruct summer and winter temperatures in the Late Pleistocene when Neanderthals were using the site of La Ferrassie (France), based on data from oxygen isotope measurements of bovid tooth enamel, is published by Pederzani et al. (2021).[284]
  • Data from analyses and modelling of noble gases in groundwater, indicating that the low-altitude, low-to-mid-latitude land surface (45 degrees south to 35 degrees north) was about 6 °C cooler during the Last Glacial Maximum than during the Late Holocene, is presented by Seltzer et al. (2021).[285]

References

  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ Baron-Szabo, R. C. (2021). "Upper Barremian–lower Aptian scleractinian corals of central Europe (Schrattenkalk Fm., Helvetic Zone, Austria, Germany, Switzerland)". Zootaxa. 4960 (1): zootaxa.4960.1.1. doi:10.11646/zootaxa.4960.1.1. PMID 33903577.
  3. ^ a b c Löser, H.; Nieto, L. M.; Castro, J. M.; Reolid, M. (2021). "A Lower Valanginian coral fauna from the South Iberian Palaeomargin (Internal Prebetic, SE Spain)". Palaeontologia Electronica. 24 (1): Article number 24.1.a06. doi:10.26879/1030.
  4. ^ Guo, J.; Han, J.; Van Iten, H.; Song, Z.; Qiang, Y.; Wang, W.; Zhang, Z.; Li, G. (2021). "A ten-faced hexangulaconulariid from Cambrian Stage 2 of South China". Journal of Paleontology. Online edition: 1–8. doi:10.1017/jpa.2021.25.
  5. ^ Kołodziej, B.; Marian, V. A. (2021). "Simplified, wall-based morphology of a new Aptian coral and discussion of contrasting opinions on the taxonomy of similar corals". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 300 (2): 201–213. doi:10.1127/njgpa/2021/0985.
  6. ^ Song, X.; Ruthensteiner, B.; Lyu, M.; Liu, X.; Wang, J.; Han, J. (2021). "Advanced Cambrian hydroid fossils (Cnidaria: Hydrozoa) extend the medusozoan evolutionary history". Proceedings of the Royal Society B: Biological Sciences. 288 (1944): Article ID 20202939. doi:10.1098/rspb.2020.2939. PMC 7893222. PMID 33529559.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  7. ^ Löser, H.; Angel Fernández-Mendiola, P.; Pérez-Malo, J.; Domínguez Pascual, S.; Cahuzac, B. (2021). "Redefinition of the family Rhizangiidae (Scleractinia; Cretaceous to Recent) and description of a new genus from the Early Cretaceous of Spain". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 299 (3): 259–274. doi:10.1127/njgpa/2021/0968.
  8. ^ Zhao, D.; Yin, Z.; Chen, J.; Li, G. (2021). "The embryonic development of the early Cambrian Quadrapyrgites and its phylogenetic implication". Acta Palaeontologica Sinica. 60 (1): 124–137. doi:10.19800/j.cnki.aps.2020058.
  9. ^ Sendino, C.; Bochmann, M. M. (2021). "An exceptionally preserved conulariid from Ordovician erratics of Northern European Lowlands". PalZ. 95 (1): 71–84. doi:10.1007/s12542-020-00534-7.
  10. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf Wunderlich, J.; Müller, P. (2021). "Description of new fossil spiders (Araneae) in Late (mid) Cretaceous Burmese (Kachin) amber with focus on the superfamilies Palpimanoidea and Deinopoidea and members of the RTA-clade, as well as remarks on palaeobehaviour, palaeofauna, taxonomy and phylogenetics" (PDF). In Jörg Wunderlich (ed.). Beiträge zur Araneologie, 14. pp. 25–262. ISBN 978-3-931473-20-1. {{cite book}}: Check |isbn= value: checksum (help)
  11. ^ a b Khaustov, A. A.; Vorontsov, D. D.; Perkovsky, E. E.; Klimov, P. B. (2021). "First fossil record of mite family Barbutiidae (Acari: Raphignathoidea) from late Eocene Rovno Amber, with a replacement name Hoplocheylus neosimilis nomen novum (Tarsocheylidae)". Systematic and Applied Acarology. 26 (5): 973–980. doi:10.11158/saa.26.5.12.
  12. ^ Lourenço, W. R.; Velten, J. (2021). "One more new genus and species of scorpion from Early Cretaceous Burmese amber (Scorpiones: Protoischnuridae)". Faunitaxys. Revue de Faunistique, Taxonomie et Systématique morphologique et moléculaire. 9 (14): 1–5.
  13. ^ Downen, M. R.; Selden, P. A. (2021). "The earliest palpimanid spider (Araneae: Palpimanidae), from the Crato Fossil-Lagerstätte (Cretaceous, Brazil)". The Journal of Arachnology. 49 (1): 91–97. doi:10.1636/JoA-S-19-059.
  14. ^ a b c d Khaustov, A. A.; Vorontsov, D. D.; Perkovsky, E. E.; Lindquist, E. E. (2021). "Review of fossil heterostigmatic mites (Acari: Heterostigmata) from late Eocene Rovno Amber. I. Families Tarsocheylidae, Dolichocybidae and Acarophenacidae". Systematic and Applied Acarology. 26 (1): 33–61. doi:10.11158/saa.26.1.3.
  15. ^ a b Selden, P. A. (2021). "New spiders (Araneae: Mesothelae), from the Carboniferous of New Mexico and England, and a review of Paleozoic Araneae". New Mexico Museum of Natural History and Science Bulletin. 84: 317–358.
  16. ^ Wriedt, A.-L.; Harvey, M. S.; Hammel, J. U.; Kotthoff, U.; Harms, D. (2021). "The second chthonioid pseudoscorpion (Pseudoscorpiones: Chthoniidae) from mid-Cretaceous Burmese amber: a new genus with unique morphological features and potential Gondwanan affinities". The Journal of Arachnology. 48 (3): 311–321. doi:10.1636/JoA-S-20-017.
  17. ^ Magalhaes, I. L. F.; Porta, A .O.; Wunderlich, J.; Proud, D. N.; Ramírez, M. J.; Pérez-González, A. (2021). "Taxonomic revision of fossil Psilodercidae and Ochyroceratidae spiders (Araneae: Synspermiata), with a new species of Priscaleclercera from mid-Cretaceous Burmese amber, northern Myanmar". Cretaceous Research. 121: Article 104751. doi:10.1016/j.cretres.2020.104751.
  18. ^ Haug, C.; Haug, J. T. (2021). "The fossil record of whip spiders: the past of Amblypygi". PalZ. in press. doi:10.1007/s12542-021-00552-z.
  19. ^ a b c d e Ferratges, F. A.; Hyžný, M.; Zamora, S. (2021). "Taphonomy and systematics of decapod crustaceans from the Aptian (Lower Cretaceous) in the Oliete Sub-basin (Teruel, Spain)". Cretaceous Research. 122: Article 104767. doi:10.1016/j.cretres.2021.104767.
  20. ^ a b c Winkler, N. (2021). "One new genus and three new species of caridean shrimps (Crustacea: Decapoda) from the Upper Jurassic Solnhofen Lithographic Limestones (Southern Germany)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 299 (1): 49–70. doi:10.1127/njgpa/2021/0954.
  21. ^ De Angeli, A.; Alberti, R. (2021). "Carpilius cantellii n. sp. (Decapoda, Brachyura, Carpiloidea) nuovo crostaceo eocenico del territorio vicentino (Italia nordorientale)". Studi Trentini di Scienze Naturali. 101: 53–59.
  22. ^ a b c d Bruce, N. L.; de Lourdes Serrano-Sánchez, M.; Carbot-Chanona, G.; Vega, F. J. (2021). "New species of fossil Cirolanidae (Isopoda, Cymothoida) from the Lower Cretaceous (Aptian) Sierra Madre Formation plattenkalk dolomites of El Espinal quarries, Chiapas, SE Mexico". Journal of South American Earth Sciences. 109: Article 103285. doi:10.1016/j.jsames.2021.103285.
  23. ^ Schädel, M.; Hörnig, M. K.; Hyžný, M.; Haug, J. T. (2021). "Mass occurrence of small isopodan crustaceans in 100-million-year-old amber: an extraordinary view on behaviour of extinct organisms". PalZ. Online edition. doi:10.1007/s12542-021-00564-9.
  24. ^ Fraaije, R. H. B.; Van Bakel, B. M. W.; Jagt, J. W. M. (2021). "A new, enigmatic paguroid (Decapoda, Anomura) from the Kimmeridgian (Upper Jurassic) of southern Germany". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 299 (3): 333–337. doi:10.1127/njgpa/2021/0973.
  25. ^ Schädel, M.; Hyžný, M.; Haug, J. T. (2021). "Ontogenetic development captured in amber - the first record of aquatic representatives of Isopoda in Cretaceous amber from Myanmar". Nauplius. 29: e2021003. doi:10.1590/2358-2936e2021003.
  26. ^ Wei, Y.-F.; Dong, A.-G.; Huang, D.-Y.; Du, Y.-W.; Hegna, T. A.; Lian, X.-N.; Audo, D. (2021). "Amphipoda from the Late Neogene of Shanxi, China". Palaeoentomology. 4 (1): 85–93. doi:10.11646/palaeoentomology.4.1.13.
  27. ^ Becker, H. F. J.; Fraaije, R. H. B.; Mulder, E. W. A. (2021). "Glypheopsis tubantiensis, a new Early Cretaceous glypheid lobster from the Netherlands". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 299 (2): 161–170. doi:10.1127/njgpa/2021/0962.
  28. ^ Feldmann, R. M.; Helm, C. W.; Lawfield, A. M. W.; Schweitzer, C. E. (2021). "New Late Cretaceous palinurid (Decapoda: Achelata: Palinuridae) from northeastern British Columbia, Canada". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 299 (2): 149–159. doi:10.1127/njgpa/2021/0961.
  29. ^ Charbonnier, S.; Audo, D.; Garassino, A.; Simpson, M.; Gèze, R.; Azar, D. (2021). "A new species of mecochirid lobster, Meyeria libanotica (Decapoda, Glypheoidea), from the Barremian (Early Cretaceous) of Lebanon". Annales de Paléontologie. 107 (1): Article 102470. doi:10.1016/j.annpal.2021.102470.
  30. ^ Poschmann, M. J. (2021). "A new phyllocarid (Crustacea, Archaeostraca) from the Early Devonian (late Emsian) Heckelmann Mill Fossil-Lagerstätte (Lahn Syncline, Rhineland-Palatinate, SW-Germany)". PalZ. 95 (1): 27–36. doi:10.1007/s12542-020-00535-6.
  31. ^ Beschin, C.; Busulini, A.; Tessier, G.; Fraaije, R. H. B.; Jagt, J. W. M. (2021). "The first Cenozoic 'blanket hermit crab' (Anomura, Paguroidea) – a new genus and species from the Eocene of northeast Italy". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 299 (3): 251–257. doi:10.1127/njgpa/2021/0967.
  32. ^ Devillez, J.; Charbonnier, S. (2021). "Review of the Late Jurassic erymoid lobsters (Crustacea: Decapoda)". Geodiversitas. 43 (2): 25–73. doi:10.5252/geodiversitas2021v43a2. Archived from the original on 2021-01-29. Retrieved 2021-01-28.
  33. ^ Haug, C.; Haug, J. T. (2021). "A new fossil mantis shrimp and the convergent evolution of a lobster-like morphotype". PeerJ. 9: e11124. doi:10.7717/peerj.11124. PMC 8054755. PMID 33959413.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  34. ^ a b c d e Vázquez García, B.; Ceolin, D.; Fauth, G.; Borghi, L.; Valle, B.; Rios Netto, A. M. (2021). "Ostracods from the late Albian–early Cenomanian of the Sergipe–Alagoas Basin, Brazil: New taxonomic and biostratigraphic inferences". Journal of South American Earth Sciences. 108: Article 103169. doi:10.1016/j.jsames.2021.103169.
  35. ^ a b c d e f g h i j Slipper, I. J. (2021). "Ostracoda from the Turonian of South-East England Part 2. Cytherocopina". Monographs of the Palaeontographical Society. 174 (657): 47–167. doi:10.1080/02693445.2020.1782044.
  36. ^ Wang, H.; Han, W.-C.; Zhang, G.-Q.; Zhang, Y.-M.; Wang, M.-Z.; Li, S.; Cao, M.-Z.; Zhang, H.-C. (2021). "Paleogene ostracodes from the Dawenkou Basin, East China and their biostratigraphic significance for the age of mineral resources". Palaeoworld. in press. doi:10.1016/j.palwor.2021.01.007.
  37. ^ a b Kshetrimayum, D. S.; Parmar, V.; Lourembam, R. S.; Prasad, G. V. R. (2021). "A diversified Ostracoda (Crustacea) assemblage from the Upper Cretaceous intertrappean beds of Gujri, Dhar District, Madhya Pradesh, India". Cretaceous Research. 124: Article 104784. doi:10.1016/j.cretres.2021.104784.
  38. ^ Maia, R. J. A.; Piovesan, E. K.; Bergue, C. T.; Anjos Zerfass, G. S.; Melo, R. M. (2021). "Bathyal ostracods from the Upper Pleistocene of the Rio Grande Cone, Pelotas Basin, Brazil". Revue de Micropaléontologie. 71: Article 100483. doi:10.1016/j.revmic.2021.100483.
  39. ^ Song, J.; Crasquin, S.; Fan, R.; Guo, W.; Wang, Y.; Huang, J.; Qie, W. (2021). "Late Devonian benthic ostracods from South China and their response to the Frasnian–Famennian event". Geological Journal. in press. doi:10.1002/gj.4160.
  40. ^ Glinskikh, L. A.; Tesakova, E. M. (2021). "The first data on the Callovian ostracodes of central Dagestan". Paleontological Journal. 55 (1): 64–71. doi:10.1134/S0031030121010068. Retrieved 2021-01-12.
  41. ^ a b Gale, A. S. (2021). "The thoracican cirripede genus Concinnalepas Gale, 2014 (Crustacea) from the Middle and Upper Jurassic of southern England and northern France". Proceedings of the Geologists' Association. in press. doi:10.1016/j.pgeola.2021.01.007.
  42. ^ Tang, H. Y.; Mychko, E. V.; Feldmann, R. M.; Schweitzer, C. E.; Shaari, H.; Sone, M. (2021). "Malayacyclus gen. nov., the first Southeast Asian Cyclida (Crustacea) from the Early Carboniferous of Terengganu, Malaysia". Geological Journal. in press. doi:10.1002/gj.4128.
  43. ^ Audo, D.; Winkler, N.; Charbonnier, S. (2021). "Pseudodrobna natator n. comb., a new link between crustacean faunas from the Jurassic of Germany and Cretaceous of Lebanon". Geodiversitas. 43 (8): 209–218. doi:10.5252/geodiversitas2021v43a8.
  44. ^ Barros, O. A.; Viana, M. S. S.; Viana, B. C.; da Silva, J. H.; Paschoal, A. R.; de Oliveira, P. V. (2021). "New data on Beurlenia araripensis Martins-Neto & Mezzalira, 1991, a lacustrine shrimp from Crato Formation, and its morphological variations based on the shape and the number of rostral spines". PLOS ONE. 16 (3): e0247497. doi:10.1371/journal.pone.0247497. PMC 7968632. PMID 33730028.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  45. ^ Matzke-Karasz, R.; Smith, R. J. (2021). "Temporal shifts in ostracode sexual dimorphism from the Late Cretaceous to the late Eocene of the U.S. Coastal Plain". Marine Micropaleontology. in press: Article 101959. doi:10.1016/j.marmicro.2020.101959.
  46. ^ Wernette, S. J.; Hughes, N. C.; Myrow, P. M.; Aung, A. K. (2021). "The first systematic description of Cambrian fossils from Myanmar: Late Furongian trilobites from the southern part of the Shan State and the early Palaeozoic palaeogeographical affinities of Sibumasu". Journal of Asian Earth Sciences. 214: Article 104775. doi:10.1016/j.jseaes.2021.104775.
  47. ^ a b c van Viersen, A. P. (2021). "Type and other species of Gerastos and allied genera (Trilobita, Proetinae) from the Siluro-Devonian". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 299 (2): 185–217. doi:10.1127/njgpa/2021/0964.
  48. ^ a b Peel, J. S. (2021). "Trilobite fauna of the Telt Bugt Formation (Cambrian Series 2–Miaolingian Series), western North Greenland (Laurentia)". Bulletin of the Geological Society of Denmark. 69: 1–33. doi:10.37570/bgsd-2021-69-01.
  49. ^ Peel, J. S. (2021). "Eldoradia and Acrocephalops (Trilobita: Bolaspididae) from the middle Cambrian (Miaolingian) of northern Greenland (Laurentia)". GFF. 143 (1): 8–15. doi:10.1080/11035897.2020.1865446.
  50. ^ a b Adrain, J. M.; Karim, T. S. (2021). "Systematics of the Early Ordovician (late Tremadocian; Stairsian) trilobite Gonioteloides Kobayashi, with species from the Great Basin, western USA". Journal of Paleontology. Online edition: 1–26. doi:10.1017/jpa.2021.37.
  51. ^ van Viersen, A.; Lerouge, F. (2021). "Timsaloproetus alissae sp. nov. (Trilobita: Proetidae) from the lower Devonian of southern Morocco". PalZ. 95 (2): 223–230. doi:10.1007/s12542-020-00543-6.
  52. ^ Zhang, S.; Fan, J.; Morgan, C. A.; Henderson, C. M.; Shen, S. (2021). "Quantifying the middle–late Cambrian trilobite diversity pattern in South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 570: Article 110361. doi:10.1016/j.palaeo.2021.110361.
  53. ^ Sun, Z.; Zeng, H.; Zhao, F. (2021). "Digestive structures in Cambrian Miaolingian trilobites from Shandong, North China". Acta Palaeontologica Sinica. 60 (1): 166–175. doi:10.19800/j.cnki.aps.2020024.
  54. ^ Hou, J.; Hughes, N. C.; Hopkins, M. J. (2021). "The trilobite upper limb branch is a well-developed gill". Science Advances. 7 (14): eabe7377. doi:10.1126/sciadv.abe7377. PMC 8011964. PMID 33789898.
  55. ^ Bicknell, R. D. C.; Holmes, J. D.; Edgecombe, G. D.; Losso, S. R.; Ortega-Hernández, J.; Wroe, S.; Paterson, J. R. (2021). "Biomechanical analyses of Cambrian euarthropod limbs reveal their effectiveness in mastication and durophagy". Proceedings of the Royal Society B: Biological Sciences. 288 (1943): Article ID 20202075. doi:10.1098/rspb.2020.2075. PMC 7893260. PMID 33499790.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  56. ^ Dai, T.; Hughes, N. C.; Zhang, X.; Fusco, G. (2021). "Absolute axial growth and trunk segmentation in the early Cambrian trilobite Oryctocarella duyunensis". Paleobiology. in press: 1–16. doi:10.1017/pab.2020.63.
  57. ^ Dai, T.; Hughes, N. C.; Zhang, X.; Peng, S. (2021). "Development of the early Cambrian oryctocephalid trilobite Oryctocarella duyunensis from western Hunan, China". Journal of Paleontology. in press: 1–16. doi:10.1017/jpa.2020.111.
  58. ^ Bault, V.; Crônier, C.; Allaire, N.; Monnet, C. (2021). "Trilobite biodiversity trends in the Devonian of North Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 565: Article 110208. doi:10.1016/j.palaeo.2020.110208.
  59. ^ Mángano, M. G.; Buatois, L. A.; Waisfeld, B. G.; Muñoz, D. F.; Vaccari, N. E.; Astini, R. A. (2021). "Were all trilobites fully marine? Trilobite expansion into brackish water during the early Palaeozoic". Proceedings of the Royal Society B: Biological Sciences. 288 (1944): Article ID 20202263. doi:10.1098/rspb.2020.2263. PMC 7893218. PMID 33529560.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  60. ^ D'Angelo, J. A.; Bordonaro, O. L.; Raviolo, M. M.; Bruno, N.; Camí, G. (2021). "Chemometric study of the preservation modes of Athabaskia anax (Trilobita, Cambrian Precordillera, Mendoza, Argentina). Implications for taxonomy". Journal of South American Earth Sciences. 109: Article 103232. doi:10.1016/j.jsames.2021.103232.
  61. ^ Scholtz, G.; Staude, A.; Dunlop, J. A. (2019). "Trilobite compound eyes with crystalline cones and rhabdoms show mandibulate affinities". Nature Communications. 10 (1): Article number 2503. Bibcode:2019NatCo..10.2503S. doi:10.1038/s41467-019-10459-8. PMC 6555793. PMID 31175282.
  62. ^ Schoenemann, B.; Clarkson, E. N. K. (2021). "Points of view in understanding trilobite eyes". Nature Communications. 12 (1): Article number 2081. doi:10.1038/s41467-021-22227-8. PMC 8027602. PMID 33828091.
  63. ^ Scholtz, G.; Staude, A.; Dunlop, J. A. (2021). "Reply to "Points of view in understanding trilobite eyes"". Nature Communications. 12 (1): Article number 2084. doi:10.1038/s41467-021-22228-7. PMC 8027826. PMID 33828090.
  64. ^ Esteve, J.; Marcé‐Nogué, J.; Pérez‐Peris, F.; Rayfield, E. (2021). "Cephalic biomechanics underpins the evolutionary success of trilobites". Palaeontology. in press. doi:10.1111/pala.12541.
  65. ^ a b Van Roy, P.; Rak, Š.; Budil, P.; Fatka, O. (2021). "Upper Ordovician Thylacocephala (Euarthropoda, Eucrustacea) from Bohemia indicate early ecological differentiation". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1363.
  66. ^ Laville, T.; Haug, J. T.; Haug, C. (2021). "New species of Thylacocephala, Eodollocaris keithflinti n. gen., n. sp., from the Mazon Creek Lagerstätte, Illinois, United States (c. 307 Ma) and redescription of other Mazon Creek thylacocephalans". Geodiversitas. 43 (10): 295–310. doi:10.5252/geodiversitas2021v43a10.
  67. ^ Bicknell, R. D. C.; Hecker, A.; Heyng, A. M. (2021). "New horseshoe crab fossil from Germany demonstrates post-Triassic extinction of Austrolimulidae". Geological Magazine. in press: 1–11. doi:10.1017/S0016756820001478.
  68. ^ Riquelme, F.; Hernández-Patricio, M.; Álvarez-Rodríguez, M. (2021). "A Miocene pyrgodesmid millipede (Polydesmida: Pyrgodesmidae) from Mexico". PeerJ. 9: e10574. doi:10.7717/peerj.10574. PMC 7842142. PMID 33552714.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  69. ^ Lamsdell, J. C.; Teruzzi, G.; Pasini, G.; Garassino, A. (2021). "A new limulid (Chelicerata, Xiphosurida) from the Lower Jurassic (Sinemurian) of Osteno, NW Italy". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 300 (1): 1–10. doi:10.1127/njgpa/2021/0974.
  70. ^ Jin, C.; Mai, H.; Chen, H.; Liu, Y.; Hou, X.; Wen, R.; Zhai, D. (2021). "A new species of the Cambrian bivalved euarthropod Pectocaris with axially differentiated enditic armatures". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1362.
  71. ^ Aria, C.; Zhao, F.; Zhu, M. (2021). "Fuxianhuiids are mandibulates and share affinities with total-group Myriapoda". Journal of the Geological Society. in press: jgs2020-246. doi:10.1144/jgs2020-246.
  72. ^ Laville, T.; Smith, C. P. A.; Forel, M.-B.; Brayard, A.; Charbonnier, S. (2021). "Review of Early Triassic Thylacocephala". Rivista Italiana di Paleontologia e Stratigrafia. 127 (1): 73–101. doi:10.13130/2039-4942/15188.
  73. ^ Laville, T.; Haug, C.; Haug, J. T.; Forel, M.-B.; Charbonnier, S. (2021). "Morphology and anatomy of the Late Jurassic Mayrocaris bucculata (Eucrustacea?, Thylacocephala) with comments on the tagmosis of Thylacocephala". Journal of Systematic Palaeontology. 19 (4): 289–320. doi:10.1080/14772019.2021.1910584.
  74. ^ Dzik, J. (2021). "Protaspis larva of an aglaspidid-like arthropod from the Ordovician of Siberia and its habitat". Arthropod Structure & Development. 61: Article 101026. doi:10.1016/j.asd.2020.101026. PMID 33508709.
  75. ^ Lerosey-Aubril, R.; Laibl, L. (2021). "Protaspid larvae are unique to trilobites". Arthropod Structure & Development. 63: Article 101059. doi:10.1016/j.asd.2021.101059. PMID 34029945.
  76. ^ Dzik, J. (2021). "Corrigendum to "Protaspis larva of an aglaspidid-like arthropod from the Ordovician of Siberia and its habitat" [Arthropod Struct. Dev. 61 (2020) 101026]". Arthropod Structure & Development. 63: Article 101062. doi:10.1016/j.asd.2021.101062. PMID 33984597.
  77. ^ Lustri, L.; Laibl, L.; Bicknell, R. D. C. (2021). "A revision of Prolimulus woodwardi Fritsch, 1899 with comparison to other highly paedomorphic belinurids". PeerJ. 9: e10980. doi:10.7717/peerj.10980. PMC 7950201. PMID 33732551.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  78. ^ Anderson, E. P.; Schiffbauer, J. D.; Jacquet, S. M.; Lamsdell, J. C.; Kluessendorf, J.; Mikulic, D. G. (2021). "Stranger than a scorpion: a reassessment of Parioscorpio venator, a problematic arthropod from the Llandoverian Waukesha Lagerstätte". Palaeontology. 64 (3): 429–474. doi:10.1111/pala.12534.
  79. ^ Budd, G. E. (2021). "The origin and evolution of the euarthropod labrum". Arthropod Structure & Development. 62: Article 101048. doi:10.1016/j.asd.2021.101048. PMID 33862532.
  80. ^ a b Popov, L. E.; Nikitina, O. I.; Pirogova, T. E.; Ergaliev, G. Kh. (2021). "Cambrian brachiopods from the area of the former Semipalatinsk nuclear-testing site, Chingiz Ranges, Kazakhstan". PalZ. 95 (2): 275–290. doi:10.1007/s12542-020-00540-9.
  81. ^ Blodgett, R. B.; Santucci, V. L.; Baranov, V. V.; Hodges, M. S. (2021). "The gypidulid brachiopod genus Carinagypa in late Emsian (latest Early Devonian) strata of the Shellabarger Pass area (Farewell Terrane), Denali National Park & Preserve, south-central Alaska" (PDF). New Mexico Museum of Natural History and Science Bulletin. 82: 19–28. Archived (PDF) from the original on 2021-02-21. Retrieved 2021-01-04.
  82. ^ Serobyan, V.; Danelian, T.; Crônier, C.; Grigoryan, A.; Mottequin, B. (2021). "Lower Famennian (Upper Devonian) rhynchonellide and athyride brachiopods from the South Armenian Block". Journal of Paleontology. 95 (3): 527–552. doi:10.1017/jpa.2020.114.
  83. ^ a b Lavié, F. J.; Mestre, A. I.; Carrera, M. G. (2021). "Middle Ordovician linguliformean microbrachiopods from western Argentina: new data and biogeographic implications". Journal of Paleontology. Online edition: 1–13. doi:10.1017/jpa.2021.19.
  84. ^ a b c Popov, L. E.; Zaman, S.; Baranov, V.; Ghobadi Pour, M.; Holmer, L. E. (2021). "Silurian (Aeronian) rhynchonelliform brachiopods of Shabdjereh, south-west Central Iran and their significance for early spiriferide evolution". Journal of Systematic Palaeontology. 19 (3): 191–219. doi:10.1080/14772019.2021.1891148.
  85. ^ Rezende, J.M.P.; Isaacson, P.E. (2021). "Schellwienella clarkei (Orthotetida, Brachiopoda): a new species from the Devonian of the Paraná Basin, Brazil". Journal of Paleontology. Online edition: 1–15. doi:10.1017/jpa.2020.113.
  86. ^ García-Alcalde, J. L. (2021). "Xanastur (Brachiopoda, Stringocephalacea) nomen novum pro Xana García-Alcalde, 1972 (non Xana Kurdjumov, 1917, Hymenoptera, Hexapoda)". Spanish Journal of Palaeontology. 36 (1): 77–78. doi:10.7203/sjp.36.1.20308.
  87. ^ Guo, Z.; Chen, Z.-Q.; Liao, Z. (2021). "Early Carboniferous brachiopod fauna from the Altai Mountains, northern Xinjiang, Central Asia: Systematics, and palaeobiogeographic and palaeogeographical implications". Geological Journal. in press. doi:10.1002/gj.4118.
  88. ^ Néraudeau, D.; Mouty, M. (2021). "Archiacia ramitaensis nov. sp., a new archiaciid echinoid from the Cenomanian of Syria". Annales de Paléontologie. 107 (1): Article 102469. doi:10.1016/j.annpal.2021.102469.
  89. ^ a b c d e f g h i j Thuy, B.; Numberger-Thuy, L. D. (2021). "Brittlestar diversity at the dawn of the Jenkyns Event (early Toarcian Oceanic Anoxic Event): new microfossils from the Dudelange drill core, Luxembourg". In M. Reolid; L. V. Duarte; E. Mattioli; W. Ruebsam (eds.). Carbon Cycle and Ecosystem Response to the Jenkyns Event in the Early Toarcian (Jurassic). The Geological Society of London. pp. SP514–2021–3. doi:10.1144/SP514-2021-3. {{cite book}}: |journal= ignored (help)
  90. ^ Hunter, A. W.; Ortega-Hernández, J. (2021). "A new somasteroid from the Fezouata Lagerstätte in Morocco and the Early Ordovician origin of Asterozoa". Biology Letters. 17 (1): Article ID 20200809. doi:10.1098/rsbl.2020.0809. PMC 7876607. PMID 33465330.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  91. ^ a b c d Roux, M.; Martinez, A.; Vizcaïno, D. (2021). "A diverse crinoid fauna (Echinodermata, Crinoidea) from the Lower Eocene of the Gulf of Languedoc (Corbières, Aude, southern France)". Zootaxa. 4963 (2): 201–242. doi:10.11646/zootaxa.4963.2.1. PMID 33903550.
  92. ^ a b c d Gale, A. S. (2021). "The stratigraphy of the upper Campanian Chalk of the southern English coast (Isle of Wight, Dorset), United Kingdom". Cretaceous Research. 124: Article 104775. doi:10.1016/j.cretres.2021.104775.
  93. ^ a b El Qot, G. M. (2021). "Aptian–Cenomanian echinoids from northern Sinai, Egypt". Cretaceous Research. in press: Article 104870. doi:10.1016/j.cretres.2021.104870.
  94. ^ Donovan, S. K.; Fearnhead, F. E. (2021). "The British Devonian Crinoidea. Part 2, addendum to Part 1, Cladida, Disparida and columnals". Monographs of the Palaeontographical Society. 174 (658): 57–148. doi:10.1080/02693445.2020.1853380.
  95. ^ Semenov, N. K.; Terentyev, S. S.; Mirantsev, G. V.; Rozhnov, S. V. (2021). "A new hybocrinid genus (Echinodermata, Crinoidea) from the Middle Ordovician of Ladoga Glint on the Volkhov River". Paleontological Journal. 55 (1): 54–63. doi:10.1134/S0031030121010123. Archived from the original on 2021-01-14. Retrieved 2021-01-12.
  96. ^ Paul, C.R.C. (2021). "The functional and evolutionary significance of blastoid hydrospires". Palaeogeography, Palaeoclimatology, Palaeoecology. in press: Article 110482. doi:10.1016/j.palaeo.2021.110482.
  97. ^ Cole, S. R.; Hopkins, M. J. (2021). "Selectivity and the effect of mass extinctions on disparity and functional ecology". Science Advances. 7 (19): eabf4072. doi:10.1126/sciadv.abf4072. PMC 8099180. PMID 33952521.
  98. ^ a b c d e f g Karádi, V.; Kolar-Jurkovšek, T.; Gale, L.; Jurkovšek, B. (2021). "New Advances in Biostratigraphy of the Lower/Middle Norian Transition: Conodonts of the Dovško Section, Slovenia". Journal of Earth Science. in press. doi:10.1007/s12583-020-1382-y.
  99. ^ Yan, G.; Wu, R. (2021). "Silurian (late Llandovery – Wenlock) conodont fauna and biostratigraphy from the Yanbian area of Sichuan Province, south‐west China". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1364.
  100. ^ a b c Barrick, J. E.; Sundgren, J. R.; McAdams, N. E. B. (2021). "Endemic earliest Lochkovian species of Caudicriodus (conodont) from southern Laurentia and the Silurian–Devonian boundary". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1354.
  101. ^ Świś, P. (2021). "A new Devonian species of the enigmatic Carboniferous conodont Dollymae". Palaeoworld. in press. doi:10.1016/j.palwor.2021.03.003.
  102. ^ Li, H.; Wang, M.; Zhang, M.; Wignall, P. B.; Rigo, M.; Chen, Y.; Wu, X.; Ouyang, Z.; Wu, B.; Yi, Z.; Zhang, Z.; Lai, X. (2021). "First Records of Late Triassic Conodont Fauna and δ13Ccarb from the Dengdengqiao Section, Dangchang County, Gansu Province, Northwestern China". Journal of Earth Science. in press. doi:10.1007/s12583-021-1428-9.
  103. ^ Gómez, M. J.; Mestre, A.; Corradini, C.; Heredia, S. (2021). "A new species, Ozarkodina huenickeni, from the upper Silurian - Lower Devonian in San Juan Precordillera, South America". Journal of South American Earth Sciences. 108: Article 103174. doi:10.1016/j.jsames.2021.103174.
  104. ^ Du, Y.; Onoue, T.; Karádi, V.; Williams, I. S.; Rigo, M. (2021). "Evolutionary process from Mockina bidentata to Parvigondolella andrusovi: evidence from the Pizzo Mondello Section, Sicily, Italy". Journal of Earth Science. in press. doi:10.1007/s12583-020-1362-2.
  105. ^ Yang, Z.H.; Jing, X.C.; Zhou, H.R.; Wang, X.L.; Ren, H.; Shen, Y.; Fan, R. (2021). "Katian (Late Ordovician) conodonts on the northwestern margin of the North China Craton". Journal of Paleontology. Online edition: 1–22. doi:10.1017/jpa.2021.11.
  106. ^ Liu, Y.-L.; Huang, L.-B.; Zong, R.-W.; Gong, Y.-M. (2021). "The oldest eugaleaspiform (Galeaspida) from the Silurian Fentou Formation (Telychian, Llandovery) of Wuhan, South China". Journal of Systematic Palaeontology. 19 (4): 253–264. doi:10.1080/14772019.2021.1883755.
  107. ^ Jiang, W.; Zhu, M.; Shi, X.; Li, Q.; Gai, Z. (2021). "Qushiaspis, a new genus of gantarostrataspid fish (Galeaspida, stem-Gnathostomata) from the Lower Devonian of Yunnan, China". Historical Biology: An International Journal of Paleobiology. in press: 1–9. doi:10.1080/08912963.2021.1888086.
  108. ^ Jobbins, M.; Rücklin, M.; Argyriou, T.; Klug, C. (2021). "A large Middle Devonian eubrachythoracid 'placoderm' (Arthrodira) jaw from northern Gondwana". Swiss Journal of Palaeontology. 140 (1): Article 2. doi:10.1186/s13358-020-00212-w. PMC 7809001. PMID 33488510.
  109. ^ a b Li, Q.; Cui, X.; Andreev, P. S.; Zhao, W.; Wang, J.; Peng, L.; Zhu, M. (2021). "Nostolepis scale remains (stem Chondrichthyes) from the Lower Devonian of Qujing, Yunnan, China". PeerJ. 9: e11093. doi:10.7717/peerj.11093. PMC 8109008. PMID 34012725.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  110. ^ Vullo, R.; Frey, E.; Ifrim, C.; González González, M. A.; Stinnesbeck, E. S.; Stinnesbeck, W. (2021). "Manta-like planktivorous sharks in Late Cretaceous oceans". Science. 371 (6535): 1253–1256. doi:10.1126/science.abc1490. PMID 33737486.
  111. ^ Hodnett, J-.P. M; Grogan, E. D.; Lund, R.; Lucas, S. G.; Suazo, T.; Elliott, D. K.; Pruitt, J. (2021). "Ctenacanthiform sharks from the late Pennsylvanian (Missourian) Tinajas Member of the Atrasado Formation, Central New Mexico". New Mexico Museum of Natural History and Science Bulletin. 84: 391–424.
  112. ^ Stumpf, S.; Etches, S.; Underwood, C. J.; Kriwet, J. (2021). "Durnonovariaodus maiseyi gen. et sp. nov., a new hybodontiform shark-like chondrichthyan from the Upper Jurassic Kimmeridge Clay Formation of England". PeerJ. 9: e11362. doi:10.7717/peerj.11362. PMC 8121075. PMID 34026354.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  113. ^ Collareta, A.; Mollen, F. H.; Merella, M.; Casati, S.; Di Cencio, A. (2021). "Remarkable multicuspid teeth in a new elusive skate (Chondrichthyes, Rajiformes) from the Mediterranean Pliocene". PalZ. 95 (1): 117–128. doi:10.1007/s12542-020-00542-7.
  114. ^ Ivanov, A. O. (2021). "A new phoebodontid shark from the Devonian of the Urals and the distribution of Phoebodus species". Paleontological Journal. 55 (3): 301–310.
  115. ^ Jambura, P. L.; Stumpf, S.; Kriwet, J. (2021). "Skeletal remains of the oldest known pseudocoracid shark Pseudocorax kindlimanni sp. nov. (Chondrichthyes, Lamniformes) from the Late Cretaceous of Lebanon". Cretaceous Research. 125: Article 104842. doi:10.1016/j.cretres.2021.104842.
  116. ^ Figueroa, R. T.; Weinschütz, L. C.; Friedman, M. (2021). "The oldest Devonian circumpolar ray-finned fish?". Biology Letters. 17 (3): Article ID 20200766. doi:10.1098/rsbl.2020.0766. PMC 8086947. PMID 33715404.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  117. ^ Nam, G.; Nazarkin, M. V.; Bannikov, A. F. (2021). "First discovery of the genus Auxis (Actinopterygii: Scombridae) in the Neogene of South Korea". Bollettino della Società Paleontologica Italiana. 60 (1): 61–67.
  118. ^ Hacker, R. J.; Shimada, K. (2021). "A new ichthyodectiform fish (Actinopterygii: Teleostei) from the Arlington Member (mid-Cenomanian) of the Upper Cretaceous Woodbine Formation in Texas, USA". Cretaceous Research. 123: Article 104798. doi:10.1016/j.cretres.2021.104798.
  119. ^ Schwarzhans, W.; Milàn, J.; Carnevale, G. (2021). "A tale from the middle Paleocene of Denmark: A tube-dwelling predator documented by the ichnofossil Lepidenteron mortenseni n. isp. and its predominant prey, Bobbitichthys n. gen. rosenkrantzi (Macroridae, Teleostei)". Bulletin of the Geological Society of Denmark. 69: 35–52. doi:10.37570/bgsd-2021-69-02.
  120. ^ Taverne, L.; Capasso, L. (2021). "Osteology and relationships of Brauccipycnodus pillae gen. nov. from the Albian (Lower Cretaceous) of Pietraroja (Campania, southern Italy)" (PDF). Geo-Eco-Trop. 45 (1): 161–175. Archived (PDF) from the original on 2021-02-21. Retrieved 2021-02-14.
  121. ^ Newman, M. J.; Burrow, C. J.; den Blaauwen, J. L.; Giles, S. (2021). "A new actinopterygian Cheirolepis jonesi nov. sp. from the Givetian of Spitsbergen, Svalbard". Norwegian Journal of Geology. 101: Article 202103. doi:10.17850/njg101-1-3.
  122. ^ Cantalice, K. M.; Than‐Marchese, B. A.; Villalobos‐Segura, E. (2021). "A new Cenomanian acanthomorph fish from the El Chango quarry (Chiapas, south‐eastern Mexico) and its implications for the early diversification and evolutionary trends of acanthopterygians". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1359.
  123. ^ Ma, X.; Xu, G.; Geng, B. (2021). "Feroxichthys panzhouensis sp. nov., a hump-backed colobodontid (Neopterygii, Actinopterygii) from the early Middle Triassic of Panzhou, Guizhou, China". PeerJ. 9: e11257. doi:10.7717/peerj.11257. PMC 8035898. PMID 33868833.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  124. ^ Ebersole, J. A.; Cicimurri, D. J.; Stringer, G. L. (2021). "Marine fishes (Elasmobranchii, Teleostei) from the Glendon Limestone Member of the Byram Formation (Oligocene, Rupelian) at site AWa-9, Washington County, Alabama, USA, including a new species of gobiid (Gobiiformes: Gobiidae)". Acta Geologica Polonica. in press. doi:10.24425/agp.2020.134561.
  125. ^ Chen, G.; Chang, M.; Wu, F.; Liao, X. (2021). "Guiclupea superstes, gen. et sp. nov., the youngest ellimmichthyiform (clupeomorph) fish to date from the Oligocene of South China". PeerJ. 9: e11418. doi:10.7717/peerj.11418.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  126. ^ Ren, Y.; Xu, G.-H. (2021). "A new species of Pteronisculus from the Middle Triassic (Anisian) of Luoping, Yunnan, China, and phylogenetic relationships of early actinopterygian fishes". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.2096-9899.210518.
  127. ^ Yabumoto, Y.; Milàn, M. V. (2021). "A New Miocene Scorpaenoid Fish, Raususetarches sakurai gen. et sp. nov. (Teleostei: Scorpaeniformes) from Rausu, Hokkaido, Japan". Paleontological Research. 25 (2): 93–104. doi:10.2517/2020PR013.
  128. ^ Renesto, S.; Magnani, F.; Stockar, R. (2021). "A new species of Saurichthys (Actinopterygii: Saurichtydae) from the Middle Triassic of Monte San Giorgio". Rivista Italiana di Paleontologia e Stratigrafia. 127 (1): 49–71. doi:10.13130/2039-4942/15143.
  129. ^ Stringer, G.; Schwarzhans, W. (2021). "Upper Cretaceous Teleostean Otoliths from the Severn Formation (Maastrichtian) of Maryland, USA, with an Unusual Occurrence of Siluriformes and Beryciformes and the Oldest Atlantic Coast Gadiformes". Cretaceous Research. in press: Article 104867. doi:10.1016/j.cretres.2021.104867.
  130. ^ Rival, D. E.; Yang, W.; Caron, J.-B. (2021). "Fish without Tail Fins—Exploring the Function of Tail Morphology of the First Vertebrates". Integrative and Comparative Biology. in press. doi:10.1093/icb/icab004. PMID 33690846.
  131. ^ Miyashita, T.; Gess, R. W.; Tietjen, K.; Coates, M. I. (2021). "Non-ammocoete larvae of Palaeozoic stem lampreys". Nature. 591 (7850): 408–412. doi:10.1038/s41586-021-03305-9. PMID 33692547.
  132. ^ Ferrón, H. G.; Martínez-Pérez, C.; Rahman, I. A.; de Lucas, V. S.; Botella, H.; Donoghue, P. C. J. (2021). "Functional assessment of morphological homoplasy in stem-gnathostomes". Proceedings of the Royal Society B: Biological Sciences. 288 (1943): Article ID 20202719. doi:10.1098/rspb.2020.2719. PMC 7893270. PMID 33467997.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  133. ^ Bremer, O.; Qu, Q.; Sanchez, S.; Märss, T.; Fernandez, V.; Blom, H. (2021). "The emergence of a complex pore‐canal system in the dermal skeleton of Tremataspis (Osteostraci)". Journal of Morphology. in press. doi:10.1002/jmor.21359. PMID 33848014.
  134. ^ Haridy, Y.; Osenberg, M.; Hilger, A.; Manke, I.; Davesne, D.; Witzmann, F. (2021). "Bone metabolism and evolutionary origin of osteocytes: Novel application of FIB-SEM tomography". Science Advances. 7 (14): eabb9113. doi:10.1126/sciadv.abb9113. PMC 8011976. PMID 33789889.
  135. ^ Zhu, Y.; Giles, S.; Young, G. C.; Hu, Y.; Bazzi, M.; Ahlberg, P. E.; Zhu, M.; Lu, J. (2021). "Endocast and bony labyrinth of a Devonian "placoderm" challenges stem gnathostome phylogeny". Current Biology. 31 (5): 1112–1118.e4. doi:10.1016/j.cub.2020.12.046. PMID 33508218.
  136. ^ Wang, Y.; Zhu, M. (2021). "New data on the headshield of Parayunnanolepis xitunensis (Placodermi, Antiarcha), with comments on nasal capsules in antiarchs". Journal of Vertebrate Paleontology. 40 (6): e1855189. doi:10.1080/02724634.2020.1855189.
  137. ^ Dupret, V.; Szaniawski, H.; Dec, M.; Szrek, P. (2021). "New cranial material of the acanthothoracid placoderm Palaeacanthaspis vasta from the Lower Devonian of Podolia—phylogenetic and taxonomic significance". Acta Palaeontologica Polonica. 66. doi:10.4202/app.00857.2020.
  138. ^ Rücklin, M.; King, B.; Cunningham, J. A.; Johanson, Z.; Marone, F.; Donoghue, P. C. J. (2021). "Acanthodian dental development and the origin of gnathostome dentitions". Nature Ecology & Evolution. in press. doi:10.1038/s41559-021-01458-4. PMID 33958756.
  139. ^ Villalobos-Segura, Y.; Kriwet, J.; Vullo, R.; Stumpf, S.; Ward, D. J.; Underwood, C. J. (2021). "The skeletal remains of the euryhaline sclerorhynchoid †Onchopristis (Elasmobranchii) from the 'Mid'-Cretaceous and their palaeontological implications". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlaa166.
  140. ^ Stumpf, S.; López‐Romero, F. A.; Kindlimann, R.; Lacombat, F.; Pohl, B; Kriwet, J. (2021). "A unique hybodontiform skeleton provides novel insights into Mesozoic chondrichthyan life". Papers in Palaeontology. in press. doi:10.1002/spp2.1350.
  141. ^ Ballell, A.; Ferrón, H. G. (2021). "Biomechanical insights into the dentition of megatooth sharks (Lamniformes: Otodontidae)". Scientific Reports. 11 (1): Article number 1232. doi:10.1038/s41598-020-80323-z. PMC 7806677. PMID 33441828.
  142. ^ Shimada, K.; Bonnan, M. F.; Becker, M. A.; Griffiths, M. L. (2021). "Ontogenetic growth pattern of the extinct megatooth shark Otodus megalodon—implications for its reproductive biology, development, and life expectancy". Historical Biology: An International Journal of Paleobiology. in press: 1–6. doi:10.1080/08912963.2020.1861608.
  143. ^ Perez, V. J.; Leder, R. M.; Badaut, T. (2021). "Body length estimation of Neogene macrophagous lamniform sharks (Carcharodon and Otodus) derived from associated fossil dentitions". Palaeontologia Electronica. 24 (1): Article number 24.1.a09. doi:10.26879/1140.
  144. ^ Türtscher, J.; López-Romero, F. A.; Jambura, P. L.; Kindlimann, R.; Ward, D. J.; Kriwet, J. (2021). "Evolution, diversity, and disparity of the tiger shark lineage Galeocerdo in deep time". Paleobiology. in press: 1–17. doi:10.1017/pab.2021.6.
  145. ^ Malyshkina, T. P. (2021). "Striatolamia tchelkarnurensis Glickman (Elasmobranchii: Lamniformes), the youngest valid Striatolamia species". Paleontological Journal. 55 (2): 193–204. doi:10.1134/S0031030121020088. Retrieved 2021-02-20.
  146. ^ Collareta, A.; Landini, W.; Bianucci, G.; Di Celma, C. (2021). "Until Panama do us part: new finds from the Pliocene of Ecuador provide insights into the origin and palaeobiogeographic history of the extant requiem sharks Carcharhinus acronotus and Nasolamia velox". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 300 (1): 103–115. doi:10.1127/njgpa/2021/0981.
  147. ^ Wilson, C. D.; Mansky, C. F.; Anderson, J. S. (2021). "A platysomid occurrence from the Tournaisian of Nova Scotia". Scientific Reports. 11 (1): Article number 8375. doi:10.1038/s41598-021-87027-y. PMC 8052371. PMID 33863939.
  148. ^ Romano, C. (2021). "A hiatus obscures the early evolution of modern lineages of bony fishes". Frontiers in Earth Science. 8: Article 618853. doi:10.3389/feart.2020.618853.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  149. ^ Argyriou, T.; Davesne, D. (2021). "Offshore marine actinopterygian assemblages from the Maastrichtian–Paleogene of the Pindos Unit in Eurytania, Greece". PeerJ. 9: e10676. doi:10.7717/peerj.10676. PMC 7825367. PMID 33552722.
  150. ^ Cawley, J. J.; Marramà, G.; Carnevale, G.; Villafaña, J. A.; López‐Romero, F. A.; Kriwet, J. (2021). "Rise and fall of †Pycnodontiformes: Diversity, competition and extinction of a successful fish clade". Ecology and Evolution. 11 (4): 1769–1796. doi:10.1002/ece3.7168. PMC 7882952. PMID 33614003.
  151. ^ Collins, S. E.; Underwood, C. J. (2021). "Unique damage‐related, gap‐filling tooth replacement in pycnodont fishes". Palaeontology. Online edition. doi:10.1111/pala.12539.
  152. ^ Schwarzhans, W.; Carnevale, G. (2021). "The rise to dominance of lanternfishes (Teleostei: Myctophidae) in the oceanic ecosystems: a paleontological perspective". Paleobiology. in press: 1–18. doi:10.1017/pab.2021.2.
  153. ^ Toriño, P.; Soto, M.; Perea, D. (2021). "A comprehensive phylogenetic analysis of coelacanth fishes (Sarcopterygii, Actinistia) with comments on the composition of the Mawsoniidae and Latimeriidae: evaluating old and new methodological challenges and constraints". Historical Biology: An International Journal of Paleobiology. in press: 1–21. doi:10.1080/08912963.2020.1867982.
  154. ^ Mondéjar‐Fernández, J.; Meunier, F. J.; Cloutier, R.; Clément, G.; Laurin, M. (2021). "A microanatomical and histological study of the scales of the Devonian sarcopterygian Miguashaia bureaui and the evolution of the squamation in coelacanths". Journal of Anatomy. in press. doi:10.1111/joa.13428. PMID 33748974.
  155. ^ Brito, P. M.; Martill, D. M.; Eaves, I.; Smith, R.; Cooper, S. L. A. (2021). "A marine Late Cretaceous (Maastrichtian) coelacanth from North Africa". Cretaceous Research. 122: Article 104768. doi:10.1016/j.cretres.2021.104768.
  156. ^ Lemberg, J. B.; Daeschler, E. B.; Shubin, N. H. (2021). "The feeding system of Tiktaalik roseae: an intermediate between suction feeding and biting". Proceedings of the National Academy of Sciences of the United States of America. 118 (7): e2016421118. doi:10.1073/pnas.2016421118. PMC 7896305. PMID 33526593.
  157. ^ Werneburg, R.; Schneider, J. W.; Lucas, S. G. (2021). "The new dvinosaurian Bermanerpeton kinneyi (Temnospondyli), with "branchiosaurid" characters, from the Late Pennsylvanian Kinney Brick Quarry in New Mexico". New Mexico Museum of Natural History and Science Bulletin. 84: 433–451.
  158. ^ Liu, J.; Chen, J. (2021). "The tetrapod fauna of the upper Permian Naobaogou Formation of China: 7. Laosuchus hun sp. nov. (Chroniosuchia) and interrelationships of chroniosuchians". Journal of Systematic Palaeontology. 18 (24): 2043–2058. doi:10.1080/14772019.2021.1873435.
  159. ^ a b Roček, Z.; Rage, J.-C.; Venczel, M. (2021). "Fossil frogs of the genus Palaeobatrachus (Amphibia: Anura)". Abhandlungen der Senckenberg Gesellschaft für Naturforschung. 575: 1–151. ISBN 978-3-510-61420-2.
  160. ^ Rage, J.-C.; Adaci, M.; Bensalah, M.; Mahboubi, M.; Marivaux, L.; Mebrouk, F.; Tabuce, R. (2021). "Latest Early-early Middle Eocene deposits of Algeria (Glib Zegdou, HGL50), yield the richest and most diverse fauna of amphibians and squamate reptiles from the Palaeogene of Africa" (PDF). Palæovertebrata. 44 (1): e1. doi:10.18563/pv.44.1.e1.
  161. ^ Molnar, J. L.; Hutchinson, J. R.; Diogo, R.; Clack, J. A.; Pierce, S. E. (2021). "Evolution of forelimb musculoskeletal function across the fish-to-tetrapod transition". Science Advances. 7 (4): eabd7457. doi:10.1126/sciadv.abd7457. PMID 33523947.
  162. ^ Lennie, K. I.; Manske, S. L.; Mansky, C. F.; Anderson, J. S. (2021). "Locomotory behaviour of early tetrapods from Blue Beach, Nova Scotia, revealed by novel microanatomical analysis". Royal Society Open Science. 8 (5): Article ID 210281. doi:10.1098/rsos.210281.
  163. ^ Estefa, J.; Tafforeau, P.; Clement, A. M.; Klembara, J.; Niedźwiedzki, G.; Berruyer, C.; Sanchez, S. (2021). "New light shed on the early evolution of limb-bone growth plate and bone marrow". eLife. 10: e51581. doi:10.7554/eLife.51581. PMC 7924947. PMID 33648627.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  164. ^ Ó Gogáin, A.; Wyse Jackson, P. N. (2021). "Microcomputed tomography of the holotype of the early tetrapod Ichthyerpeton bradleyae (Huxley in Wright and Huxley, 1866) from the Pennsylvanian of Ireland". Journal of Paleontology. Online edition: 1–13. doi:10.1017/jpa.2021.31.
  165. ^ Otoo, B. K. A.; Bolt, J. R.; Lombard, R. E.; Angielczyk, K. D.; Coates, M. I. (2021). "The postcranial anatomy of Whatcheeria deltae and its implications for the family Whatcheeriidae". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlaa182.
  166. ^ Schoch, R. R. (2021). "Osteology of the Permian temnospondyl amphibian Glanochthon lellbachae and its relationships". Fossil Record. 24 (1): 49–64. doi:10.5194/fr-24-49-2021.
  167. ^ Uliakhin, A. V.; Skutschas, P. P.; Saburov, P. G. (2021). "Age variability in the histological structure of the postcranial skeleton of Platyoposaurus stuckenbergi (Temnospondyli, Archegosauridae) from the Middle Permian of Eastern Europe". Paleontological Journal. 55 (3).
  168. ^ Slodownik, M. A.; Mörs, T.; Kear, B. P. (2021). "Reassessment of the Early Triassic trematosaurid temnospondyl Tertrema acuta from the Arctic island of Spitsbergen". Journal of Vertebrate Paleontology. in press: e1900209. doi:10.1080/02724634.2021.1900209.
  169. ^ Gee, B. M.; Jasinski, S. E. (2021). "Description of the metoposaurid Anaschisma browni from the New Oxford Formation of Pennsylvania". Journal of Paleontology. in press: 1–18. doi:10.1017/jpa.2021.30.
  170. ^ Marsicano, C.; Angielczyk, K. D.; Cisneros, J. C.; Richter, M.; Kammerer, C. F.; Fröbisch, J.; Smith, R. M. H. (2021). "Brazilian Permian Dvinosaurs (Amphibia, Temnospondyli): Revised Description and Phylogeny". Journal of Vertebrate Paleontology. in press: e1893181. doi:10.1080/02724634.2021.1893181.
  171. ^ Schoch, R. R.; Milner, A. R. (2021). "Morphology and relationships of the temnospondyl Macrerpeton huxleyi from the Pennsylvanian of Linton, Ohio (USA)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 299 (1): 77–98. doi:10.1127/njgpa/2021/0956.
  172. ^ Gee, B. M.; Berman, D. S.; Henrici, A. M.; Pardo, J. D.; Huttenlocker, A. K. (2021). "New Information on the Dissorophid Conjunctio (Temnospondyli) Based on a Specimen from the Cutler Formation of Colorado, U.S.A.". Journal of Vertebrate Paleontology. 40 (6): e1877152. doi:10.1080/02724634.2020.1877152.
  173. ^ Gee, B. M.; Sidor, C. A. (2021). "First record of the amphibamiform Micropholis stowi from the lower Fremouw Formation (Lower Triassic) of Antarctica". Journal of Vertebrate Paleontology. in press: e1904251. doi:10.1080/02724634.2021.1904251.
  174. ^ Werneburg, R.; Schneider, J. W.; Lucas, S. G. (2021). "The "amphibamid" and "branchiosaurid" morphotype in the dissorophoid Milnererpeton huberi (Temnospondyli), from the Late Pennsylvanian Kinney Brick Quarry in New Mexico". New Mexico Museum of Natural History and Science Bulletin. 84: 425–432.
  175. ^ Wick, S. L. (2021). "Fossil frogs from the early Campanian of West Texas, USA, with comments on Late Cretaceous anuran diversity in southern Laramidia". Palaeobiodiversity and Palaeoenvironments. in press. doi:10.1007/s12549-021-00481-4.
  176. ^ Venczel, M.; Szentesi, Z.; Gardner, J. D. (2021). "New material of the frog Hungarobatrachus szukacsi Szentesi & Venczel, 2010, from the Santonian of Hungary, supports its neobatrachian affinities and reveals a Gondwanan influence on the European Late Cretaceous anuran fauna". Geodiversitas. 43 (7): 187–207. doi:10.5252/geodiversitas2021v43a7.
  177. ^ Gómez, R. O.; Turazzini, G. F. (2021). "The fossil record and phylogeny of South American horned frogs (Anura, Ceratophryidae)". Journal of Systematic Palaeontology. 19 (2): 91–130. doi:10.1080/14772019.2021.1892845.
  178. ^ Nonsrirach, T.; Manitkoon, S.; Lauprasert, K. (2021). "First occurrence of brachyopid temnospondyls in Southeast Asia and review of the Mesozoic amphibians from Thailand". Fossil Record. 24 (1): 33–47. doi:10.5194/fr-24-33-2021.
  179. ^ a b Kammerer, C. F.; Ordoñez, M. D. (2021). "Dicynodonts (Therapsida: Anomodontia) of South America". Journal of South American Earth Sciences. 108: Article 103171. doi:10.1016/j.jsames.2021.103171.
  180. ^ a b Panciroli, E.; Benson, R. B. J.; Fernandez, V.; Butler, R. J.; Fraser, N. C.; Luo, Z.-X.; Walsh, S. (2021). "New species of mammaliaform and the cranium of Borealestes (Mammaliformes: Docodonta) from the Middle Jurassic of the British Isles". Zoological Journal of the Linnean Society. Online edition. doi:10.1093/zoolinnean/zlaa144.
  181. ^ Mao, F.; Zhang, C.; Liu, C.; Meng, J. (2021). "Fossoriality and evolutionary development in two Cretaceous mammaliamorphs". Nature. 592 (7855): 577–582. doi:10.1038/s41586-021-03433-2. PMID 33828300.
  182. ^ Sidor, C. A.; Tabor, N. J.; Smith, R. M. (2021). "A new late Permian burnetiamorph from Zambia confirms exceptional levels of endemism in Burnetiamorpha (Therapsida: Biarmosuchia) and an updated paleoenvironmental interpretation of the upper Madumabisa Mudstone Formation". Frontiers in Ecology and Evolution. in press. doi:10.3389/fevo.2021.685244 (inactive 2021-05-23).{{cite journal}}: CS1 maint: DOI inactive as of May 2021 (link) CS1 maint: unflagged free DOI (link)
  183. ^ Kammerer, C. F.; Sidor, C. A. (2021). "A new burnetiid from the middle Permian of Zambia and a reanalysis of burnetiamorph relationships". Papers in Palaeontology. In press. doi:10.1002/spp2.1341.
  184. ^ Liu, J. (2021). "The tetrapod fauna of the upper Permian Naobaogou Formation of China: 6. Turfanodon jiufengensis sp. nov. (Dicynodontia)". PeerJ. 9 (e10854): e10854. doi:10.7717/peerj.10854. PMC 7896508. PMID 33643709.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  185. ^ Jones, K. E.; Dickson, B. V.; Angielczyk, K. D.; Pierce, S. E. (2021). "Adaptive landscapes challenge the "lateral-to-sagittal" paradigm for mammalian vertebral evolution". Current Biology. 31 (9): 1883–1892.e7. doi:10.1016/j.cub.2021.02.009. PMID 33657406.
  186. ^ Lungmus, J. K.; Angielczyk, K. D. (2021). "Phylogeny, function and ecology in the deep evolutionary history of the mammalian forelimb". Proceedings of the Royal Society B: Biological Sciences. 288 (1949): Article ID 20210494. doi:10.1098/rspb.2021.0494. PMC 8059613. PMID 33878918.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  187. ^ Benoit, J.; Ford, D. P.; Miyamae, J. A.; Ruf, I. (2021). "Can maxillary canal morphology inform varanopid phylogenetic affinities?". Acta Palaeontologica Polonica. 66. doi:10.4202/app.00816.2020.
  188. ^ Benoit, J.; Kruger, A.; Jirah, S.; Fernandez, V.; Rubidge, B. S. (2021). "Palaeoneurology and palaeobiology of the dinocephalian therapsid Anteosaurus magnificus". Acta Palaeontologica Polonica. 66 (1): 29–39. doi:10.4202/app.00800.2020.
  189. ^ Rubidge, B. S.; Day, M. O.; Benoit, J. (2021). "New Specimen of the Enigmatic Dicynodont Lanthanostegus mohoii (Therapsida, Anomodontia) from the Southwestern Karoo Basin of South Africa, and its Implications for Middle Permian Biostratigraphy". Frontiers in Earth Science. 9: Article 668143. doi:10.3389/feart.2021.668143.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  190. ^ Smith, R. M. H.; Angielczyk, K. D.; Benoit, J.; Fernandez, V. (2021). "Neonate aggregation in the Permian dicynodont Diictodon (Therapsida, Anomodontia): Evidence for a reproductive function for burrows?". Palaeogeography, Palaeoclimatology, Palaeoecology. 569: Article 110311. doi:10.1016/j.palaeo.2021.110311.
  191. ^ Angielczyk, K. D.; Liu, J.; Yang, W. (2021). "A Redescription of Kunpania scopulusa, a Bidentalian Dicynodont (Therapsida, Anomodontia) from the ?Guadalupian of Northwestern China". Journal of Vertebrate Paleontology. in press: e1922428. doi:10.1080/02724634.2021.1922428.
  192. ^ Han, F.; Zhao, Q.; Liu, J. (2021). "Preliminary bone histological analysis of Lystrosaurus (Therapsida: Dicynodontia) from the Lower Triassic of North China, and its implication for lifestyle and environments after the end-Permian extinction". PLOS ONE. 16 (3): e0248681. doi:10.1371/journal.pone.0248681. PMC 7971864. PMID 33735263.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  193. ^ Escobar, J. A.; Martinelli, A. G.; Ezcurra, M. D.; Fiorelli, L. E.; Desojo, J. B. (2021). "A new stahleckeriid dicynodont record from the late Ladinian-?early Carnian levels of the Chañares Formation (Ischigualasto-Villa Unión Basin) of northwestern Argentina". Journal of South American Earth Sciences. 109: Article 103275. doi:10.1016/j.jsames.2021.103275.
  194. ^ Varnham, G. L.; Mannion, P. D.; Kammerer, C. F. (2021). "Spatiotemporal variation in completeness of the early cynodont fossil record and its implications for mammalian evolutionary history". Palaeontology. 64 (2): 307–333. doi:10.1111/pala.12524.
  195. ^ Gaetano, L. C.; Abdala, F. (2021). "The stapes of Thrinaxodon Seeley, 1894 and Galesaurus Owen, 1859: a case of study for intraspecific variability in basal cynodonts". Comptes Rendus Palevol. 20 (5): 57–74. doi:10.5852/cr-palevol2021v20a5. Archived from the original on 2021-02-08. Retrieved 2021-02-08.
  196. ^ Franco, A. S.; Müller, R. T.; Martinelli, A. G.; Hoffmann, C. A.; Kerber, L. (2021). "The nasal cavity of two traversodontid cynodonts (Eucynodontia, Gomphodontia) from the Upper Triassic of Brazil". Journal of Paleontology. in press: 1–16. doi:10.1017/jpa.2021.6.
  197. ^ Kerber, L.; Ferreira, J. D.; Fonseca, P. H. M.; Franco, A.; Martinelli, A. G.; Soares, M. B.; Ribeiro, A. M. (2021). "An additional brain endocast of the ictidosaur Riograndia guaibensis (Eucynodontia: Probainognathia): intraspecific variation of endocranial traits". Anais da Academia Brasileira de Ciências. 93 (Suppl. 2): e20200084. doi:10.1590/0001-3765202120200084. PMID 33681891.
  198. ^ Wang, J.; Wible, J. R.; Guo, B.; Shelley, S. L.; Hu, H.; Bi, S. (2021). "A monotreme-like auditory apparatus in a Middle Jurassic haramiyidan". Nature. 590 (7845): 279–283. doi:10.1038/s41586-020-03137-z. PMID 33505017.
  199. ^ a b c Moczydłowska, M.; Kear, B. P.; Snitting, D.; Liu, L.; Lazor, P.; Majka, J. (2021). "Ediacaran metazoan fossils with siliceous skeletons from the Digermulen Peninsula of Arctic Norway". Journal of Paleontology. 95 (3): 440–475. doi:10.1017/jpa.2020.105.
  200. ^ a b c Maletz, J.; Ahlberg, P. (2021). "Dapingian to lower Darriwilian (Middle Ordovician) graptolite biostratigraphy and correlation of the Krapperup drill core, Scania, Sweden". GFF. 143 (1): 16–39. doi:10.1080/11035897.2020.1822439.
  201. ^ Sánchez-Beristain, F.; García-Barrera, P.; Juárez-Aguilar, E. A. (2021). "Cretaceous chaetetids (Porifera: Demospongiae) from Mexico: Systematics, palaeoecology, palaeobiogeography, stratigraphy and perspectives". Journal of South American Earth Sciences. 109: Article 103258. doi:10.1016/j.jsames.2021.103258.
  202. ^ Pates, S.; Lerosey-Aubril, R.; Daley, A. C.; Kier, C.; Bonino, E.; Ortega-Hernández, J. (2021). "The diverse radiodont fauna from the Marjum Formation of Utah, USA (Cambrian: Drumian)". PeerJ. 9: e10509. doi:10.7717/peerj.10509. PMC 7821760. PMID 33552709.
  203. ^ Vinn, O.; Eyzenga, J. (2021). "When did spines appear in cornulitids – a new spiny Cornulites from the Upper Ordovician of Baltica". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 299 (1): 99–105. doi:10.1127/njgpa/2021/0957.
  204. ^ Claybourn, T. M.; Skovsted, C. B.; Betts, M. J.; Holmer, L. E.; Bassett-Butt, L.; Brock, G. A. (2021). "Camenellan tommotiids from the Cambrian Series 2 of East Antarctica: Biostratigraphy, palaeobiogeography, and systematics". Acta Palaeontologica Polonica. 66 (1): 207–229. doi:10.4202/app.00758.2020.
  205. ^ Wu, Y.; Fu, D.; Ma, J.; Lin, W.; Sun, A.; Zhang, X. (2021). "Houcaris gen. nov. from the early Cambrian (Stage 3) Chengjiang Lagerstätte expanded the palaeogeographical distribution of tamisiocaridids (Panarthropoda: Radiodonta)". PalZ. 95 (2): 209–221. doi:10.1007/s12542-020-00545-4.
  206. ^ Wu, Y.; Ma, J.; Lin, W.; Sun, A.; Zhang, X.; Fu, D. (2021). "New anomalocaridids (Panarthropoda: Radiodonta) from the lower Cambrian Chengjiang Lagerstätte: Biostratigraphic and paleobiogeographic implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 569: Article 110333. doi:10.1016/j.palaeo.2021.110333.
  207. ^ Samant, B.; Pronzato, R.; Mohabey, D. M.; Kumar, D.; Dhobale, A.; Pizal, P.; Manconi, R. (2021). "Insight into the evolutionary history of freshwater sponges: a new genus and new species of Spongillida (Porifera: Demospongiae) from Upper Cretaceous (Maastrichtian) Deccan intertrappean lacustrine deposits of the Malwa Group, Central India". Cretaceous Research. in press: Article 104851. doi:10.1016/j.cretres.2021.104851.
  208. ^ a b Luo, C.; Zhang, L.; Chang, S.; Feng, Q. (2021). "A sponge fossil fauna from the Cambrian Shuijingtuo Formation, Qiaoji-aping Village, Yichang, Hubei Province". Acta Palaeontologica Sinica. 60 (1): 69–86. doi:10.19800/j.cnki.aps.2021001.
  209. ^ Kozłowska, A.; Bates, D. (2021). "Papiliograptus retimarginatus n. sp., a new retiolitid (Graptolithina) from the predeubeli/deubeli Biozone (upper Homerian, Wenlock, Silurian), the recovery phase after the lundgreni Extinction Event". Comptes Rendus Palevol. 20 (12): 199–206. doi:10.5852/cr-palevol2021v20a12.
  210. ^ Jiao, D.-G.; Pates, S.; Lerosey-Aubril, R.; Ortega-Hernández, J.; Yang, J.; Lan, T.; Zhang, X.-G. (2021). "The endemic radiodonts of the Cambrian Stage 4 Guanshan Biota of South China". Acta Palaeontologica Polonica. 66. doi:10.4202/app.00870.2020.
  211. ^ Ling, C.; Peng, J.; Zhang, H.; Wang, Y.; Shao, Y.; Sun, Q.; Wang, Q. (2021). "Saetaspongia sponges from the Cambrian (Stage 4) Balang Formation of Guizhou, China". Journal of Paleontology. Online edition: 1–13. doi:10.1017/jpa.2021.29.
  212. ^ Dieni, I.; Massari, F. (2021). "The coral Synastrea bellula (D'ORB.) in the Berriasian of Venetian Prealps (NE Italy). A key for interpreting the palaeobathymetry of the Maiolica on the Trento plateau". Cretaceous Research. 125: Article 104871. doi:10.1016/j.cretres.2021.104871.
  213. ^ a b Wei, F.; Zhao, Y.; Chen, A.; Hou, X.; Cong, P. (2021). "New vauxiid sponges from the Chengjiang Biota and their evolutionary significance". Journal of the Geological Society. in press: jgs2020-162. doi:10.1144/jgs2020-162.
  214. ^ Evans, S. D.; Droser, M. L.; Erwin, D. H. (2021). "Developmental processes in Ediacara macrofossils". Proceedings of the Royal Society B: Biological Sciences. 288 (1945): Article ID 20203055. doi:10.1098/rspb.2020.3055. PMC 7934905. PMID 33622124.
  215. ^ Ivantsov, A.; Zakrevskaya, M. (2021). "Dickinsonia: mobile and adhered". Geological Magazine. in press: 1–16. doi:10.1017/S0016756821000194.
  216. ^ Cracknell, K.; García-Bellido, D. C.; Gehling, J. G.; Ankor, M. J.; Darroch, S. A. F.; Rahman, I. A. (2021). "Pentaradial eukaryote suggests expansion of suspension feeding in White Sea-aged Ediacaran communities". Scientific Reports. 11 (1): Article number 4121. doi:10.1038/s41598-021-83452-1. PMC 7893023. PMID 33602958.
  217. ^ Shore, A. J.; Wood, R. A.; Butler, I. B.; Zhuravlev, A. Yu.; McMahon, S.; Curtis, A.; Bowyer, F. T. (2021). "Ediacaran metazoan reveals lophotrochozoan affinity and deepens root of Cambrian Explosion". Science Advances. 7 (1): eabf2933. doi:10.1126/sciadv.abf2933. PMC 7775780. PMID 33523867.
  218. ^ Steiner, M.; Yang, B.; Hohl, S.; Li, D.; Donoghue, P. (2021). "Exceptionally preserved early Cambrian bilaterian developmental stages from Mongolia". Nature Communications. 12 (1): Article number 1037. doi:10.1038/s41467-021-21264-7. PMC 7884407. PMID 33589612.
  219. ^ Moysiuk, J.; Caron, J.-B. (2021). "Exceptional multifunctionality in the feeding apparatus of a mid-Cambrian radiodont". Paleobiology. in press: 1–21. doi:10.1017/pab.2021.19.
  220. ^ Strother, P. K.; Brasier, M. D.; Wacey, D.; Timpe, L.; Saunders, M.; Wellman, C. H. (2021). "A possible billion-year-old holozoan with differentiated multicellularity". Current Biology. in press. doi:10.1016/j.cub.2021.03.051. PMID 33852871.
  221. ^ Schultz, Isaac (29 April 2021). "Scientists Find Billion-Year-Old Fossil Life, 'Something Which Has Never Been Described Before'". Gizmodo. Retrieved 1 May 2021.
  222. ^ Le Renard, L.; Stockey, R. A.; Upchurch, G. R.; Berbee, M. L. (2021). "Extending the fossil record for foliicolous Dothideomycetes: Bleximothyrium ostiolatum gen. et sp. nov., a unique fly‐speck fungus from the Lower Cretaceous of Virginia, USA". American Journal of Botany. 108 (1): 129–144. doi:10.1002/ajb2.1602. PMID 33528044.
  223. ^ Perreau, M.; Haelewaters, D.; Tafforeau, P. (2021). "A parasitic coevolution since the Miocene revealed by phase-contrast synchrotron X-ray microtomography and the study of natural history collections". Scientific Reports. 11 (1): Article number 2672. doi:10.1038/s41598-020-79481-x. PMC 7846571. PMID 33514784.
  224. ^ Taylor, R. S.; Matthews, J. J.; Nicholls, R.; McIlroy, D. (2021). "A re-assessment of the taxonomy, palaeobiology and taphonomy of the rangeomorph organism Hapsidophyllas flexibilis from the Ediacaran of Newfoundland, Canada". PalZ. 95 (2): 187–207. doi:10.1007/s12542-020-00537-4.
  225. ^ Miao, L.; Moczydłowska, M.; Zhu, M. (2021). "A diverse organic-walled microfossil assemblage from the Mesoproterozoic Xiamaling Formation, North China". Precambrian Research. 360: Article 106235. doi:10.1016/j.precamres.2021.106235.
  226. ^ Krings, M.; Serbet, S. M.; Harper, C. J. (2021). "Rhizophydites matryoshkae gen. et sp. nov. (fossil Chytridiomycota) on spores of the early land plant Horneophyton lignieri from the Lower Devonian Rhynie Chert". International Journal of Plant Sciences. 182 (2): 109–122. doi:10.1086/712250.
  227. ^ Delarue, F.; Bernard, S.; Sugitani, K.; Robert, F.; Tartèse, R.; Albers, S.-V.; Duhamel, R.; Pont, S.; Derenne, S. (2021). "Microfossils with tail-like structures in the 3.4 Gyr old Strelley Pool Formation". Precambrian Research. 358: Article 106187. doi:10.1016/j.precamres.2021.106187.
  228. ^ Tang, Q.; Pang, K.; Li, G.; Chen, L.; Yuan, X.; Xiao, S. (2021). "One-billion-year-old epibionts highlight symbiotic ecological interactions in early eukaryote evolution". Gondwana Research. 97: 22–33. doi:10.1016/j.gr.2021.05.008.
  229. ^ Tang, Q.; Pang, K.; Li, G.; Chen, L.; Yuan, X.; Sharma, M.; Xiao, S. (2021). "The Proterozoic macrofossil Tawuia as a coenocytic eukaryote and a possible macroalga". Palaeogeography, Palaeoclimatology, Palaeoecology. in press: Article 110485. doi:10.1016/j.palaeo.2021.110485.
  230. ^ Becker-Kerber, B.; de Barros, G. E. B.; Paim, P. S. G.; Prado, G. M. E. M.; Rosa, A. L. Z.; El Albani, A.; Laflamme, M. (2021). "In situ filamentous communities from the Ediacaran (approx. 563 Ma) of Brazil". Proceedings of the Royal Society B: Biological Sciences. 288 (1942): Article ID 20202618. doi:10.1098/rspb.2020.2618. PMC 7892400. PMID 33402067.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  231. ^ Gan, T.; Luo, T.; Pang, K.; Zhou, C.; Zhou, G.; Wan, B.; Li, G.; Yi, Q.; Czaja, A. D.; Xiao, S. (2021). "Cryptic terrestrial fungus-like fossils of the early Ediacaran Period". Nature Communications. 12 (1): Article number 641. doi:10.1038/s41467-021-20975-1. PMC 7843733. PMID 33510166.
  232. ^ Walker, C.; Harper, C. J.; Brundrett, M.; Krings, M. (2021). "The Early Devonian fungus Mycokidstonia sphaerialoides from the Rhynie chert is a member of the Ambisporaceae (Glomeromycota, Archaeosporales), not an ascomycete". Review of Palaeobotany and Palynology. 287: Article 104384. doi:10.1016/j.revpalbo.2021.104384.
  233. ^ Strullu-Derrien, C.; Gèze, M.; Spencer, A. R. T.; De Franceschi, D.; Kenrick, P.; Selosse, M.-A.; Knoll, A. H. (2021). "An expanded diversity of oomycetes in Carboniferous forests: Reinterpretation of Oochytrium lepidodendri (Renault 1894) from the Esnost chert, Massif Central, France". PLOS ONE. 16 (3): e0247849. doi:10.1371/journal.pone.0247849. PMC 7924773. PMID 33651837.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  234. ^ Maloney, K. M.; Halverson, G. P.; Schiffbauer, J. D.; Xiao, S.; Gibson, T. M.; Lechte, M. A.; Cumming, V. M.; Millikin, A. E. G.; Murphy, J. G.; Wallace, M. W.; Selby, D.; Laflamme, M. (2021). "New multicellular marine macroalgae from the early Tonian of northwestern Canada" (PDF). Geology. in press. doi:10.1130/G48508.1.
  235. ^ Zacaï, A.; Monnet, C.; Pohl, A.; Beaugrand, G.; Mullins, G.; Kroeck, D. M.; Servais, T. (2021). "Truncated bimodal latitudinal diversity gradient in early Paleozoic phytoplankton". Science Advances. 7 (15): eabd6709. doi:10.1126/sciadv.abd6709. PMC 8026127. PMID 33827811.
  236. ^ Carlisle, E. M.; Jobbins, M.; Pankhania, V.; Cunningham, J. A.; Donoghue, P. C. J. (2021). "Experimental taphonomy of organelles and the fossil record of early eukaryote evolution". Science Advances. 7 (5): eabe9487. doi:10.1126/sciadv.abe9487. PMC 7840124. PMID 33571133.
  237. ^ Zhang, S.; Su, J.; Ma, S.; Wang, H.; Wang, X.; He, K.; Wang, H.; Canfield, D. E. (2021). "Eukaryotic red and green algae populated the tropical ocean 1400 million years ago". Precambrian Research. 357: Article 106166. doi:10.1016/j.precamres.2021.106166.
  238. ^ Rojas, A.; Calatayud, J.; Kowalewski, M.; Neuman, M.; Rosvall, M. (2021). "A multiscale view of the Phanerozoic fossil record reveals the three major biotic transitions". Communications Biology. 4 (1): Article number 309. doi:10.1038/s42003-021-01805-y. PMC 7977041. PMID 33686149.
  239. ^ Barnes, B. D.; Sclafani, J. A.; Zaffos, A. (2021). "Dead clades walking are a pervasive macroevolutionary pattern". Proceedings of the National Academy of Sciences of the United States of America. 118 (15): e2019208118. doi:10.1073/pnas.2019208118. PMC 8053996. PMID 33827921.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  240. ^ Geyer, G.; Landing, E. (2021). "The Souss lagerstätte of the Anti-Atlas, Morocco: discovery of the first Cambrian fossil lagerstätte from Africa". Scientific Reports. 11 (1): Article number 3107. doi:10.1038/s41598-021-82546-0. PMC 7862689. PMID 33542356.
  241. ^ Buchwitz, M.; Jansen, M.; Renaudie, J.; Marchetti, L.; Voigt, S. (2021). "Evolutionary Change in Locomotion Close to the Origin of Amniotes Inferred From Trackway Data in an Ancestral State Reconstruction Approach". Frontiers in Ecology and Evolution. 9: Article 674779. doi:10.3389/fevo.2021.674779.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  242. ^ Buatois, L. A.; Borruel‐Abadía, V.; De la Horra, E.; Galán‐Abellán, A. B.; López‐Gómez, J.; Barrenechea, J. F.; Arche, A. (2021). "Impact of Permian mass extinctions on continental invertebrate infauna". Terra Nova. in press. doi:10.1111/ter.12530.
  243. ^ Day, M. O.; Rubidge, B. S. (2021). "The Late Capitanian Mass Extinction of Terrestrial Vertebrates in the Karoo Basin of South Africa". Frontiers in Earth Science. 9: Article 631198. doi:10.3389/feart.2021.631198.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  244. ^ Viglietti, P. A.; Benson, R. B. J.; Smith, R. M. H.; Botha, J.; Kammerer, C. F.; Skosan, Z.; Butler, E.; Crean, A.; Eloff, B.; Kaal, S.; Mohoi, J.; Molehe, W.; Mtalana, N.; Mtungata, S.; Ntheri, N.; Ntsala, T.; Nyaphuli, J.; October, P.; Skinner, G.; Strong, M.; Stummer, H.; Wolvaardt, F. P.; Angielczyk, K. D. (2021). "Evidence from South Africa for a protracted end-Permian extinction on land". Proceedings of the National Academy of Sciences of the United States of America. 118 (17): e2017045118. doi:10.1073/pnas.2017045118. PMC 8092562. PMID 33875588.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  245. ^ Li, G.; Liao, W.; Li, S.; Wang, Y.; Lai, Z. (2021). "Different triggers for the two pulses of mass extinction across the Permian and Triassic boundary". Scientific Reports. 11 (1): Article number 6686. doi:10.1038/s41598-021-86111-7. PMC 7988102. PMID 33758284.
  246. ^ Klein, H.; Lucas, S. G. (2021). "The Triassic tetrapod footprint record". New Mexico Museum of Natural History and Science Bulletin. 83: 1–194.
  247. ^ Singh, S. A.; Elsler, A.; Stubbs, T. L.; Bond, R.; Rayfield, E. J.; Benton, M. J. (2021). "Niche partitioning shaped herbivore macroevolution through the early Mesozoic". Nature Communications. 12 (1): Article number 2796. doi:10.1038/s41467-021-23169-x. PMC 8121902. PMID 33990610.
  248. ^ Marchetti, L.; Collareta, A.; Belvedere, M.; Leonardi, G. (2021). "Ichnotaxonomy, biostratigraphy and palaeoecology of the Monti Pisani tetrapod ichnoassociation (Tuscany, Italy) and new insights on Middle Triassic Dinosauromorpha". Palaeogeography, Palaeoclimatology, Palaeoecology. 567: Article 110235. doi:10.1016/j.palaeo.2021.110235.
  249. ^ Zouhri, S.; Gingerich, P. D.; Khalloufi, B.; Bourdon, E.; Adnet, S.; Jouve, S.; Elboudali, N.; Amane, A.; Rage, J.-C.; Tabuce, R.; de Lapparent de Broin, F. (2021). "Middle Eocene vertebrate fauna from the Aridal Formation, Sabkha of Gueran, southwestern Morocco". Geodiversitas. 43 (5): 121–150. doi:10.5252/geodiversitas2021v43a5.
  250. ^ Prevosti, F. J.; Romano, C. O.; Forasiepi, A. M.; Hemming, S.; Bonini, R.; Candela, A. M.; Cerdeño, E.; Madozzo Jaén, M. C.; Ortiz, P. E.; Pujos, F.; Rasia, L.; Schmidt, G. I.; Taglioretti, M.; MacPhee, R. D. E.; Pardiñas, U. F. J. (2021). "New radiometric 40Ar–39Ar dates and faunistic analyses refine evolutionary dynamics of Neogene vertebrate assemblages in southern South America". Scientific Reports. 11 (1): Article number 9830. doi:10.1038/s41598-021-89135-1. PMC 8110973. PMID 33972595.
  251. ^ David, B.; Arnold, L. J.; Delannoy, J.-J.; Fresløv, J.; Urwin, C.; Petchey, P.; McDowell, M. C.; Mullett, R.; GunaiKurnai Land and Waters Aboriginal Corporation; Mialanes, J.; Wood, R.; Crouch, J.; Berthet, J.; Wong, V. N. L.; Green, H.; Hellstrom, J. (2021). "Late survival of megafauna refuted for Cloggs Cave, SE Australia: Implications for the Australian Late Pleistocene megafauna extinction debate". Quaternary Science Reviews. 253: Article 106781. doi:10.1016/j.quascirev.2020.106781.
  252. ^ Bradshaw, C. J. A.; Johnson, C. N.; Llewelyn, J.; Weisbecker, V.; Strona, G.; Saltré, F. (2021). "Relative demographic susceptibility does not explain the extinction chronology of Sahul's megafauna". eLife. 10: e63870. doi:10.7554/eLife.63870. PMC 8043753. PMID 33783356.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  253. ^ Louys, J.; Braje, T. J.; Chang, C.-H.; Cosgrove, R.; Fitzpatrick, S. M.; Fujita, M.; Hawkins, S.; Ingicco, T.; Kawamura, A.; MacPhee, R. D. E.; McDowell, M. C.; Meijer, H. J. M.; Piper, P. J.; Roberts, P.; Simmons, A. H.; van den Bergh, G.; van der Geer, A.; Kealy, S.; O’Connor, S. (2021). "No evidence for widespread island extinctions after Pleistocene hominin arrival". Proceedings of the National Academy of Sciences of the United States of America. 118 (20): e2023005118. doi:10.1073/pnas.2023005118. PMC 8157961. PMID 33941645.
  254. ^ Mathes, G. H.; van Dijk, J.; Kiessling, W.; Steinbauer, M. J. (2021). "Extinction risk controlled by interaction of long-term and short-term climate change". Nature Ecology & Evolution. 5 (3): 304–310. doi:10.1038/s41559-020-01377-w. PMID 33462487.
  255. ^ Huang, Y.; Chen, Z.-Q.; Roopnarine, P. D.; Benton, M. J.; Yang, W.; Liu, J.; Zhao, L.; Li, Z.; Guo, Z. (2021). "Ecological dynamics of terrestrial and freshwater ecosystems across three mid-Phanerozoic mass extinctions from northwest China". Proceedings of the Royal Society B: Biological Sciences. 288 (1947): Article ID 20210148. doi:10.1098/rspb.2021.0148. PMC 8059510. PMID 33726593.
  256. ^ Shaw, J. O.; Coco, E.; Wootton, K.; Daems, D.; Gillreath-Brown, A.; Swain, A.; Dunne, J. A. (2021). "Disentangling ecological and taphonomic signals in ancient food webs". Paleobiology. in press: 1–17. doi:10.1017/pab.2020.59.
  257. ^ Petsios, E.; Portell, R. W.; Farrar, L.; Tennakoon, S.; Grun, T. B.; Kowalewski, M.; Tyler, C. L. (2021). "An asynchronous Mesozoic marine revolution: the Cenozoic intensification of predation on echinoids". Proceedings of the Royal Society B: Biological Sciences. 288 (1947): Article ID 20210400. doi:10.1098/rspb.2021.0400. PMC 8059962. PMID 33784862.
  258. ^ Raja, N. B.; Kiessling, W. (2021). "Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton". Proceedings of the Royal Society B: Biological Sciences. 288 (1950): Article ID 20210545. doi:10.1098/rspb.2021.0545. PMC 8113900. PMID 33975476.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  259. ^ Motani, R.; Vermeij, G. J. (2021). "Ecophysiological steps of marine adaptation in extant and extinct non‐avian tetrapods". Biological Reviews. in press. doi:10.1111/brv.12724. PMID 33904243.
  260. ^ Mißbach, H.; Duda, J.-P.; van den Kerkhof, A. M.; Lüders, V.; Pack, A.; Reitner, J.; Thiel, V. (2021). "Ingredients for microbial life preserved in 3.5 billion-year-old fluid inclusions". Nature Communications. 12 (1): Article number 1101. doi:10.1038/s41467-021-21323-z. PMC 7889642. PMID 33597520.
  261. ^ Alleon, J.; Bernard, S.; Olivier, N.; Thomazo, T.; Marin-Carbonne, J. (2021). "Inherited geochemical diversity of 3.4 Ga organic films from the Buck Reef Chert, South Africa". Communications Earth & Environment. 2: Article number 6. doi:10.1038/s43247-020-00066-7.
  262. ^ Boyer, D. L.; Martinez, A. M.; Evans, S. D.; Cohen, P. A.; Haddad, E. E.; Pippenger, K. H.; Love, G. D.; Droser, M. L. (2021). "Living on the edge: The impact of protracted oxygen stress on life in the Late Devonian". Palaeogeography, Palaeoclimatology, Palaeoecology. 566: Article 110226. doi:10.1016/j.palaeo.2021.110226.
  263. ^ Rakociński, M.; Pisarzowska, A.; Corradini, C.; Narkiewicz, K.; Dubicka, Z.; Abdiyev, N. (2021). "Mercury spikes as evidence of extended arc-volcanism around the Devonian–Carboniferous boundary in the South Tian Shan (southern Uzbekistan)". Scientific Reports. 11 (1): Article number 5708. doi:10.1038/s41598-021-85043-6. PMC 7970954. PMID 33707566.
  264. ^ Retallack, G. J. (2021). "Multiple Permian-Triassic life crises on land and at sea". Global and Planetary Change. 198: Article 103415. doi:10.1016/j.gloplacha.2020.103415.
  265. ^ Belcher, C. M.; Mills, B. J. W.; Vitali, R.; Baker, S. J.; Lenton, T. M.; Watson, A. J. (2021). "The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen". Nature Communications. 12 (1): Article number 503. doi:10.1038/s41467-020-20772-2. PMC 7820256. PMID 33479227.
  266. ^ White, M. A.; Campione, N. E. (2021). "A three-dimensional approach to visualize pairwise morphological variation and its application to fragmentary palaeontological specimens". PeerJ. 9: e10545. doi:10.7717/peerj.10545. PMC 7821773. PMID 33552712.
  267. ^ Wiersma-Weyand, K.; Canoville, A.; Siber, H.-J.; Sander, P. M. (2021). "Testing hypothesis of skeletal unity using bone histology: The case of the sauropod remains from the Howe-Stephens and Howe Scott quarries (Morrison Formation, Wyoming, USA)". Palaeontologia Electronica. 24 (1): Article number 24(1):a10. doi:10.26879/766.
  268. ^ Choi, S.; Park, Y.; Kweon, J. J.; Kim, S.; Jung, H.; Lee, S. K.; Lee, Y.-N. (2021). "Fossil eggshells of amniotes as a paleothermometry tool". Palaeogeography, Palaeoclimatology, Palaeoecology. 571: Article 110376. doi:10.1016/j.palaeo.2021.110376.
  269. ^ Zhong, Y.; Huyskens, M. H.; Yin, Q.-Z.; Wang, Y.; Ma, Q.; Xu, Y.-G. (2021). "High-Precision Geochronological Constraints on the Duration of 'Dinosaurs Pompeii' and the Yixian Formation". National Science Review. in press. doi:10.1093/nsr/nwab063.
  270. ^ Goderis, S.; Sato, H.; Ferrière, L.; Schmitz, B.; Burney, D.; Kaskes, P.; Vellekoop, J.; Wittmann, A.; Schulz, T.; Chernonozhkin, S. M.; Claeys, P.; de Graaff, S. J.; Déhais, T.; de Winter, N. J.; Elfman, M.; Feignon, J.-G.; Ishikawa, A.; Koeberl, C.; Kristiansson, P.; Neal, C. R.; Owens, J. D.; Schmieder, M.; Sinnesael, M.; Vanhaecke, F.; Van Malderen, S. J. M.; Bralower, T. J.; Gulick, S. P. S.; Kring, D. A.; Lowery, C. M.; Morgan, J. V.; Smit, J.; Whalen, M. T.; IODP-ICDP Expedition 364 Scientists (2021). "Globally distributed iridium layer preserved within the Chicxulub impact structure". Science Advances. 7 (9): eabe3647. doi:10.1126/sciadv.abe3647. PMC 7904271. PMID 33627429.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  271. ^ Robinson, J. R.; Rowan, J.; Barr, A.; Sponheimer, M. (2021). "Intrataxonomic trends in herbivore enamel δ13C are decoupled from ecosystem woody cover". Nature Ecology & Evolution. in press. doi:10.1038/s41559-021-01455-7. PMID 33941906.
  272. ^ Quinn, R. L.; Lepre, C. J. (2021). "Contracting eastern African C4 grasslands during the extinction of Paranthropus boisei". Scientific Reports. 11 (1): Article number 7164. doi:10.1038/s41598-021-86642-z. PMC 8009881. PMID 33785831.
  273. ^ Thompson, J. C.; Wright, D. K.; Ivory, S. J.; Choi, J.-H.; Nightingale, S.; Mackay, A.; Schilt, F.; Otárola-Castillo, E.; Mercader, J.; Forman, S. L.; Pietsch, T.; Cohen, A. S.; Arrowsmith, J. R.; Welling, M.; Davis, J.; Schiery, B.; Kaliba, P.; Malijani, O.; Blome, M. W.; O’Driscoll, C. A.; Mentzer, S. M.; Miller, C.; Heo, S.; Choi, J.; Tembo, J.; Mapemba, F.; Simengwa, D.; Gomani-Chindebvu, E. (2021). "Early human impacts and ecosystem reorganization in southern-central Africa". Science Advances. 7 (19): eabf9776. doi:10.1126/sciadv.abf9776. PMC 8099189. PMID 33952528.
  274. ^ Ellis, E. C.; Gauthier, N.; Klein Goldewijk, K.; Bliege Bird, R.; Boivin, N.; Díaz, S.; Fuller, D. Q.; Gill, J. L.; Kaplan, J. O.; Kingston, N.; Locke, H.; McMichael, C. N. H.; Ranco, D.; Rick, T. C.; Shaw, M. R.; Stephens, L.; Svenning, J.-C.; Watson, J. E. M. (2021). "People have shaped most of terrestrial nature for at least 12,000 years". Proceedings of the National Academy of Sciences of the United States of America. 118 (17): e2023483118. doi:10.1073/pnas.2023483118. PMC 8092386. PMID 33875599.
  275. ^ Alleon, J.; Montagnac, G.; Reynard, B.; Brulé, T.; Thoury, M.; Gueriau, P. (2021). "Pushing Raman spectroscopy over the edge: purported signatures of organic molecules in fossil animals are instrumental artefacts" (PDF). BioEssays. 43 (4): Article 2000295. doi:10.1002/bies.202000295. PMID 33543495.
  276. ^ Scotese, C. R.; Song, H.; Mills, B. J. W.; van der Meer, D. G. (2021). "Phanerozoic paleotemperatures: The Earth's changing climate during the last 540 million years". Earth-Science Reviews. 215: Article 103503. doi:10.1016/j.earscirev.2021.103503.
  277. ^ Goldberg, S. L.; Present, T. M.; Finnegan, S.; Bergmann, K. D. (2021). "A high-resolution record of early Paleozoic climate". Proceedings of the National Academy of Sciences of the United States of America. 118 (6): e2013083118. doi:10.1073/pnas.2013083118. PMC 8017688. PMID 33526667.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  278. ^ Wu, Y.; Chu, D.; Tong, J.; Song, H.; Dal Corso, J.; Wignall, P. B.; Song, H.; Du, Y.; Cui, Y. (2021). "Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction". Nature Communications. 12 (1): Article number 2137. doi:10.1038/s41467-021-22298-7. PMC 8035180. PMID 33837195.
  279. ^ Shen, H.; Zhang, L.; Wang, C.; Amiot, R.; Wang, X.; Cui, L.; Song, P. (2021). "Early Jurassic palaeoclimate in Southwest China and its implications for dinosaur fossil distribution". Geological Journal. in press. doi:10.1002/gj.4168.
  280. ^ Burgener, L.; Hyland, E.; Griffith, E.; Mitášová, H.; Zanno, L. E.; Gates, T. A. (2021). "An extreme climate gradient-induced ecological regionalization in the Upper Cretaceous Western Interior Basin of North America". GSA Bulletin. in press. doi:10.1130/B35904.1.
  281. ^ Hernandez Nava, A.; Black, B. A.; Gibson, S. A.; Bodnar, R. J.; Renne, P. R.; Vanderkluysen, L. (2021). "Reconciling early Deccan Traps CO2 outgassing and pre-KPB global climate". Proceedings of the National Academy of Sciences of the United States of America. 118 (14): e2007797118. doi:10.1073/pnas.2007797118. PMC 8040825. PMID 33782114.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  282. ^ Vento, B.; Puebla, G. G.; Pinzón, D.; Prámparo, M. (2021). "Paleoclimate estimates for the Paleogene-Neogene in southern South America using fossil leaves as proxies". Comptes Rendus Palevol. 20 (3): 29–48. doi:10.5852/cr-palevol2021v20a3.
  283. ^ Böhme, M.; Spassov, N.; Majidifard, M. R.; Gärtner, A.; Kirscher, U.; Marks, M.; Dietzel, C.; Uhlig, G.; El Atfy, H.; Begun, D. R.; Winklhofer, M. (2021). "Neogene hyperaridity in Arabia drove the directions of mammalian dispersal between Africa and Eurasia". Communications Earth & Environment. 2: Article number 85. doi:10.1038/s43247-021-00158-y.
  284. ^ Pederzani, S.; Aldeias, V.; Dibble, H. L.; Goldberg, P.; Hublin, J.-J.; Madelaine, S.; McPherron, S. P.; Sandgathe, D.; Steele, T. E.; Turq, A.; Britton, K. (2021). "Reconstructing Late Pleistocene paleoclimate at the scale of human behavior: an example from the Neandertal occupation of La Ferrassie (France)". Scientific Reports. 11 (1): Article number 1419. doi:10.1038/s41598-020-80777-1. PMC 7809458. PMID 33446842.
  285. ^ Seltzer, A. M.; Ng, J.; Aeschbach, W.; Kipfer, R.; Kulongoski, J. T.; Severinghaus, J. P.; Stute, M. (2021). "Widespread six degrees Celsius cooling on land during the Last Glacial Maximum". Nature. 593 (7858): 228–232. doi:10.1038/s41586-021-03467-6. PMID 33981051.