DNA gyrase

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
DNA gyrase
EC number
IntEnz IntEnz view
ExPASy NiceZyme view
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum

DNA gyrase, or simply gyrase, is an enzyme within the class of topoisomerase (Type II topoisomerase)[1] that relieves strain while double-stranded DNA is being unwound by helicase.[2][3] The enzyme causes negative supercoiling of the DNA or relaxes positive supercoils. It does so by looping the template so as to form a crossing, then cutting one of the double helices and passing the other through it before releasing the break, changing the linking number by two in each enzymatic step. This process occurs in prokaryotes (in particular, in bacteria), whose single circular DNA is cut by DNA gyrase and the two ends are then twisted around each other to form supercoils. Gyrase has been found in the apicoplast of the malarial parasite Plasmodium falciparum, a unicellular eukaryote.[4][5] Bacterial DNA gyrase is the target of many antibiotics, including nalidixic acid, novobiocin, and ciprofloxacin.

The unique ability of gyrase to introduce negative supercoils into DNA at the expense of ATP hydrolysis[1] is what allows bacterial DNA to have free negative supercoils. The ability of gyrase to relax positive supercoils comes into play during DNA replication and prokaryotic transcription. The right-handed nature of the DNA double helix causes positive supercoils to accumulate ahead of a translocating enzyme, in the case of DNA replication, a DNA polymerase. The ability of gyrase (and topoisomerase IV) to relax positive supercoils allows superhelical tension ahead of the polymerase to be released so that replication can continue.

Mechanochemical model of gyrase activity[edit]

A single molecule study[6] has characterized gyrase activity as a function of DNA tension (applied force) and ATP, and proposed a mechanochemical model. Upon binding to DNA (the "Gyrase-DNA" state), there is a competition between DNA wrapping and dissociation, where increasing DNA tension increases the probability of dissociation. Upon wrapping and ATP hydrolysis, two negative supercoils are introduced into the template, providing opportunities for subsequent wrapping and supercoiling events. The number of superhelical turns introduced into an initially relaxed circular DNA has been calculated to be approximately equal to the number of ATP molecules hydrolyzed by gyrase.[7] Therefore, it can be suggested that two ATP molecules are hydrolyzed per cycle of reaction by gyrase, leading to the introduction of a linking difference of -2.[8]

Inhibition by antibiotics[edit]

Gyrase is present in prokaryotes and some eukaryotes, but the enzymes are not entirely similar in structure or sequence, and have different affinities for different molecules. This makes gyrase a good target for antibiotics. Two classes of antibiotics that inhibit gyrase are:

DNA gyrase has two subunits, which in turn have two subunits each, i.e. 2A and 2B subunits. The A and B subunits together bind to DNA, hydrolyze ATP, and introduce negative supertwists. The A subunit carries out nicking of DNA, B subunit introduces negative supercoils, and then A subunit reseals the strands. Fluoroquinolones bind to the A subunit and interfere with its strand cutting and resealing function.

The subunit A is selectively inactivated by antibiotics such as oxolinic and nalidixic acids. The subunit B is selectively inactivated by antibiotics such as coumermycin A1 and novobiocin. Inhibition of either subunit blocks supertwisting activity.[9]


  1. ^ a b Garrett RH, Grisham CM (2013). Biochemistry (5th, International ed.). United States: Mary Finch. p. 949. ISBN 1-133-10879-2.
  2. ^ Wigley DB, Davies GJ, Dodson EJ, Maxwell A, Dodson G (June 1991). "Crystal structure of an N-terminal fragment of the DNA gyrase B protein". Nature. 351 (6328): 624–9. Bibcode:1991Natur.351..624W. doi:10.1038/351624a0. PMID 1646964.
  3. ^ Morais Cabral JH, Jackson AP, Smith CV, Shikotra N, Maxwell A, Liddington RC (August 1997). "Crystal structure of the breakage-reunion domain of DNA gyrase". Nature. 388 (6645): 903–6. Bibcode:1997Natur.388..903M. doi:10.1038/42294. PMID 9278055.
  4. ^ Dar MA, Sharma A, Mondal N, Dhar SK (March 2007). "Molecular cloning of apicoplast-targeted Plasmodium falciparum DNA gyrase genes: unique intrinsic ATPase activity and ATP-independent dimerization of PfGyrB subunit". Eukaryotic Cell. 6 (3): 398–412. doi:10.1128/ec.00357-06. PMC 1828931. PMID 17220464.
  5. ^ Dar A, Prusty D, Mondal N, Dhar SK (November 2009). "A unique 45-amino-acid region in the toprim domain of Plasmodium falciparum gyrase B is essential for its activity". Eukaryotic Cell. 8 (11): 1759–69. doi:10.1128/ec.00149-09. PMC 2772398. PMID 19700639.
  6. ^ Gore J, Bryant Z, Stone MD, Nollmann M, Cozzarelli NR, Bustamante C, "Mechanochemical Analysis of DNA Gyrase Using Rotor Bead Tracking", Nature 2006 Jan 5 (Vol. 439): 100-104.
  7. ^ Sugino A, Cozzarelli NR (July 1980). "The intrinsic ATPase of DNA gyrase". The Journal of Biological Chemistry. 255 (13): 6299–306. PMID 6248518.
  8. ^ Reece RJ, Maxwell A (1991). "DNA gyrase: structure and function". Critical Reviews in Biochemistry and Molecular Biology. 26 (3–4): 335–75. doi:10.3109/10409239109114072. PMID 1657531.
  9. ^ Engle EC, Manes SH, Drlica K (January 1982). "Differential effects of antibiotics inhibiting gyrase". Journal of Bacteriology. 149 (1): 92–8. PMC 216595. PMID 6274849.