Jump to content

2K12 Kub

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Spintendo (talk | contribs) at 05:46, 6 October 2018 (Corrected use of 'Archived copy' CS1 maintenance error under the 'Title=' parameter in the references.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

2K12 Kub
NATO reporting name: SA-6 "Gainful"
2P25 TEL with missiles elevated
TypeTracked medium-range surface-to-air missile system
Place of originSoviet Union
Service history
In service1970–present
Used bySee list of operators
Wars
List
Production history
Designer
Designed1959
Manufacturer
Produced1968–1985[1]
No. built500 launchers, 10,000 missiles[2][dubiousdiscuss]
Variants2K12 Kub, 2K12E Kvadrat (export version), 2K12M3, 2K12M4
Specifications (2K12 Kub)

Main
armament
3 9M336 (or variants) guided missiles
Engineintegral rocket motor/ramjet booster and sustainer motor
Guidance
system
command guidance with terminal semi-active radar homing (SARH)

The 2K12 "Kub" (Template:Lang-ru; Template:Lang-en) (NATO reporting name: SA-6 "Gainful") mobile surface-to-air missile system is a Soviet low to medium-level air defence system designed to protect ground forces from air attack. "2К12" is the GRAU designation of the system.

Each 2K12 battery consists of a number of similar tracked vehicles, one of which carries the 1S91 (SURN vehicle, NATO designation "Straight Flush") 25 kW G/H band radar (with a range of 75 km (47 mi)) equipped with a continuous wave illuminator, in addition to an optical sight. The battery usually also includes four triple-missile transporter erector launchers (TELs), and four trucks, each carrying three spare missiles and a crane. The TEL is based on a GM-578 chassis, while the 1S91 radar vehicle is based on a GM-568 chassis, all developed and produced by MMZ.

Development

The development of the 2K12 was started after 18 July 1958 at the request of the CPSU Central Committee.[3] The system was set the requirements of being able to engage aerial targets flying at speeds of 420 to 600 m/s (820–1,170 kn) at altitudes of 100 to 7,000 m (330 to 22,970 ft) at ranges up to 20 km (12 mi), with a single shot kill probability of at least 0.7.[3]

The systems design was the responsibility of the now Tikhomirov Scientific Research Institute of Instrument Design (NIIP). In addition to NIIP several other design bureaus were involved in the creation of the Kub missile system including Mytishchi Machine-Building Plant which designed and produced the chassis of the self-propelled components. Many of the design bureaus would later go on to co-operate in the development of the successor to the 2K12 "Kub", the 9K37 "Buk"

First trials of the missile system were started at the end of 1959 to discover a series of problems:

  • low power for the missile radar seeker and badly designed nose cone,
  • missile air inlets design failure,
  • low quality of heat shield inside the afterburner chamber (titanium was replaced by steel).

Those failures resulted in some 'orgchanges': In August 1961 Toropov was replaced by Lyapin as the Chief Designer of Vympel and in January 1962 Tikhomirov was replaced by Figurovskiy as the Chief Designer of NIIP. Still, the work wasn't intensified. Before 1963 only 11 of 83 missiles fired had the seeker head installed, only 3 launches were successful.

Kub downed its first ever air target on February 18, 1963, during the state trials at Donguz test site, Orenburg Oblast. It was an Ilyushin Il-28 bomber.

The system entered an extended testing period between 1959 and 1966, after overcoming the technical difficulties of producing the 2K12 "Kub" the system was accepted into service on 23 January 1967 and went into production that same year.[3]

It is sometimes claimed that the SA-N-3 Goblet naval system is a version of the 3M9 but this is not the case, as the M-11 Shtorm is a separate system and, unusually for Russian surface-to-air missiles, has no land-based variant.

KubKvadrat
Kub-M1Kub-M
Kub-M3
Kub-M4
Buk

The 2K12 "Kub" was recommended for modernisation work in 1967 with the goal of improving combat characteristics (longer range, improved ECCM, reliability and reaction time). A modernised variant underwent trial testing in 1972 eventually being adopted in 1973 as the "Kub-M1".[3] The system underwent another modernisation between 1974 and 1976, again the general combat characteristics of the system were improved with the "Kub-M3" clearing testing and entering service in 1976.[3]

After the Chief designer Ardalion Rastov visited Egypt in 1971 to see Kub in operation[4] he decided upon the development of a new system, called Buk, where each TEL should have its own fire control radar (TELAR) and is able to engage multiple targets from multiple directions at the same time.

The final major development of the Kub missile system was achieved during the development of its successor, the 9K37 "Buk" in 1974. Although the Buk is the successor to Kub it was decided that both systems could share some interoperability, the result of this decision was the "Kub-M4" system.[3] The Kub-M4 used Kub-M3 components which could receive fire control information from the 9А310 transporter erector launcher and radar (TELAR) of the 9K37 Buk. The advantage of interoperability was an increase in the number of fire control channels and available missiles for each system as well as a faster service entry for Buk system components. The Kub-M4 was adopted into service in 1978 following completion of trials.[3]

External images
image icon Photo of one of the Buk prototype, based on Kub components
image icon Photo of one of the Buk prototype, based on Kub components (sideview)

Some early development interpretations of the Buk missile system heavily utilized Kub components, including the 3M9 missile.[5]

There are several plans to integrate active radar homing missiles into Kub. For instance, Polish WZU of Grudziadz demonstrated a project of a Sparrow-armed Kub at the MSPO 2008 defence exhibition in Kielce.[6][7][8] It is reported also that Vympel initiated some work to use its RVV-AE air-to-air missile to modernise the Kvadrat SAM system.[9]

Also, the Czech company RETIA presented a SURN (fire control radar) upgrade featuring an optical channel and new multiple-function color displays as well as the radar upgrade and the IFF system.[10]

In 2011 a Kub upgraded launcher (named "2K12 KUB CZ") with three Aspide 2000 missiles in launch containers was presented at the International Exhibition of Defence and Security Technologies (IDET) exposition in Brno. The modifications were made by Retia.[11]

Description

Rear view of the Kub at the Central Museum of Russian Armed Forces

The 2K12 system shares many components with the 2K11 Krug (SA-4) system. In many ways they are designed to complement each other; 2K11 is effective at long ranges and high altitudes, 2K12 at medium ranges and intermediate altitudes.

The system is able to acquire and begin tracking targets using the 1S91 "Самоходная установка разведки и наведения" (SPRGU - "Self-propelled Reconnaissance and Guidance Unit" / NATO: "Straight Flush" radar) at 75 km (47 mi) and begin illumination and guidance at 28 km (17 mi). IFF is also performed using this radar. It can only guide one or two missiles to a single target at any time. The missile is initially command guided with terminal semi-active radar homing (SARH), with target illumination provided by the "Straight Flush" radar. Detonation is via either the impact or proximity fuze. On the latest models, this vehicle is also fitted with an optical tracking system which allows engagement without the use of the radar (for active RF emissions stealth reasons, or due to heavy ECM jamming) in which case the effective altitude is limited to 14 km/46000 ft. The optical tracking method also allows engagements to altitudes below that where the radar is able to track targets. Maximum target speed is around Mach 2 for head-on engagements and Mach 1 for tail-chase engagements. Top speed of the missile is approximately Mach 2.8.

In contrast to the elaborate Patriot missile or even the simpler Hawk system fielded by US forces, most of the system rides on two tracked self-propelled vehicles, rather than towed or mounted on trucks, and either the launcher or control vehicle can be set to launch in only 15 minutes after changing location.

3M9
TypeSurface-to-air missile
Place of originSoviet Union
Production history
Variants3M9, 3M9M1, 3M9M3, 3M9M4
Specifications (3M9)
Mass599 kg
Length5,800 mm
Diameter335 mm
Wingspan1.245 m
WarheadFrag-HE
Warhead weight59 kg
Detonation
mechanism
Contact and proximity

Propellantintegral rocket motor/ramjet booster and sustainer motor
Operational
range
24 kilometres (15 mi)
Flight altitudeMax. 14,000 metres (46,000 ft)
Min. 100 metres (330 ft)
Maximum speed Mach 2.8
Guidance
system
semi-active radar homing
Launch
platform
2P25 TEL

Missiles

IVC 3M20M3 Peniye
TypeSurface-to-air missile training target imitator system
Place of originSoviet Union/ Russia
Specifications
Mass600 kg
Length5,841 mm
Wingspan932 mm
Warheadno

Propellantintegral rocket motor/ramjet booster and sustainer motor
Operational
range
24 kilometres (15 mi)
Flight altitude500 metres (1,600 ft) – 6,000 metres (20,000 ft)
Maximum speed 200–600 m/s
Guidance
system
semi-active radar homing
Launch
platform
2P25 TEL

The fairly large missiles have an effective range of 4–24 km (2.5–15 miles) and an effective altitude of 50–14,000 m (164–45,931 ft). The missile weighs 599 kg (1,321 lb) and the warhead weighs 56 kg (123 lb). Top missile speed is approx. Mach 2.8. The combined propulsion system 9D16K included solid fuel rocket motor which, when burned out, forms the combustion chamber for a ramjet in a pioneering design putting this missile far ahead of its contemporaries in terms of propulsion.

The missile was fitted with a semi-active radar seeker 1SB4, designed by MNII Agat, which was able to track the target by Doppler frequency since the start. Later upgrades (3M9M3 missile) could do this before the start. Chief Designer of the seeker head was Yu.N. Vekhov, since 1960 – I.G. Akopyan.

In 1977 a new version, the 3M9M1 (DoD designation SA-6B) was created with three missiles fitted onto a different chassis (the same as that of the 9K37 "Buk" (NATO reporting name "Gadfly" / DoD SA-11 ), the 2K12 effective replacement) with an integrated "Fire Dome" missile guidance radar. For comparisons between the 2K12, 9K37, see the 9K37 Buk entry.

An earlier incremental upgrade saw the 2K12 missiles replaced with the 2K12E versions and this system was known as Kvadrat ("Квадрат", meaning square). This name was derived from the most common arrangement pattern of the military vehicles of the 2K12 complex, when the 1S91 radar is located at the center and 4x2P25 TELs at the vertices of a square around the radar.

Comparison

Complex
(GRAU designation)
Kub Kub-M1 Kub-M3 Kub-M4
(Buk-M1)
Introduced 1967 1973 1976 1978
Missiles per TEL 3 3 3 3
Engagement range 6–22 km 4–23 km 4–25 km 4–24 km

Engagement altitude

100–7,000 m 80–8,000 m 20–8,000 m 30–14,000 m
Missile speed
(Mach)
1.75 1.75 2 2
Maximum target speed
(Mach)
1.75 1.75 1.75 1.75
Response Time (seconds) 26–28 22–24 22–24 24
missile Weight, kg 630 kg 630 kg 630 kg 630 kg

Simultaneous engagements

1 1 1 2
Deployment time (minutes) 5 5 5 5

1S91 radar

Radiolocator of 2K12 KUB

SURN 1S91 vehicle included two radar station – a target acquisition and distribution radar 1S11 and a continuous wave illuminator 1S31, in addition to an IFF interrogator and an optical channel.

While 1S31 antenna was installed on the upper section of the superstructure and the 1S11 on the lower, they could turn around independently. To make the height of the vehicle lower the central cylinder was able to hide inside the prime mover.

The acquisition range of the radar was reported as 50 km (31 mi) for the Phantom II type target.

Total weight of the 1S91 vehicle with a crew of 4 was 20.3 tonnes and 2P25 vehicle with 3 missiles and a crew of 3 was 19.5 t.

Additional radar

The 2K12 can also be used at a regimental level, if used as such it can be accompanied by a number of additional radar systems for extended air search at longer range and lower altitude, to supplement the 1S91 "Straight Flush". These systems include the:

  • P-12 "Spoon Rest", a VHF early warning radar (also used by the SA-2), with a 200 kilometres (120 mi) range.
  • P-40 "Long Track", an E band early warning radar (also used by the SA-4 and SA-8), with a 370 kilometres (230 mi) range.
  • P-15 "Flat Face A", a UHF early warning radar (also used by the SA-3, with a 150 kilometres (93 mi) range.
  • "Thin Skin" or "Side Net" E band height finding radar (also used by the SA-2, SA-4 and SA-5, range 240 km/148 miles)
  • "Score Board" IFF radar

The "Spoon Rest" and "Thin Skin" are mounted on a truck, "Long Track" on a tracked vehicle (a modified AT-T) and "Flat Face" on a van. It is unknown what kind of mounting the "Score Board" has.

Without the P-40 "Long Track" mobile radar vehicle, the 2K12 is unable to track aircraft at high altitudes.

Operational history

Middle East

Yom Kippur War

The Egyptian and Syrian 2K12's surprised the Israeli military in the 1973 Yom Kippur War, because they were accustomed to having air superiority over the battlefield. The highly mobile 2K12 took a heavy toll on the slower A-4 Skyhawk and even the F-4 Phantom, forming a protective umbrella until they could be removed. The radar warning receivers on the Israeli aircraft did not alert the pilot to the fact that he was being illuminated by the radar. Once the RWRs were reprogrammed and tactics changed, the 2K12 was no longer such a grave threat, but still caused heavy losses to Israeli aircraft.

The superior low altitude performance of the weapon, and its new CW semi-active missile seeker resulted in a much higher success rate compared to the earlier SA-2 and SA-3 systems. While exact losses continue to be disputed, around 40 aircraft are usually cited as lost to SAM shots, and the 2K12 / SA-6 proved most effective of the three weapons. But in subsequent conflicts, its performance declined as captured examples resulted in effective counter-measures being developed.[12]

1982 Lebanon war

Part of a Syrian SA-6 near the Beirut-Damascus highway, and overlooking the Beqaa Valley, in early 1982.

The Syrians also deployed the SA-6 to Lebanon in 1981 after the Israelis shot down Syrian helicopters near Zahlé. The SAM batteries were placed in the Bekaa Valley near the Beirut-Damascus road. They remained close to the existing Syrian air defense system but could not be fully integrated into it.[clarification needed] Early in the 1982 Lebanon war, the Israeli Air Force concentrated on suppressing the SAM threat in the Beqaa Valley, launching Operation Mole Cricket 19. The result was a complete success. Several SA-6 batteries, along with SA-2s and SA-3s, were destroyed in a single day. While Syria's own air defenses remained largely intact, its forces in Lebanon were left exposed to attacks by Israeli strike aircraft for the remainder of the war.

South African Border War

The People's Armed Forces for the Liberation of Angola (FAPLA) procured a number of SA-6s from the Soviet Union in 1981.[13] According to the Central Intelligence Agency, Angola had obtained sixteen TEL launchers for the SA-6 system, which were deployed in the Moçâmedes District.[14] The South African military noted that the missiles would make it difficult for it to provide air cover for its cross-border operations against guerrillas of the People's Liberation Army of Namibia, which were operating from Angolan sanctuaries.[15] All of Angola'a SA-6 launchers were destroyed in a South African preemptive strike as part of Operation Protea.[13]

SA-6 missile sites were also operated by Cuban expeditionary forces in Angola during Operation Excite/Hilti.[16] On 26 June 1988, six 3M9M3 missiles launched from a Cuban SA-6 battery were fired at a South African weather balloon being used as a radar decoy over Tchipa.[16] South African observers used the firing data to plot the location of the SA-6 launchers and destroyed them in a concentrated bombardment with G5 howitzers.[16]

Western Sahara War

Forces of the Polisario Front acquired two full batteries of SA-6 missiles from Algeria during the Western Sahara War, which they used effectively against the fighters of the Royal Moroccan Air Force, including shooting down two Mirage F1 fighters in 1981 during a major battle in Guelta Zemmur.[17]

Poland

On 19 August 2003, a Polish Air Force Su-22M4K was accidentally shot down by friendly fire during an exercise by a Polish SA-6 battery. The aircraft was flying 21 km (13 mi) from the coast over the Baltic Sea near Ustka. The pilot, General Andrzej Andrzejewski, ejected and was rescued after two hours in the water.

Libya

The system was deployed by Libya during the border dispute with Chad and proved a threat for French aircraft, however on January 7, 1987, these were successful in destroying an SA-6 radar site in the Faya Largeau area with SEPECAT Jaguars armed with Martel anti-radiation missiles.

In March, the Chadian rebels captured Ouadi Doum air base, seizing virtually all heavy equipment used for the defense of this airfield, intact. Most of this equipment was transported to France and the United States in the following days, but some SA-6s remained in Chad.

With this catastrophe, the Libyan occupation of the northern Chad – and the annexation of the Aouzou Strip – was over: by 30 March, the bases at Faya Largeau and Aouzou had to be abandoned. The LARAF now had a completely different task: its Tu-22Bs were to attack the abandoned bases and destroy as much equipment left there as possible. The first strikes were flown in April, and they continued until 8 August 1987, when two Tu-22Bs tasked to strike Aouzou were ambushed by a captured SA-6 battery used by the Chadian Army. One of the bombers was shot down.[18]

Libyan air defense, including SA-6 batteries, was active during the 2011 military intervention in Libya.[19] They were completely ineffective, not managing to shoot down any NATO or allied aircraft.

Iraq

Several SA-6s, along with other SAM systems and military equipment, were supplied to Iraq before and during the Iran–Iraq War as part of large military packages from the Soviet Union. The batteries were active since the start of the war in September 1980, scoring kills against U.S-supplied Iranian F-4 Phantoms and Northrop F-5s.[20][21][22]

Kub systems were active again during the 1991 war. On the opening night of Desert Storm, on 17 January 1991, a B-52G was damaged by a missile. Different versions of this engagement are told. It could have been a S-125 or a 2K12 Kub while other versions report a MiG-29 allegedly fired a Vympel R-27R missile and damaged the B-52G.[23] However, the U.S. Air Force disputes these claims, stating the bomber was actually hit by friendly fire, an AGM-88 High-speed, Anti-Radiation Missile (HARM) that homed on the fire-control radar of the B-52's tail gun; the jet was subsequently renamed In HARM's Way.[24] Shortly following this incident, General George Lee Butler announced that the gunner position on B-52 crews would be eliminated, and the gun turrets permanently deactivated, commencing on 1 October 1991.[25]

On January 19, 1991, a USAF F-16 (serial 87-228) was shot down by an SA-6 during the massive (though ill-fated) Package Q Strike against a heavily defended Baghdad. It was combat loss number 10 in Operation Desert Storm. The pilot, Captain Harry 'Mike' Roberts, ejected safely but was taken prisoner and freed in March 1991. The aircraft was on a mission to attack the Air Defense Headquarters Building. It had flown 4 combat missions before being lost.[26]

In any case, the SA-6 threat was largely controlled by Allied EW assets together with the older SA-2 and SA-3 missile systems. Most of the losses were due to IR guided SAMs.[27]

Kubs continued to be used by the Iraqi military, along with other SAM systems, to challenge the Western imposed no-fly zones during the 1990s and early 2000s. They weren't able to shoot down any Coalition aircraft though several sites were destroyed as retaliation. For example, on December 30, 1998, an SA-6 site near Talil fired 6-8 missiles at aircraft enforcing the Southern Watch component of the NFZ. American F-16s responded by dropping six GBU-12 laser-guided bombs on the site and also launching two HARMs "as a preemptive measure" to warn Iraqi radar operators against carrying out more firings.[28]

Bosnia and Kosovo

Army of Republika Srpska forces, using modified SA-6s were successful in shooting down Scott O'Grady's F-16 in 1995[29][30] and two to three Croatian AN-2 aircraft that were used as night bombers with improvised 100 kg bombs.[31]

One Mi-17 was shot down by a Kub on May 28, 1995, killing the Bosnian Minister Irfan Ljubijankić, a few other politicians, and the helicopter's Ukrainian crew.[citation needed]

During the Kosovo War in 1999, on the first night of the war (March 24/25), a Yugoslav Air Force MiG-29 flown by Maj. Predrag Milutinović was downed by a Kub battery in a friendly fire incident, while approaching Niš Airport after an unsuccessful engagement with NATO aircraft.

The Yugoslav Air Defence had 22 SA-6 batteries. Using shoot and scoot tactics, the self-propelled ground system demonstrated a good surviability with only three radars lost in the face of nearly four-hundred AGM-88 shots. As comparison the fixed SA-2 and SA-3 sites suffered losses to around 66 to 80 percent.[32] According to the then-commander of Air force and air defense General Spasoje Smiljanić, during the 78 day campaign, 2K12 Kub had only 46 shooting with 70 missiles.[33]

Syrian War

On April 14, 2018, American, British, and French forces launched 103 air-to-surface and cruise missiles targeting sites in Syria. According to the Russian military, twenty-one Kub missiles launched in response destroyed eleven incoming missiles,[34] However, the American Department of Defense stated no Allied missiles were shot down.[35]

Operators

Map of 2K12 operators in blue with former operators in red
Hungarian SA-6 modernized 'Kub' launcher
3M9 TEL in desert camouflage. Photo by Nellis AFB.

Current operators

Former operators

References

  • International Institute for Strategic Studies (7 March 2012). Hackett, James (ed.). The Military Balance 2012. London: Routledge. ISBN 978-1-85743-642-6.

Notes

  1. ^ "SA-6 (Gainful) / 2K12 Kub – Tracked Medium-Range Surface-to-Air Missile Defense System – History, Specs and Pictures – Military Tanks, Vehicles and Artillery". Militaryfactory.com. 23 August 2012. Retrieved 1 November 2013.
  2. ^ "ЗРК "Куб"". Pvo.guns.ru. Retrieved 15 August 2012.
  3. ^ a b c d e f g "САМОХОДНЫЙ ЗЕНИТНЫЙ РАКЕТНЫЙ КОМПЛЕКС 2К12 "КУБ" (SA-6 GAINFUL)" (in Russian). pvo.guns.ru. 11 April 2004. Archived from the original on 21 December 2008. Retrieved 19 November 2008. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  4. ^ "Chief Designer Ardalion Rastov". www.milparade.udm.ru. 31 August 1998. Archived from the original on 23 January 2009. Retrieved 23 August 2008. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  5. ^ Template:Ru icon Buk (9K37, SA-11, Gadfly) Archived 4 May 2009 at the Wayback Machine, ARMS-EXPO website
  6. ^ "Sparrow missile integration with SA-6". Retrieved 14 November 2014.
  7. ^ "Jane's- Surface to Air". Archived from the original on 2 July 2012. Retrieved 17 January 2009. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help), Poland's WZU shows Sparrow-armed Kub[permanent dead link] at Jane's Information Group website
  8. ^ "2K12 Kub modernisation for Polish Army at MSPO 2007 Defence Exhibition". www.armyrecognition.com.
  9. ^ RV-77 could create a smarter Kub at Jane's Information Group website
  10. ^ SAM system modernization Archived 1 November 2009 at the Wayback Machine at RETIA, a.s.
  11. ^ The Czech company RETIA, a.s. is replacing – three deadly fingers – of the Surface to Air Missile (SAM) system 2K12 KUB at RETIA, a.s.
  12. ^ C Kopp. "3M9ME Gainful SAM launch from TEL". Retrieved 14 November 2014.
  13. ^ a b Vanneman, Peter (1990). Soviet Strategy in Southern Africa: Gorbachev's Pragmatic Approach. Stanford: Hoover Institution Press. pp. 41–57. ISBN 978-0817989026.
  14. ^ "SA-6 Equipment: Moccamedes SAM Support Facility, Angola" (PDF). Langley: Central Intelligence Agency. 1980–81. Archived from the original (PDF) on 23 January 2017. Retrieved 20 May 2017.
  15. ^ Jaster, Robert Scott (1997). The Defence of White Power: South African Foreign Policy under Pressure. Basingstoke: Palgrave-Macmillan. pp. 66–68, 93–103. ISBN 978-0333454558.
  16. ^ a b c George, Edward (2005). The Cuban intervention in Angola. New York: Frank Cass Publishers. p. 244. ISBN 978-0415647106.
  17. ^ Cooper, Tom. "Morocco, Mauritania & West Sahara since 1972". ACIG.org. Retrieved 1 January 2016.
  18. ^ "Online.de". Archived from the original on 25 April 2011. Retrieved 31 July 2009. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  19. ^ Burns, John F. (21 June 2011). "Cameron Rebuts Commanders' Concerns About Libya Campaign". New York Times. Libya. Retrieved 7 November 2012.
  20. ^ Cordesman, Anthony; Wagner, Abraham R. (26 September 2003). "Chapter XIII: The Air and Missile Wars and Weapons of Mass Destruction". The Lessons of Modern War: Volume II, The Iran–Iraq War (PDF). Center for Strategic and International Studies.
  21. ^ "Iranian_F_5_LOSSES any ejections". Ejection-history.org.uk. Archived from the original on 3 November 2013. Retrieved 1 November 2013. {{cite web}}: Unknown parameter |dead-url= ignored (|url-status= suggested) (help)
  22. ^ "Chronological Listing of Iranian Air Force McDonnell-Douglas F-4 Phantom II Losses & Ejections". Ejection-history.org.uk. Archived from the original on 10 July 2015. Retrieved 1 November 2013. {{cite web}}: Unknown parameter |dead-url= ignored (|url-status= suggested) (help)
  23. ^ Lake 2004, p. 48.
  24. ^ Lake 2004, pp. 47–48.
  25. ^ Condor 1994, p. 44.
  26. ^ "Airframe Details for F-16 #87-0228". f-16.net. Retrieved 14 November 2014.
  27. ^ "Coalition Aircraft Combat Attrition". Rjlee.org. Retrieved 15 August 2012.
  28. ^ John Pike. "Operation Southern Watch". Globalsecurity.org. Retrieved 19 May 2011.
  29. ^ "All For One", June 19, 1995, Kevin Fedarko and Mark Thompson, Time
  30. ^ "Airframe details for 89-2032". f-16.net. Retrieved 14 November 2014.
  31. ^ AF Monthly, July 1992
  32. ^ Andrew, Martin. "Revisiting the Lessons of Operation Allied Force". Ausairpower.net. Retrieved 15 August 2012.
  33. ^ Spasoje Smiljanić. "Borba Davida i Golijata | Ostali članci". Večernje novosti. Retrieved 1 November 2013.
  34. ^ http://eng.mil.ru/en/news_page/country/more.htm?id=12171611@egNews
  35. ^ "Department of Defense Press Briefing by Pentagon Chief Spokesperson". U.S. DEPARTMENT OF DEFENSE. Retrieved 23 April 2018.
  36. ^ IISS 2012 Military Balance, pp. 316
  37. ^ IISS 2012 Military Balance, pp. 422
  38. ^ IISS 2012 Military Balance, pp. 90
  39. ^ IISS 2012 Military Balance, pp. 385
  40. ^ "25plrp.army.cz". www.25plrb.army.cz.
  41. ^ IISS 2012 Military Balance, pp. 105
  42. ^ IISS 2012 Military Balance, pp. 322
  43. ^ IISS 2012 Military Balance, pp. 125
  44. ^ IISS 2012 Military Balance, pp. 244
  45. ^ http://www.mashreghnews.ir/fa/news/56646
  46. ^ IISS 2012 Military Balance, pp. 256
  47. ^ IISS 2012 Military Balance, pp. 338
  48. ^ "ForeignPolicy.com: What do North Korea's air defenses look like?". Foreign Policy. Retrieved 14 November 2014.
  49. ^ 4/2/13 FP Situation Report: By Gordon Lubold
  50. ^ "Uzbrojenie i wyposażenie Wojska Polskiego A.D. 2015/2016". BLOG HISTORYCZNO-MILITARNY. Archived from the original on 2 June 2016. Retrieved 20 May 2016. {{cite web}}: Unknown parameter |dead-url= ignored (|url-status= suggested) (help)
  51. ^ Peniye training target system at Russian Firearms: Specifications, Photos, Pictures website
  52. ^ Vympel 3M20M3 (Russian Federation), aerial targets at Jane's Information Group website
  53. ^ Francesco Palmas (2012). "Il contenzioso del sahara occidentale fra passato e presente" (PDF). Informazioni della Difesa (in Italian). No. 4. pp. 50–59.
  54. ^ "Protilietadlov raketov brigda Nitra". Retrieved 14 November 2014.
  55. ^ IISS 2012 Military Balance, pp. 350
  56. ^ IISS 2012 Military Balance, pp. 457
  57. ^ Hərbi TV (31 October 2016). "Turkmenistan Military Parade 2016". YouTube (in Turkmen). Ashgabat. Retrieved 7 August 2017.
  58. ^ IISS 2012 Military Balance, pp. 197
  59. ^ IISS 2012 Military Balance, pp. 293
  60. ^ IISS 2012 Military Balance, pp. 355