Feline leukemia virus

From Wikipedia, the free encyclopedia
  (Redirected from Feline leukemia)
Jump to: navigation, search
Feline leukemia virus
Feline leukemia virus.JPG
Electron micrograph of Feline leukemia virus
Virus classification
Group: Group VI (ssRNA-RT)
Order: Unassigned
Family: Retroviridae
Subfamily: Orthoretrovirinae
Genus: Gammaretrovirus
Species: Feline leukemia virus

Feline leukemia virus (FeLV) is a retrovirus that infects cats. FeLV can be transmitted from infected cats when the transfer of saliva or nasal secretions is involved. If not defeated by the animal’s immune system, the virus can cause diseases which can be lethal. One disease caused by this virus is a form of cancer of the blood cells called lymphoma.

Signs and symptoms[edit]

The signs and symptoms of infection with feline leukemia virus are quite varied and include loss of appetite, poor coat condition, anisocoria (uneven pupils), infections of the skin, bladder, and respiratory tract, oral disease, seizures, lymphadenopathy (swollen lymph nodes), skin lesions, fatigue, fever, weight loss, stomatitis, gingivitis, litter box avoidance, pancytopenia, recurring bacterial and viral illnesses, anemia, diarrhea and jaundice.

Asymptomatic carriers will show no signs of disease, often for many years.


The disease has a wide range of effects. The cat can fight off the infection and become totally immune, can become a healthy carrier that never gets sick itself but can infect other cats, or a mid-level case in which the cat has a compromised immune system.[citation needed] Nevertheless, the development of lymphomas is considered the final stage of the disease. Although it is thought that virus protein has to be present to induce lymphomas in cats, newer evidence shows that a high percentage of FeLV-Antigen negative lymphomas contain FeLV-DNA, indicating a "hit-and-run" mechanism of virus-induced tumor development.[1]

Once the virus has entered the cat, there are six stages to a FeLV infection[citation needed]:

  • Stage One: The virus enters the cat, usually through the pharynx where it infects the epithelial cells and infects the tonsilar B-lymphocytes and macrophages. These white blood cells then filter down to the lymph nodes and begin to replicate.
  • Stage Two: The virus enters the blood stream and begins to distribute throughout the body.
  • Stage Three: The lymphoid system (which produces antibodies to attack infected and cancerous cells) becomes infected, with further distribution throughout the body.
  • Stage Four: The main point in the infection- where the virus can take over the body's immune system and cause viremia. During this stage the hemolymphatic system and intestines become infected.

If the cat's immune system does not fight off the virus, then it progresses to:

  • Stage Five: The bone marrow becomes infected. At this point, the virus will stay with the cat for the rest of its life. In this phase, the virus replicates and is released four to seven days later in infected neutrophils, and sometimes lymphocytes, monocytes, and eosinophils (all white blood cells formed in the bone marrow).
  • Stage Six: The cat's body is overwhelmed by infection and mucosal and glandular epithelial cells (tissue that forms a thin protective layer on exposed bodily surfaces and forms the lining of internal cavities, ducts, and organs) become infected. The virus replicates in epithelial tissues including salivary glands, oropharynx, stomach, esophagus, intestines, trachea, nasopharynx, renal tubules, bladder, pancreas, alveolar ducts, and sebaceous ducts from the muzzle.


Cats infected with FeLV can serve as sources of infection. Transmission is related to the subgroup (see below). Cats can possibly pass the virus between themselves through saliva and close contact, by biting another cat, through a litter box or food dish used by an infected cat.

FeLV causes immunosuppression in domestic cats, and there is also evidence for existence of the virus in larger wild cat populations also (e.g. lynx, cheetahs, and lions). Overwhelming epidemiologic evidence suggests FeLV is not transmissible to either humans or dogs. This statement is based on the fact that approximately one pet dog in five lives with a cat, and many domestic cats live with humans (some 60 million pet cats in the United States). It is species-specific, and does not infect other animals, such as dogs (in fact, there is apparently no canine version of this disease at all).

Approximately 0.5% of pet cats are persistently infected with FeLV, but many more pet cats (>35%) have specific IgG antibodies which indicate prior exposure and subsequent development of immunity instead of infection. FeLV is highly infectious,.[2][3]

Kittens can be born with it, having contracted it from their mother while in utero.

Infection is far higher in city cats, stray or owned, than in rural cats: this is entirely due to the amount of contact the cats have with each other.

Four subgroups of FeLV exist: A, B, C, and T, but only subgroup A is transmissible between cats. The other subgroups arise de novo and as results of recombination with an endogenous feline DNA sequence. Hence, there is very good evidence this virus is quite ancient, and may well have evolved more than one time over the last 10,000,000 years[citation needed].

Subgroups are defined on the basis of viral interference and in vitro host range. The differences are due to polymorphism in the envelope glycoprotein gp70 with the highest level of divergence lying in the region of gp70 which is thought to interact with the cellular receptor. In an infected cell, gp70 is thought to block viral receptors, so preventing further infection by the same subgroup.

Diagnosis and prognosis[edit]

Cats diagnosed as persistently infected by ELISA testing may die within a few months or may remain asymptomatic for longer. The fatal diseases are leukemias, lymphomas, and non-regenerative anemias. Although there is no known cure for the virus infection, in 2006 the United States Department of Agriculture approved Lymphocyte T-Cell Immunomodulator as a treatment aid for FeLV (see Treatment).


Vaccines for FeLV are available (ATCvet code QI066AA01 and various combination vaccines), though no currently available vaccine offers 100% protection from the virus.[4] Serious side effects have also been reported as a result of FeLV vaccination; in particular, a small percentage of cats who received FeLV vaccines subsequently developed vaccine-associated sarcomas, an aggressive tumour, at the injection site.[5] The development of sarcomas with the use of the old FeLV and other vaccines may be due to the inflammation caused by aluminium adjuvants in the vaccines.[6]

Merial produces a recombinant vaccine consisting of canarypox virus carrying FeLV gag and env genes (sold as PUREVAX FeLV in the USA and Eurifel FeLV in Europe). This is thought to be safer than the old vaccine as it does not require an adjuvant to be effective. Although this is a live virus, it originates from a bird host and so does not replicate in mammals.[7]

Viral structure[edit]

Feline Leukemia Virus (FeLV) is an RNA virus in the subfamily Oncovirinae belonging to the Retroviridae family. The virus comprises 5' and 3' LTRs and three genes: Gag (structural), Pol (enzymes) and Env (envelope and transmembrane); the total genome is about 9,600 base pairs.

See the entry on retroviruses for more details on the life cycle of FeLV.


Approved US treatment[edit]

In 2006, the United States Department of Agriculture issued a conditional license for a new treatment aid termed Lymphocyte T-Cell Immunomodulator (LTCI).[8] Lymphocyte T-Cell Immunomodulator is manufactured and distributed exclusively by T-Cyte Therapeutics, Inc.[9]

Lymphocyte T-Cell Immunomodulator is intended as an aid in the treatment of cats infected with feline leukemia virus (FeLV) and/or feline immunodeficiency virus (FIV), and the associated symptoms of lymphocytopenia, opportunistic infection, anemia, granulocytopenia, or thrombocytopenia. The absence of any observed adverse events in several animal species suggests that the product has a very low toxicity profile.

Lymphocyte T-Cell Immunomodulator is a potent regulator of CD-4 lymphocyte production and function.[10] It has been shown to increase lymphocyte numbers and Interleukin 2 production in animals.[11]

Lymphocyte T-Cell Immunomodulator is a single chain polypeptide. It is a strongly cationic glycoprotein, and is purified with cation exchange resin. Purification of protein from bovine-derived stromal cell supernatants produces a substantially homogeneous factor, free of extraneous materials. The bovine protein is homologous with other mammalian species and is a homogeneous 50 kDa glycoprotein with an isoelectric point of 6.5. The protein is prepared in a lyophilized 1 microgram dose. Reconstitution in sterile diluent produces a solution for subcutaneous injection.[9][12]

Approved European treatment[edit]

Interferon-ω (omega) is sold in Europe at least under the name Virbagen Omega and manufactured by Virbac. When used in treatment of cats infected with FeLV in non-terminal clinical stages (over the age of 9 weeks) there have been substantial improvements in mortality rates; in non-anemic cats, mortality rate of 50% was reduced by approximately 20% following treatment.[citation needed]


FeLV was first described in cats in 1964.[13] The disease was originally associated with leukemia; however, it was later realized that the initial signs are generally anemia and immunosupression.[13] The first diagnostic test became available in 1973, which led to a "test and elimination" regime, dramatically reducing the number of infected cats in the general population.[14] The first vaccine became available in 1986.[14]

Comparison with feline immunodeficiency virus[edit]

FeLV and feline immunodeficiency virus (FIV) and are sometimes mistaken for one another though the viruses differ in many ways. Although they are both in the same retroviral subfamily (orthoretrovirinae), they are classified in different genera (FeLV is a gamma-retrovirus and FIV is a lentivirus like HIV-1). Their shapes are quite different: FeLV is more circular while FIV is elongated. The two viruses are also quite different genetically, and their protein coats differ in size and composition. Although many of the diseases caused by FeLV and FIV are similar, the specific ways in which they are caused also differs. Also, while the feline leukemia virus may cause symptomatic illness in an infected cat, an FIV infected cat can remain completely asymptomatic its entire lifetime.

See also[edit]


  1. ^ Weiss AT, Klopfleisch R, Gruber AD (2010). "Prevalence of feline leukaemia provirus DNA in feline lymphomas.". J Feline Med Surg. 12 (12): 929–35. PMID 21036089. doi:10.1016/j.jfms.2010.07.006. 
  2. ^ Phipps, A. J.; Chen, H; Hayes, K. A.; Roy-Burman, P; Mathes, L. E. (2000). "Differential Pathogenicity of Two Feline Leukemia Virus Subgroup a Molecular Clones, pFRA and pF6A". Journal of Virology. 74 (13): 5796–5801. PMC 112073Freely accessible. PMID 10846058. doi:10.1128/jvi.74.13.5796-5801.2000. 
  3. ^ "Evidence of horizontal transmission of feline leukemia virus by the cat flea (Ctenocephalides felis)". Parasitology Research. 91: 467–470. doi:10.1007/s00436-003-0949-8. 
  4. ^ "Feline Leukemia Virus: A Cause of Immunodeficiency in Cats". 
  5. ^ "Feline Leukemia Virus Diseases". 
  6. ^ Richards J, Elston T, Ford R, Gaskell R, Hartmann K, Hurley K, Lappin M, Levy J, Rodan I, Scherk M, Schultz R, Sparkes A (2006). "The 2006 American Association of Feline Practitioners Feline Vaccine Advisory Panel report". J Am Vet Med Assoc. 229 (9): 1405–41. PMID 17078805. doi:10.2460/javma.229.9.1405. 
  7. ^ Poulet H, Brunet S, Boularand C, Guiot AL, Leroy V, Tartaglia J, Minke J, Audonnet JC, Desmettre P (2003). "Efficacy of a canarypox virus-vectored vaccine against feline leukaemia". The Veterinary Record. 153 (5): 141–5. PMID 12934796. doi:10.1136/vr.153.5.141. 
  8. ^ "LTCI Product Information". T-Cyte Therapeutics, Inc. Retrieved 28 July 2012. 
  9. ^ a b "T-Cyte Therapeutics, Inc.". T-Cyte Therapeutics, Inc. Retrieved 28 July 2012. 
  10. ^ Beardsley, et al. "Induction of T-Cell Maturation by a Cloned Line of Thymic Epithelium (TEPI) Immunology 80: pp. 6005-6009, (Oct. 1983).
  11. ^ Beardsley, Terry R. Patent # 7,196,060; Method to enhance hematopoiesis. Method to enhance hematopoiesis - Google Patents at www.google.com
  12. ^ Beardsley, Terry R. Patent # 5,616,554; Immune-enhancing agent for therapeutic use in immunocompromised hosts. Immune-enhancing agent for ... - Google Patents at www.google.com
  13. ^ a b Hartmann, Katrin (2013). "Chapter 11: Feline leukemia virus infection". In Greene, Craig E. Infectious diseases of the dog and cat (4 ed.). Elsevier Health Sciences. ISBN 9780323266215. 
  14. ^ a b Louwerens, M; London, CA; Pedersen, NC; Lyons, LA (2005). "Feline lymphoma in the post-feline leukemia virus era". Journal of veterinary internal medicine. 19 (3): 329–35. PMID 15954547. doi:10.1111/j.1939-1676.2005.tb02703.x. 
  • B. Zharkoy, A. Zolototrubov, D. Fedosov. "Intensity of free radical processes in limphocytes at BLV and FeLV". Journal of Animal Science. XLII,5/2005, p.272-276.

External links[edit]